

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 1 of 20

FCC Test Report

Client Name : Chasing-Innovation Technology Co.,Ltd.

Room 3105, Building 6, Shenzhen

Client Address : International, Innovation Valley, Xili, Nanshan

District, Shenzhen, Guangdong, 518000,

China

Product Name : CHASING WSRC

Report Date : Oct. 20, 2022

Shenzhen Anbotek Compliance Laboratory Limited
* Approved *

Code:AB-RF-05-b

Contents

1. General Information	wetek.	Anbor	br.	5
1.1. Client Information	Yun Hak	kołek	Anbo	5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test	Anbo		Anbore.	5
1.3. Auxiliary Equipment Used During Test	Anbore	Yu.	,obo ¹	7
1.4. Description of Test Facility	k "boł	AUD.		otek
1.5 Channel List				Q %
1.6. Antenna Specification:	Oze Vii		unbotek	8
1.6. Antenna Specification: 1.7. Table for Antenna Configuration: 1.8. Maximum Output Power And E.I.R.P.	aboter	Anbo	700tek	9
1.8. Maximum Output Power And E.I.R.P	NeOtek	Anbors	Mr. Calak	9
1.9. Transmit Power Control (TPC)	VII.	popoten	And	10
1.9. Transmit Power Control (TPC) 2. U-NII DFS Rule Requirements 2.1. Working Modes and Required Test Items	Anba	y	ek Vupo,	11
2.1. Working Modes and Required Test Items	Anbor		uote ^k vol	11
Test Equipment List Test Equipment List Dynamic Frequency Selection (DFS)		botek	Anbo,	16
4. Dynamic Frequency Selection (DFS)	4po, 1	wotek.	Aupote.	17
4.1. DFS Measurement System	eupote.	Anv	botek	17
4.2 Calibration of DES Detection Threshold Level	100,0			18
4.3. Deviation from Test Standard		k Aupor	Anv	18°
5.1. Summary of Test Results	iek Vup,		497002	19
5.2. DFS Detection Threshold		upo,		19
5.3. Channel Move Time And Channel Closing Tra	ansmission ⁻	Time	Anbe	19
5.4. Channel Loading	Anos	, , otek	Anbors	19
APPENDIX I TEST SETUP PHOTOGRAPH			<u> </u>	20
APPENDIX II EXTERNAL PHOTOGRAPH	unboten.	Anbe		20
ADDENDIV III INTEDNAL DUOTOCDADU				20-1

TEST REPORT

Applicant : Chasing-Innovation Technology Co.,Ltd.

Manufacturer : Chasing-Innovation Technology Ganzhou Co., LTD

Product Name : CHASING WSRC

Model No. : WSRC

Trade Mark : CHASING

Rating(s) Input: 12.6V-- 3A, 15V-- 3A, 25.2V-- 3A, 25.2V-- 8A(with DC 10.905V,

7000mAh battery inside)

Test Standard(s) : FCC Part15 Subpart E, Paragraph 15.407

Test Method(s) : FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Date of Test	Aug. 16, 2022 Aug. 16~Sept. 27, 2022
Prepared By	Nian xiu Chen
Anbotek Anbotek Anbotek Anbotek	(Nianxiu Chen)
Approved & Authorized Signer	Lingkongjin
po. K holek Wipoles Wu.	(Kingkong Jin)

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 4 of 20

Revision History

Re	Report Version Description		Issued Date	
bu,	R00	Anbot	Original Issue.	Oct. 20, 2022
ek-	Aupotek	An	oter Anbotek Anbotek Anbotek Anbotek	Anboren Anbo
botek	Anborek		Tupo yolek Vupolek Vupole Vupolek Vupole	Anburger Anburger

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 5 of 20

1. General Information

1.1. Client Information

Applicant	: Chasing-Innovation Technology Co.,Ltd.
Address	Room 3105,Building 6, Shenzhen International, Innovation Valley, Xili, Nanshan District, Shenzhen, Guangdong, 518000, China
Manufacturer	: Chasing-Innovation Technology Ganzhou Co., LTD
Address	Building 4, Huachang Science and Technology Park, Ganzhou Economic and Technological Development Zone, Ganzhou City, Jiangxi Province, China
Factory	: Chasing-Innovation Technology Ganzhou Co., LTD
Address	Building 4, Huachang Science and Technology Park, Ganzhou Economic and Technological Development Zone, Ganzhou City, Jiangxi Province, China

1.2. Description of Device (EUT)

	1.523.3	. AU	DAY AND
Product Name	:	CHASING WSRC	tek Anborek Anboro Air
Model No.		WSRC	hbotek Anbotek Anbotek A
Trade Mark	:	CHASING	Anbotek Anboro Att
Test Power Supply	:	DC 10.905V battery inside	Anborek Anborek Anborek
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Enginee	ering Sample)
Adapter		N/A Anborek Anborek Anbor	er Anbotek Anbotek Anbo
RF Specification			
Operation Mode	:	 □ a □ ac(VHT40) □ ax(HEW40) □ ax(HEW80) 	 □ n(HT40) □ ac(VHT20) □ ax(HEW20) □ ax(HEW160)
Device Type	:	☐ Outdoor AP ☐ Indoor AP ☐ Client	Point-to-point AP
TPC Function	:	☐ With TPC	⊠ Without TPC
DFS Type	:	Slave without radar detection	Slave with radar detection
Operation Frequency	:	☐ Wi-Fi 5.3G: 5250~5350MHz	⊠ Wi-Fi 5.6G: 5470~5725MHz
Number of Channel ∴ □ 11 Channels for 20MHz bandwidth (5500-5700MHz) ∴ □ 5 Channels for 40MHz bandwidth (5510-5670MHz)		- K 100° AI'	

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-b

Hotline
400-003-0500

www.anbotek.com.cn

≥ 2 Channels for 80MHz bandwidth (5530~5610MHz)					
 ⊠ 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) ≅ 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM) ≅ 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) ≡ 802.11ax: OFDMA(BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM) 					
: FPC Antenna					
: 0.61dBi (Provided by customer)					

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 7 of 20

1.3. Auxiliary Equipment Used During Test

Description	Rating(s)
Master device	Equipment: AX3000 Dual-Band Gigabit Wi-Fi 6 Router
Arr stek Anbotek	Model: RX9 Pro
Anbo	FCC-ID: V7TRX9P

1.4. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

1.5. Channel List

Frequency Band	Mode	Test channel	Frequency (MHz)
Vupo, br.	botek Anbotek Anbotek A	CH 100	5500
100. Iv.		CH 104	5200
		CH 108	5540
tek aboter		CH 112	5560
unbotek Anbotek		CH 116	5580
	OFDM 802.11a/n(HT20)/ac(HT20)	CH 120	5600
Anbotek Anbot	002.11a/11(11120)/ac(11120)	CH 124	5620
Anbotek An		CH 128	5640
Ville		CH 132	5660
5.6GHz		CH 136	5680
hbotek Anbotek	And Andrew Andrew	CH 140	5700
otek Anbore	Anbotek Anbotek	CH 102	5510
Anbotek Ant	otek Anbotek Anbotek An	CH 110	5550
Anb	OFDM 802.11n(HT40)/ac(HT40)	CH 118	5590
Anbotek	002.TIII(TT+0)/ac(TT+0)	CH 126	5630
tek Anbotek		CH 134	5670
botek Anbotek	OFDM	CH 106	5530
Anbotek Anbote	802.11ac(HT80)	CH 122	5610

1.6. Antenna Specification:

20	Ant.	Antenna Type	Connector	Gain (dBi)
	notek Arboter Ar	FPC FPC	N/A	0.61

1.7. Table for Antenna Configuration:

Operating Mode	TX Mode	TX
802.11a	AUD	V (Ant. 1)
802.11n(HT20)	abolet	V (Ant. 1)
802.11ac(HT20)	ly.	V (Ant. 1)
802.11n(HT40)	Aupo	V (Ant. 1)
802.11ac(HT40)	10. 10.	V (Ant. 1)
802.11ac(HT80)	, b.,	V (Ant. 1)

1.8. Maximum Output Power And E.I.R.P.

£,1	Mode: TX (802.11a 20MHz)							
	Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.			
11	(MHz)	Output	(dBi)	(dBm)	(mW)			
10		Power (dBm)						
	5470~5725	11.84	0.61	12.45	17.579			

Mode: TX (802.11n(HT20))								
Frequency Band Max Average Gain Max. e.i.r.p. Max. e.i.r.p.								
(MHz)	Output	(dBi)	(dBm)	(mW)				
	Power (dBm)							
5470~5725	11.61	0.61	12.22	16.672				

	Mod	de: TX (802.11ac(HT2	20))	
Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.
(MHz)	Output	(dBi)	(dBm)	(mW)
	Power (dBm)			
5470~5725	11.14	0.61	11.75	14.962

¥.		Mo	de: TX (802.11n(HT4	.0))	
	Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.
0	(MHz)	Output	(dBi)	(dBm)	(mW)
1,1		Power (dBm)			
	5470~5725	11.04	0.61	11.65	14.622

Code:AB-RF-05-b

Hotline
400-003-0500

www.anbotek.com.cn

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 10 of 20

		Mod	de: TX (802.11ac(HT	40))	
3	Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.
	(MHz)	Output	(dBi)	(dBm)	(mW)
		Power (dBm)			
	5470~5725	11.19	0.61	11.80	11.136

	Mod	de: TX (802.11ac(HT	80))	
Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.
(MHz)	Output	(dBi)	(dBm)	(mW)
	Power (dBm)			
5470~5725	11.61	0.61	12.22	16.672

1.9. Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Applicable	EIRP	FCC 15.407 (h)(1)
ootek Dotek	>500mW	The TPC mechanism is required for system with an EIRP of above 500mW
	<500mW	The TPC mechanism is not required for system with an EIRP of less 500mW

The UUT can adjust a transmitter's output power based on the signal level present at the receiver.TPC is auto controlled by software.

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 11 of 20

2. U-NII DFS Rule Requirements

2.1. Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

Applicability of DFS Requirements Prior to Use a Channel

		Operational Mod	de
Requirement	NAt	Client without radar	Client with radar
	Master	detection	detection
Non-Occupancy Period	okek 1 Aupo	Not required	And Viek ab
DFS Detection Threshold	hotek √ Ant	Not required	otek My
Channel Availability Check Time	No.	Not required	Not required
U-NII Detection Bandwidth	Anbe Vak	Not required	arek V naborek

Applicability of DFS Requirements during Normal Operation

	Operational Mode			
Requirement	Master	Client without radar	Client with radar	
	Master	detection	detection	
DFS Detection Threshold	Anboten P	Not required	Anbore All niek	
Channel Closing Transmission Time	Anbolek	Anbotek VAIII	Anbotek V Anb	
Channel Move Time	PVv	abotek / Anbote	And work Anborek	
U-NII Detection Bandwidth	ek Vanbor	Not required	And Yek anbot	

Additional requirements for devices	Master Device or Client	Client Without Radar
with multiple bandwidth modes	with Radar Detection	Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Code:AB-RF-05-b
Hotline
400-003-0500
www.anbotek.com.cr

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 12 of 20

2.2. Test Limits and Radar Signal Parameters

Detection Threshold Values:

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Dawar	Value	
Maximum Transmit Power	(See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm	
EIRP < 200 milliwatt that do not meet the power spectral density requirement	Anborek Anborek Anborek	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain.

Test Limit:

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 13 of 20

Parameters of DFS Test Signals And Minimum Percentage of Successful Detections:

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(μsec)	Number of Fulses	Percentage of	Number of
Type	(μεςς)	(μισος)		Successful	Trials
				Detection	THUIS
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{1}{360} \right\}. $ $ \left\{ \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-	4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of

pulses would be Roundup
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18$$

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Long Pulse Radar Test Waveform

				0				
	Radar	Pulse	Chirp	PRI	Number of	Number of	Minimum	Minimum
Z,	Type	Width	Width	(µsec)	Pulses per	Bursts	Percentage	Number of
		(µsec)	(MHz)		Burst		of	Trials
							Successful	
							Detection	
4	5.botek	5-100	5-20	1000-2000	1-3	8-20	80%	30
	,- of	k Vupose	b21.	·00' - 1/0.	er Aupo	0	tek vupor	but.

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-b
Hotline

Hotline 400-003-0500 www.anbotek.com.cn

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 15 of 20

Frequency Hopping Radar Test Waveform

N. S.	Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
0,1	ok 6 Mupoh	1 Anbote	333	itek 9 Anbo	0.333	300	70%	30

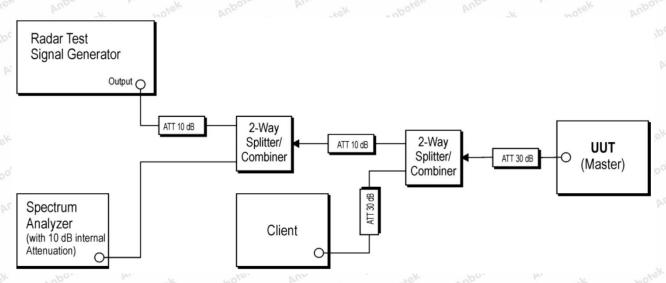
For the Frequency Hopping Radar Type, the same Burst parameters are µsed for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: If a segment does not contain at least 1 frequency within the U-NII Detection Bandwidth of the UUT, then that segment is not µsed.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Report No.: 18220WC20179605 Page 16 of 20 FCC ID: 2AMOD-WSRC

3. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Hupo,	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Oct. 23, 2021	1 Year
2.	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY53280032	Oct. 22, 2021	1 Year
3.	RF Control Unit	Tonscend	JS0806-2	21G8060455	Nov. 10, 2021	1 Year
4.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Oct. 23, 2021	1 Year


4. Dynamic Frequency Selection (DFS)

4.1. DFS Measurement System

Test Procedure:

- 1. Master device and client device are set up by conduction method as the following configuration.
- The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- 3. Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "iPerf.exe" to reach 17% channel loading as below.
- 5. The time for the device to fully start up is 65s.

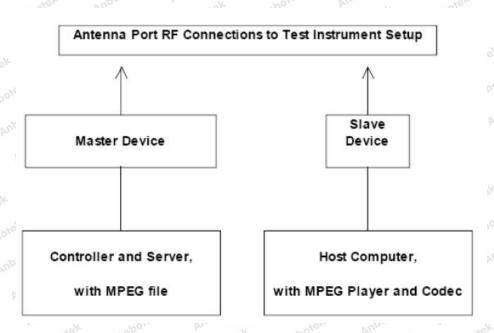
Setup for Master with injection at the Master

Radar Test Waveforms are injected into the Master.

400-003-0500

www.anbotek.com.cn

4.2. Calibration of DFS Detection Threshold Level


A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak

level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

4.3. Deviation from Test Standard

No deviation.

Code:AB-RF-05-b

5. Test Results

5.1. Summary of Test Results

Standard	Test Type	Remarks	Result
FCC 15.407	Channel Move Time	Applicable	PASS
FCC 15.407	Channel Closing Transmission Time	Applicable	PASS
FCC 15.407	Channel Loading	Applicable	PASS

5.2. DFS Detection Threshold

Calibration:

DFS Threshold	Level
DFS Threshold Level(0.61dBi antenna):-61.39dBm	☑At the antenna connector
DI 3 Tillestiola Level(0.0 tabl antenna)01.39abili	□In front of the antenna

Note: For SISO mode, the maximum EIRP is less than 200 milliwatt, the antenna gain is 0.61dBi.

Please refer to Appendix A of the Appendix Test Data.

5.3. Channel Move Time And Channel Closing Transmission Time

Please refer to Appendix C of the Appendix Test Data.

5.4. Channel Loading

Please refer to Appendix B of the Appendix Test Data.

Report No.: 18220WC20179605 FCC ID: 2AMOD-WSRC Page 20 of 20

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_DFS

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

·	End of Report	

Code:AB-RF-05-b

