

Address

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 1 of 48

FCC Test Report

Applicant : Chasing-Innovation Technology Co.,Ltd.

Room 3105, Building 6, Shenzhen International

: Innovation Valley, Xili, Nanshan District,

Shenzhen, Guangdong, 518000, China

Product Name : CanFish Fishing CamX

Report Date : Mar. 22, 2024

Shenzhen Anbotek

Compliance Laboratory Limited

Approved **

Approved **

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 2 of 48

Contents

· a siek	Vupo, Vi							40.
1. Gene	ral Information	274	ek	bokek	- Kupote.	-/r	ye/	toati
101.	Client Information	449tog	upo,		100ty	V.	·····	<u>.</u>
1.2.	Description of Device (E	EUT)	- Notek	Vupo		1045K	Mporo	- Arr
1.3.	Auxiliary Equipment Us	ed During T	est		V. 100	· · · · · · · · · · · · · · · · · · ·	botek	
1.4.	Operation channel list	oo anboyek		~k	hotek	Anbar		?k
1.5. 1.5.	Measurement Uncertain	es	Aupo	ie	. ak		······································	P
1.0.	Test Summary	irà		botek	Anbox	برو	/	0,00
1.8.	Client Information Client Information Description of Device (E Auxiliary Equipment Us Operation channel list Description of Test Mod Measurement Uncertair Test Summary Description of Test Faci	lity	Vo. V.		, botek	Aup		otek
1.9.	Disclaimer		wajek	.Anbor		do.,,,,,,	oter 1	Anb.
M1.10	D. Test Equipment List	00,0 P.		boter	And a		yek	,
2. Cond	ucted Emission at AC po	wer line	Aupo		ek and	O.C. P		
21	FUT Operation							, 1 ⁴
2.1.	Test Setup	PUDI.	ho [†]	ek Ar	/o,	, tek	olodora.	1
2.3.	Test Data	Pupole	Vier		, botek	Anbo	k	1
3 Duty	Description of Test Facion Disclaimer	ik aboi						
O. Duty	TUT On benefit	pari	otek	Anbore	Arra	٠/٥٢ ع	yek p	'upor I
3.1. 2.2	LUI Operation	0487No	~k	. Vatorey	Anbore		otek	اکروں 1 موروں
3.2.	Test Data	hotek	Anbore		sk ab	V.	V37	
A Massin	num conducted cutout =	War sagk	anbotek	Anbo	-V-	hotek	Anbore	And
4. Waxir	num conducted output p	ower		y Dul		, ek	, dooley	14 An
100 4.1.	EUT Operation	Anboten		- ek	-19404eK	hupo,	Bir.	
4.2.	Test Data	k 204	St. W.	,011	VII.	v upotek		14
Anbo 4.0.	rost Data		otek .	rupojek	P.U.D.		lek bi	Upoter 14
5. Powe	r spectral density EUT Operation Test Setup	040 K. W.	2V.	noiek.	Aupoje,		rek) Psycolog
5.1.	EUT Operation	ak	Wpo _{ter} .	VUr.	%	16 _K	/bo.	1
5.2.	Test Setup	w	· · · · · · · · · · · · · · · · · · ·			· otok	Aupoter	
5.3.	Test Data	Anbore		K 200	01er		hotek	
6. Emiss	sion bandwidth and occu	pied bandw	idth	····		Arbore	Yu.	16
6.1.	EUT Operation		<u> 40,4</u>	ote. I	7Un		Anbo	17
6.2.	Test Setup						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ر1
6.3.	Test Data	770 K	07 P	" " " Sept	Anbotek		· o.k	
7. Chan	nel Move Time, Channel	Closing Tra	nsmission	Time	K	<u>ek po</u>	00,_	18
7.1.	EUT Operation	400 I	, otek	Anbore	Vu.	494	"upotek	Anbu
7.2	Test Setup	Mpo _{te.}	VUr.		tek Ar	δ ₀ .	n.	
7.3.	Test Data		Wpo,	D11,	V	Nipoter.	Ano	19
8. DFS I	nel Move Time, Channel EUT Operation Test Setup Test Data Detection Thresholds EUT Operation Test Setup		2000	ter b		Cotek	Aupor	20
Anbore 8.1	EUT Operation	Anbo	0/5	botek	Anbore	VII.	16	o ^{ter} 20
8.2.	Test Setup	iek Vup	24		abotet	Aupo,		2
8.3.	Test Data		ojek	Vupo,		10 <u>7.</u>	oter	2
9. Band	edge emissions (Radiate	ed)	i.	anboten	Aupr	ak	potek	22
Q A	Test Dataedge emissions (Radiate	Anboten						76,7
ອ. I .								

Report No.: 18220WC40033902	P FCC ID	: 2AMOD-	CHASING	CAMX	Page 3 of 4	18
9.2. Test Setup 9.3. Test Data		,50°ck	iupo _{ser}	Vunotek Vun	botek botek	24 25
10. Undesirable emission limits (below	1GHz)	And	, Kupotek	Aupor	7/r	28
10.1. EUT Operation	popo _{tek}	Aupolo	r Aupote	r Vupo	otek An	30 31
10.2. Test Setup 10.3. Test Data	Anbo	Sk	10.4 × 19.1c	2010		32
11. Undesirable emission limits (above	1GHz)		- Botek	Wpose.	Vun 2010R	34,0°
11.1. EUT Operation 11.2. Test Setup	······		Aupa			36 Ani
11.3. Test Data	1/0.				Anbot	- 4
APPENDIX I TEST SETUP PHOTOG APPENDIX II EXTERNAL PHOTOGR	RAPH	Supore.	An	Fight William		38 40
APPENDIX III INTERNAL PHOTOGR	RAPH		dag ^{Vas}	o. b	V ₀ V	44

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 4 of 48

TEST REPORT

Applicant : Chasing-Innovation Technology Co.,Ltd.

Manufacturer : Chasing-Innovation Technology Co.,Ltd.

Product Name : CanFish Fishing CamX

Test Model No. : CanFish Fishing CamX

Reference Model No. : N/A

Trade Mark : CanFish

Rating(s) : Input: 5V= 1A (with DC 3.85V, 1100mAh battery inside)

47 CFR Part 15E

Test Standard(s)

ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Feb. 26, 2024
Date of Test: Feb	. 26, 2024 to Mar. 14, 2024
	Nian Xiu Chen
Prepared By:	Anbo, Anbo, A.
Jotek Anbotek Anbotek Anbotek Anbotek	(Nianxiu Chen)
	Idward pan
Approved & Authorized Signer:	stek anbotes Ann ak spotek
	(Edward Pan)

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 5 of 48

Revision History

	Report Version		Description	Issued Date			
	Anbore R00 porek	Autotek	Original Issue	Anborek	Mar. 2	2, 2024	Anbo
K-aK	Aupotek Aupotek	Aupot.	otek Anbotek	Aupolek	k Anborek	Anborek	P.
0	tek Anbotek Anbo	yer Ant	-botek Anbotek	Aupo,	otek Anbotek	Anbore	- As-

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 6 of 48

1. General Information

1.1. Client Information

Applicant	: Chasing-Innovation Technology Co.,l	Ltd. Andorek Andorek Andorek
Address	Room 3105,Building 6, Shenzhen International Nanshan District, Shenzhen, Guangd	
Manufacturer	: Chasing-Innovation Technology Co.,l	Ltd. tek Anbore And Lotek
Address	Room 3105,Building 6, Shenzhen Int. Nanshan District, Shenzhen, Guangd	
Factory	: Chasing-Innovation Technology Gan	zhou Co., LTD
Address	Building 4, Huachang Science and Te : and Technological Development Zon China	

1.2. Description of Device (EUT)

atek .		bo, W. Vick Poles. Were July Villa.
Product Name	:	CanFish Fishing CamX
Test Model No.	:	CanFish Fishing CamX
Reference Model No.	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	CanFish And Take And
Test Power Supply	:	DC 3.85V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A sek Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20): 5500MHz to 5700MHz; 802.11n(HT40)/ac(VHT40): 5510MHz to 5670MHz; 802.11ac(VHT80): 5530MHz to 5610MHz
Number of Channel	:	802.11a/n(HT20)/ac(HT20): 11 802.11n(HT40)/ac(HT40): 5 802.11ac(HT80): 2
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	2.6 dBi And hotek Anbotek Anbotek Anbotek Anbotek Anbotek
KULL P. K.		- 16. Va - 16.

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 7 of 48

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC-ID: MSQ-RTAX5D00)	Aupores Aupore

1.4. Operation channel list

Operation Band: U-NII Band 2C

Operation band.	O-IVII Dana 20	AL AL	No.	ok vpo.	Pr. V
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102 mode	5510	Anbo 106 Ant	5530
104 otek	5520	nbotek 110 Anbot	5550	122	5610
hotek 108 Anbotek	5540	118	5590	k Wolek	Aupo
botel 112 Autor	5560	126	5630	otek / Anbotek	And
116	5580	134	5670	abotek / Anbote	Andrek
120	5600	otek / Anbotek	Yupo,	"upotek Aup	ore. And bore
124	5620	hotek / Anbore	k Aybot	W. Spork	hpotes / Ans
128	5640	And hotely And	otek / Anbo	k Mootek	Anbore / Ans
132 noote	5660	August	nbotek / Anbo	tek Inbosek	Aupolo A
136	5680	k potek	Anborek Anb	otek / nobotek	PU JOSE
140	1001eX 5700 Mario	abotek Am	Anbojek	no cok/	yek Wupose

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek Anbotek Anbot Anbotek Anbotek Anbot	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM4 botes And	Keep the EUT works in normal operating mode and connect to companion device

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 8 of 48

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Occupied Bandwidth	925Hz
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Aupo. Ask wood	iek N Vupc
Duty Cycle	Mode1,2,3	botek P A
Maximum conducted output power	Mode1,2,3	anbot P
Power spectral density	Mode1,2,3	An Prek
Emission bandwidth and occupied bandwidth	Mode1,2,3	Photek
Channel Move Time, Channel Closing Transmission Time	Mode4	ek P Anboi
DFS Detection Thresholds	Mode4	potek P Ar
Band edge emissions (Radiated)	Mode1,2,3	A Production
Undesirable emission limits (below 1GHz)	Mode1,2,3	npBok
Undesirable emission limits (above 1GHz)	Mode1,2,3	Photek
Note: P: Pass N: N/A, not applicable	ek Anbotek Anbot	ak Anbot

Hotline

FCC ID: 2AMOD-CHASINGCAMX Report No.: 18220WC40033902 Page 9 of 48

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 10 of

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	tek Anbote	Anbo	tek anbotek	Anbore.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2°K	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
A300	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4 ^{Anl}	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A Moo	hotek / Anbot	sk Yupotek

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Channel Move Time, Channel Closing Transmission Time

DFS Detection Thresholds

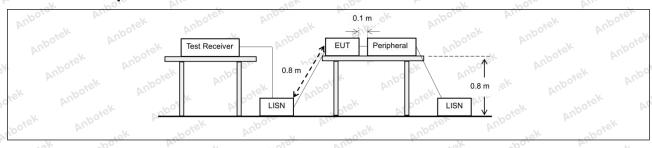
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
e ^k 1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25	
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-10-12	2024-10-11	
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22	

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 11 of 48

	edge emissions (Ra sirable emission limi		Anbore	K And boiek	Anbotek	Anbo.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
1003ek	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
ADON	EMI Test Software EZ-EMC	SHURPLE 10012	N/A	N/A	Aybo, hotek	Andorek
5An	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
7.k	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limi	ts (below 1GHz)	anbotek	Aupor	ek Air.	Anboten
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4 4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A Anbox	otek N/A	otek / Aupote	ek Anbe

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 12 of


2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	oter Ando	abotek Anbote
Aupo, W.	Frequency of emission (MHz)	Conducted limit (dBµV)	otek antore
ek abotek Anbo	k hotek Anbore	Quasi-peak	Average
- III II KOK	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56 botek Anbe	46
ek abojek	5-30	60	50 AM
Anbors An Motek	*Decreases with the logarithm of t	he frequency.	ek Aupoien
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

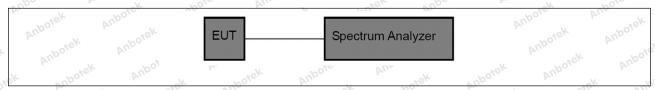
e	Operating Env	ironment:	Aupore	Vu. Polsk	Anboiek	Aupo	abotek	Pupo
00	Test mode:	ek botek	Anbore.	Andorek	anbotek	Anbo.	h. abotek	Þ

2.2. Test Setup

2.3. Test Data

Not applicable. The EUT is powered by DC 3.85V Battery inside, so there is no need to conduct this test

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 13 of


3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Anbotek Anbotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW.
ostek Anbotek Anb	iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW
Anbotek Anbotek	and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

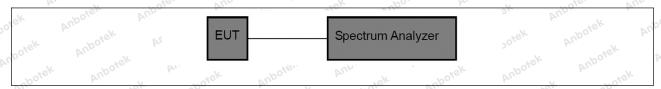
Operating Env	ironment: knootek knootek Anbotek Anbotek Anbotek Anbotek
tek Aupotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Test mode:	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only
	the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	25 °C	, ek	Humidity:	45 %	Atmospheric Pressure:	101 kPa
-/0° -	5.7	. 07	V/1.	1.0.1	2/0 A	

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 14 of


4. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(2)
Test Limit:	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

4.1. EUT Operation

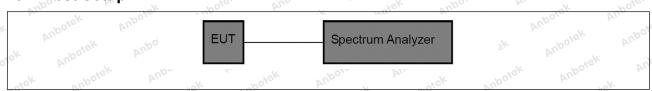
Por Yes	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously
	transmitting mode with 802.11a modulation type. All data rates has been tested and
	found the data rate @ 6Mbps is the worst case. Only the data of worst case is
	recorded in the report.
	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously
- Ano	transmitting mode with 802.11n modulation type. All bandwidth and data rates has
Test mode:	been tested and found the data rate @ MCS0 is the worst case. Only the data of
	worst case is recorded in the report.
	3: 802.11ac mode: Keep the EUT connect to AC power line and works in
	continuously transmitting mode with 802.11ac modulation type. All bandwidth and
	data rates has been tested and found the data rate @ MCS0 is the worst case. Only
	the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	25 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
--------------	-------	-----------	------	-----------------------	---------

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 15 of


5. Power spectral density

	101
Test Requirement:	47 CFR Part 15.407(a)(2)
Test Limit:	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

5.1. EUT Operation

Operating Envir	conment: Tek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
tek Anbotel	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature: 25 °C Humidity: 45 %	Atmospheric Pressure:	101 kPa
-----------------------------------	-----------------------	---------

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 16 of

6. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
ick Vupose. Vu	Emission bandwidth:
, otek	a) Set RBW = approximately 1% of the emission bandwidth.
botek Anbe	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
otek anbore	e) Measure the maximum width of the emission that is 26 dB down from the
Ande	peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and
	repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	a dek i nobote Anti-sek spotek Anti-
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and
	5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise
	specified by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
Procedure:	from exceeding the
Auge Tek	maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
W.	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the
	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode
rotek Aupo,	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used. https://www.aboveer.and.com/
	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are
	recovered and directly summed in linear power terms. The recovered
	amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of
	the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated

Report No.: 18220WC40033902

FCC ID: 2AMOD-CHASINGCAMX

Page 17 of

until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

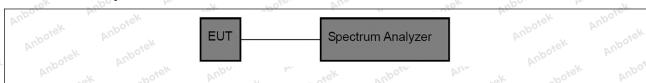
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

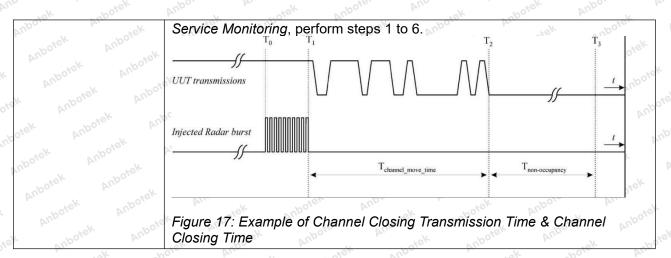
6.2. Test Setup

6.3. Test Data

2	Temperature:	25 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
	- W-	The state of the s		6///		The state of the s

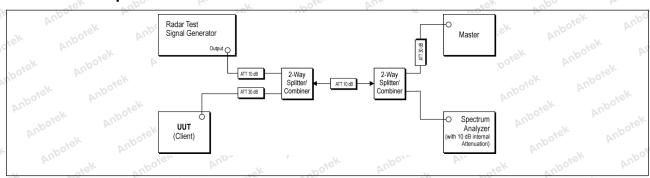
Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX

Page 18 of


7. Channel Move Time, Channel Closing Transmission Time

47 CFR Part 15.407(h)(2)(iii)
Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
KDB 905462 D02, Clause 7.8.3
The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to allow the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test.
4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors.
5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (<i>Channel Move Time</i>). Measure and record the <i>Channel Move Time</i> and <i>Channel Closing Transmission Time</i> if radar detection occurs. Figure 17 illustrates <i>Channel Closing Transmission Time</i> . 6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result.

Report No.: 18220WC40033902 Page 19 of FCC ID: 2AMOD-CHASINGCAMX


7.1. EUT Operation

Operating Environment:

Test mode:

4: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

7.2. Test Setup

7.3. Test Data

Temperature:	25 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Hotline

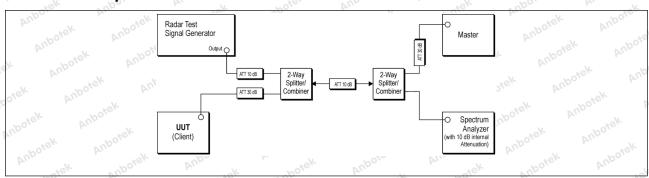
Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 20 of

8. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	stek anbotek Anbo
Anbotek Anbotek Anbot	Table 3: DFS Detection Thresholds for Master I with Radar Detection Table 3: DFS Detection Thresholds for Ma and Client Devices with Radar De	ster Devices
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	EIRP ≥ 200 milliwatt EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz EIRP < 200 milliwatt that do not meet the power spectral density requirement Note 1: This is the level at the input of the receiver assuming a 0 dl Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurem the test signal is at or above the detection threshold level to trigger Note3: EIRP is based on the highest antenna gain. For MIMO dev 662911 D01.	een added to the amplitude of the ent equipment. This will ensure that a DFS response.
Test Method:	KDB 905462 D02, Clause 7.4.1.1 1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold	master
otek Anbotek Anbo	had been taken into account the output power r 3) The following equipment setup was used to o waveform. A vector signal generator was utilize level for radar type 0. During this process, there	calibrate the conducted rada d to establish the test signa e were no transmissions by
Procedure:	either the master or client device. The spectrum the zero spans (time domain) at the frequency of generator. Peak detection was used. The spect bandwidth (RBW) and video bandwidth (VBW) spectrum analyzer had offset -1.0dB to comper 4) The vector signal generator amplitude was signed at the spectrum analyzer was TH + 0.	of the radar waveform rum analyzer resolution were set to 3 MHz. The asate RF cable loss 1.0dB. et so that the power level

8.1. EUT Operation

Operating Envi	ronment:	Aupo,	Aug Potek	Anbotek	Aupo	"hotek	Auport
Test mode:	~o,	DAY .	Keep the El	JT works in	normal operati	ng mode and	connect to
ak abore	companio	n device	Sk VUpo		ode No.		V



Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX

Page 21 of

8.2. Test Setup

8.3. Test Data

Temperature:	25 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
--------------	-------	-----------	------	-----------------------	---------

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 22 of

9. Band edge emissions (Radiated)

	47 CFR Part 15.407(b 47 CFR Part 15.407(b		Anbotek A	inpoter Aupo
Aupote, Aur	For transmitters opera of the 5.47-5.725 GHz			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
potek Aupo,	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
Air.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
est Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
est Limit: Anbotek	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	rek anbore.	AUD	hotek And
	¹ Until February 1, 1999	9, this restricted band	shall be 0.490-	-0.510 MHz.
ek Aupotek	² Above 38.6	Wupotek Wupo	uithild the the	ak Anbotek
	The field strength of er not exceed the limits s 1000 MHz, compliance using measurement in	shown in § 15.209. At e with the limits in § 1 strumentation emplo	frequencies equencies equencies of 5.209shall be dependent of the following a CISPR quence of	ual to or less tha emonstrated uasi-peak
	The field strength of er not exceed the limits s 1000 MHz, compliance	shown in § 15.209. At e with the limits in § 1 strumentation emplo MHz, compliance with strated based on the	frequencies equ 5.209shall be d ying a CISPR qu n the emission li average value o	ual to or less that emonstrated uasi-peak mits in § of the measured
	The field strength of er not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 I 15.209shall be demon	shown in § 15.209. At a with the limits in § 1 strumentation emplo MHz, compliance with strated based on the ons in § 15.35apply sewhere in this subpass	frequencies equipments. 5.209shall be diving a CISPR quant the emission line average value to these measurers, the emission	ual to or less that emonstrated uasi-peak mits in § of the measured ements.
	The field strength of er not exceed the limits is 1000 MHz, compliance using measurement in detector. Above 1000 I 15.209shall be demon emissions. The provisi Except as provided elsintentional radiator shall.	shown in § 15.209. At a with the limits in § 1 strumentation emplo MHz, compliance with strated based on the ons in § 15.35apply sewhere in this subpass	frequencies equition of the strength levels from the frequencies of the series of the	ual to or less that emonstrated uasi-peak mits in § of the measured ements.

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 23 of

200	N. 200,6.	Dr. Carrier	OD LOK
All K Lotek	0.490-1.705	24000/F(kHz)	30
apolek Aup	1.705-30.0	30	And 30
W. Jek "Upo,	30-88	100 **	3 ter And
Aupo, K.	88-216	150 **	3 30K 00
k potek Ar	216-960	200 **	3
V. V.	Above 960	500 Mbore	Let 3 boten M
otek Anbore	** Except as provided in	paragraph (g), fundamental e	missions from
k hotek		rating under this section shall	
aporeit And		MHz, 76-88 MHz, 174-216 MH	
atek Anbote		in these frequency bands is pe	
Anbo	sections of this part, e.g.		otek Anbore
		ove, the tighter limit applies at	the band edges.
		wn in the above table are base	
Y Aupo, W.	180	si-peak detector except for the	
ok horek		nd above 1000 MHz. Radiated	
Die. Aug	- K	ased on measurements emplo	
anbore Anbore	detector.	Anbo K Anbok An	por Arres
Test Method:	ANSI C63.10-2020, sect	tion 12.7.4, 12.7.6, 12.7.7	shorek Anbor
Aupola Au	K MOJE, MUD	potek Anbo	VII.
hotek Anbor	Above 1GHz:	THE AND WEST OF STREET	- Anbor Ar
And		EUT was placed on the top of	
		d at a 3 meter fully-anechoic c	
		determine the position of the hi	
		eters away from the interferen	
		the top of a variable-height ant	
por All		varied from one meter to four	
Potek Vupo,		maximum value of the field st	
		s of the antenna are set to make	
		mission, the EUT was arrange	
		so tupo od to bojakto fram 1 most	
		as tuned to heights from 1 met	ter to 4 meters (for the
		30MHz, the antenna was tune	ter to 4 meters (for the d to heights 1 meter)
	and the rotatable table w		ter to 4 meters (for the d to heights 1 meter)
	and the rotatable table w maximum reading.	30MHz, the antenna was tune was turned from 0 degrees to 3	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the
	and the rotatable table w maximum reading. e. The test-receiver syst	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Fu	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the
Procedure:	and the rotatable table w maximum reading. e. The test-receiver syst Bandwidth with Maximur	30MHz, the antenna was tune vas turned from 0 degrees to 3 em was set to Peak Detect Fu m Hold Mode.	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified
Procedure:	and the rotatable table w maximum reading. e. The test-receiver syst Bandwidth with Maximur f. If the emission level of	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Fum Hold Mode.	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified
Procedure:	and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximur f. If the emission level of limit specified, then testing	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Fum Hold Mode. The EUT in peak mode was 1 ng could be stopped and the p	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT
Procedure:	and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Othe	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Furn Hold Mode. The EUT in peak mode was 1 and could be stopped and the perwise the emissions that did not be set to be	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin
Procedure:	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Othe would be re-tested one be	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 10 ng could be stopped and the perwise the emissions that did not one using peak or average.	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin
Procedure:	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Othe would be re-tested one be and then reported in a discovery service.	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 1 ng could be stopped and the perwise the emissions that did not one using peak or average ata sheet.	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified
Procedure: Anborek Anborek Anborek Anborek	and the rotatable table we maximum reading. e. The test-receiver system of the system of the system of the system of the would be reported. Other would be re-tested one was and then reported in a day. Test the EUT in the local maximum of the system of t	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 10 ng could be stopped and the perwise the emissions that did not one using peak or average.	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified
Procedure:	and the rotatable table we maximum reading. e. The test-receiver systems and width with Maximum f. If the emission level of limit specified, then testing would be reported. Other would be re-tested one would be re-tested in a day of the content of the logical treatment.	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Fum Hold Mode. The EUT in peak mode was 1 ing could be stopped and the perwise the emissions that did not one using peak or average ata sheet. West channel, the middle charman was turned to the middle charman wa	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT ot have 10dB margin method as specified nnel, the Highest
Procedure: Anborek Anborek Anborek Anborek Anborek Anborek Anborek	and the rotatable table w maximum reading. e. The test-receiver syst. Bandwidth with Maximur f. If the emission level of limit specified, then testi would be reported. Othe would be re-tested one k and then reported in a d. g. Test the EUT in the lochannel. h. The radiation measure	30MHz, the antenna was tune was turned from 0 degrees to 3 mem was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 1 mg could be stopped and the perwise the emissions that did not one using peak or average ata sheet. West channel, the middle chartements are performed in X, Y,	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT of have 10dB margin method as specified nnel, the Highest Z axis positioning for
Procedure:	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Other would be re-tested one would be re-tested one would be reported in a dignormal of the EUT in the location channel. h. The radiation measure Transmitting mode, and	30MHz, the antenna was tune was turned from 0 degrees to 3 em was set to Peak Detect Fum Hold Mode. The EUT in peak mode was 1 ing could be stopped and the perwise the emissions that did not one using peak or average ata sheet. West channel, the middle charman was turned to the middle charman wa	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT of have 10dB margin method as specified nnel, the Highest Z axis positioning for
Procedure: Anborek Anborek Anborek Anborek	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Other would be re-tested one would be reported in a dig. Test the EUT in the location of the channel. h. The radiation measure transmitting mode, and case.	and any set to Peak Detect Further Hold Mode. If the EUT in peak mode was 10 and the perwise the emissions that did not not one using peak or average at a sheet. The EUT in peak mode was 10 and the perwise the emissions that did not not one using peak or average at a sheet. The EUT in peak mode was 10 and the perwise the emissions that did not not one using peak or average at a sheet. The EUT in peak mode was 10 and the perwise the emissions that did not	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the anction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified anel, the Highest Z axis positioning for which it is the worst
Procedure:	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testing would be reported. Other would be re-tested one would be re-tested one would be re-tested in a diagram of the reported in a diagram of the EUT in the local channel. h. The radiation measure transmitting mode, and case. i. Repeat above procedure.	30MHz, the antenna was tune was turned from 0 degrees to 3 mem was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 1 mg could be stopped and the perwise the emissions that did not one using peak or average ata sheet. West channel, the middle chartements are performed in X, Y,	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the anction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified anel, the Highest Z axis positioning for which it is the worst
Procedure: Anborek	and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum food of the system of the system of the would be reported. Other would be re-tested one	30MHz, the antenna was tune was turned from 0 degrees to 3 mem was set to Peak Detect Furn Hold Mode. If the EUT in peak mode was 1 mg could be stopped and the perwise the emissions that did not one using peak or average ata sheet. If west channel, the middle charmements are performed in X, Y, found the X axis positioning was until all frequencies meas	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the anction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified annel, the Highest Z axis positioning for which it is the worst ured was complete.
Procedure: Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	and the rotatable table we maximum reading. e. The test-receiver systems and width with Maximum f. If the emission level of limit specified, then testing would be reported. Other would be re-tested one woul	and any set to Peak Detect Further Was set to Peak Detect Further Hold Mode. The EUT in peak mode was 1 and could be stopped and the perwise the emissions that did not one using peak or average at a sheet. The west channel, the middle charteness are performed in X, Y, found the X axis positioning was ures until all frequencies meas Cable Loss+ Antenna Factor-F	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT of have 10dB margin method as specified nnel, the Highest Z axis positioning for which it is the worst ured was complete.
Procedure: Anborek	and the rotatable table we maximum reading. e. The test-receiver systems and width with Maximum food of the systems and the reported. Other would be re-tested one would be re-tested o	and the antenna was tuned and tuned from 0 degrees to 3 dem was set to Peak Detect Furth Hold Mode. If the EUT in peak mode was 1 and could be stopped and the parties the emissions that did not one using peak or average at a sheet. If west channel, the middle chartements are performed in X, Y, found the X axis positioning was ures until all frequencies meas Cable Loss+ Antenna Factor-F40GHz, the disturbance above	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the anction and Specified 0dB lower than the beak values of the EUT of have 10dB margin method as specified anel, the Highest 2 axis positioning for which it is the worst ured was complete. Preamp Factor 186Hz was very low.
ek Anbotek Anbotek Procedure: Anbotek	and the rotatable table we maximum reading. e. The test-receiver systems and width with Maximum food of the limit specified, then testing would be reported. Other would be re-tested one would be re-tested o	and any set to Peak Detect Further Was set to Peak Detect Further Hold Mode. The EUT in peak mode was 1 and could be stopped and the perwise the emissions that did not one using peak or average at a sheet. The west channel, the middle charteness are performed in X, Y, found the X axis positioning was ures until all frequencies meas Cable Loss+ Antenna Factor-F	ter to 4 meters (for the d to heights 1 meter) 360 degrees to find the anction and Specified 0dB lower than the beak values of the EUT ot have 10dB margin method as specified anel, the Highest Z axis positioning for which it is the worst ured was complete. Preamp Factor 18GHz was very low. ssions could be found

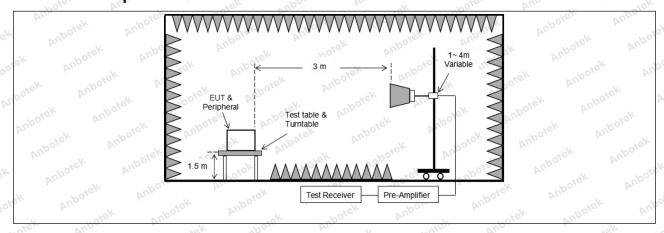
Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 24 of 48

spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation


Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

Page 25 of 18220WC40033902 Report No.: FCC ID: 2AMOD-CHASINGCAMX

9.3. Test Data

Temperature: 25 °C Humidity: 45 % Atmospheric Pressure: 101 k	Pa
---	----

	126	5/3/2	- 47		V	LX*
	TM1 / E	Band: 5470-57	725 MHz / BV	V: 20 / L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
39.16	16.70	55.86	68.20	-12.34	hpor H A	Peak
39.93	16.70	56.63	68.20	-11.57	nbo'V	Peak
29.08	16.70	45.78	54.00	-8.22	Hirek	AVG
30.20	16.70	46.90	54.00	-7.10	And tek	AVG
	TM1 / E	Band: 5470-57	725 MHz / BV	V: 20 / H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.17 And	16.37	54.54	68.20	-13.66	Apoles H An	Peak
39.56	16.37	55.93	68.20	-12.27	V*octo	Peak
29.04	16.70	45.74	54.00	-8.26	Hick	AVG
30.15	16.70	46.85	54.00	-7.15	And ok	AVG
	(dBuV) 39.16 39.93 29.08 30.20 Reading (dBuV) 38.17 39.56 29.04	Reading (dBuV) (dB/m) 39.16 16.70 39.93 16.70 29.08 16.70 30.20 16.70 TM1 / E Reading (dBuV) (dB/m) 38.17 16.37 39.56 16.37 29.04 16.70	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 39.16 16.70 55.86 39.93 16.70 56.63 29.08 16.70 45.78 30.20 16.70 46.90 TM1 / Band: 5470-57 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.17 16.37 54.54 39.56 16.37 55.93 29.04 16.70 45.74	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 39.16 16.70 55.86 68.20 39.93 16.70 56.63 68.20 29.08 16.70 45.78 54.00 30.20 16.70 46.90 54.00 TM1 / Band: 5470-5725 MHz / BV Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.17 16.37 54.54 68.20 39.56 16.37 55.93 68.20 29.04 16.70 45.74 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB 39.16 16.70 55.86 68.20 -12.34 39.93 16.70 56.63 68.20 -11.57 29.08 16.70 45.78 54.00 -8.22 30.20 16.70 46.90 54.00 -7.10 TM1 / Band: 5470-5725 MHz / BW: 20 / H Reading (dBuV) (dB/m) Result (dBuV/m) Cycr limit (dBuV/m) (dB) 38.17 16.37 54.54 68.20 -13.66 39.56 16.37 55.93 68.20 -12.27 29.04 16.70 45.74 54.00 -8.26	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 39.16 16.70 55.86 68.20 -12.34 H 39.93 16.70 56.63 68.20 -11.57 V 29.08 16.70 45.78 54.00 -8.22 H 30.20 16.70 46.90 54.00 -7.10 V TM1 / Band: 5470-5725 MHz / BW: 20 / H Reading (dBuV) Factor (dBuV/m) (dBuV/m) Over limit (dBuV/m) Antenna Pol. 38.17 16.37 54.54 68.20 -13.66 H 39.56 16.37 55.93 68.20 -12.27 V 29.04 16.70 45.74 54.00 -8.26 H

Remark: 1. Result=Reading + Factor

		TM2 / B	and: 5470-57	725 MHz / BV	V: 20 / L		V
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5470.00	38.32	16.70	55.02	68.20	-13.18	Hek	Peak
5470.00	38.76	16.70	55.46	68.20	-12.74	AULA ***	Peak
5470.00	27.63	16.70	44.33	54.00	-9.67	H)	AVG
5470.00	28.18	16.70	44.88	54.00	-9.12	sk A ^{vupo} te	AVG
		TM2 / B	and: 5470-57	25 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.15	17.05	55.20	68.20	-13.00	H	Peak
5725.00	38.73	17.05	55.78	68.20	-12.42	Vuo∧ ok	Peak
5725.00	27.60	17.05	44.65	54.00	-9.35	pH ^{oro}	AVG
5725.00	28.13	17.05	45.18	54.00	-8.82	k Nupote	AVG

Remark: 1. Result=Reading + Factor

Hotline

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 26 of 48

	~ U/O					20P	
TM2 / Band: 5470-5725 MHz / BW: 40 / L							
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
38.62	16.70	55.32	68.20	-12.88	H	Peak	
39.30	16.70	56.00	68.20	-12.20	otek V Anbo	Peak	
27.10	16.70 M	43.80	54.00	-10.20	H	bote AVG M	
28.43	16.70	45.13	54.00	-8.87	V.	AVG	
TM2 / Band: 5470-5725 MHz / BW: 40 / H							
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
37.73	17.05	54.78	68.20	-13.42	Hupo,	Peak	
38.61	17.05	55.66	68.20	-12.54	tek V Aupot	Peak	
27.05	otek 17.05 pobo	44.10	54.00	-9.90 And	, H	orekAVG AN	
28.40	17.05	45.45	54.00	-8.55	ypo, A	AVG	
	(dBuV) 38.62 39.30 27.10 28.43 Reading (dBuV) 37.73 38.61 27.05	Reading (dBuV) (dB/m) 38.62 16.70 39.30 16.70 27.10 16.70 28.43 16.70 TM2 / B Reading (dBuV) (dB/m) 37.73 17.05 38.61 17.05 27.05 17.05	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.62 16.70 55.32 39.30 16.70 56.00 27.10 16.70 43.80 28.43 16.70 45.13 TM2 / Band: 5470-57 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 37.73 17.05 54.78 38.61 17.05 55.66 27.05 17.05 44.10	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.62 16.70 55.32 68.20 39.30 16.70 56.00 68.20 27.10 16.70 43.80 54.00 28.43 16.70 45.13 54.00 TM2 / Band: 5470-5725 MHz / BV Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 37.73 17.05 54.78 68.20 38.61 17.05 55.66 68.20 27.05 17.05 44.10 54.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 38.62 16.70 55.32 68.20 -12.88 39.30 16.70 56.00 68.20 -12.20 27.10 16.70 43.80 54.00 -10.20 28.43 16.70 45.13 54.00 -8.87 TM2 / Band: 5470-5725 MHz / BW: 40 / H Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) Over limit (dBuV/m) (dBW) (dB/m) 54.78 68.20 -13.42 38.61 17.05 55.66 68.20 -12.54 27.05 17.05 44.10 54.00 -9.90	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 38.62 16.70 55.32 68.20 -12.88 H 39.30 16.70 56.00 68.20 -12.20 V 27.10 16.70 43.80 54.00 -10.20 H 28.43 16.70 45.13 54.00 -8.87 V TM2 / Band: 5470-5725 MHz / BW: 40 / H Reading (dBuV) Factor (dBwV) Result (dBuV/m) Over limit (dBwV/m) Antenna Pol. 37.73 17.05 54.78 68.20 -13.42 H 38.61 17.05 55.66 68.20 -12.54 V 27.05 17.05 44.10 54.00 -9.90 H	

Remark: 1. Result=Reading + Factor

				V.			
		TM3 / B	and: 5470-5	725 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5470.00	38.01	16.70	54.71	68.20	-13.49	tek H	Peak
5470.00	38.35	16.70	55.05	68.20	-13.15	V	Peak
5470.00	28.33	16.70	45.03	54.00	-8.97	Anbot H	AVG
5470.00	29.16	16.70	45.86	54.00	-8.14	NoVer Ver	AVG
		TM3 / B	and: 5470-57	725 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.37	17.05	54.42	18.20 68.20	-13.78	, H	Peak
5725.00	37.53	17.05	54.58	68.20	-13.62	V Prince	Peak
5725.00	28.29	17.05	45.34	54.00	-8.66	AuporeH	AVG
5725.00	29.10	17.05	46.15	54.00	-7.85	No.	AVG

Remark: 1. Result=Reading + Factor

Page 27 of Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX 48

		TM3 / B	and: 5470-57	725 MHz / BV	V: 40 / L		3.50
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5470.00	36.80	16.70	53.50	68.20	-14.70	H notek	Peak
5470.00	38.21	16.70	54.91	68.20	-13.29	V	Peak Peak
5470.00	27.61	16.70	44.31	54.00	-9.69	otek H Anbe	AVG
5470.00	28.29	16.70	44.99	54.00	-9.01	"OtekV M	AVG
		TM3 / B	and: 5470-57	25 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	36.32	17.05	53.37	68.20	-14.83	H Nek	Peak
5725.00	37.84	17.05	54.89	68.20	-13.31	Aug	Peak
5725.00	27.57	17.05	44.62	54.00	-9.38	kek H Mupo	AVG
5725.00	28.26	17.05 And	45.31	54.00	-8.69	Stek V M	ore AVG And
. 77		5.4	07-		- 0.5	-70-	

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5470-5725 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5470.00	36.00	16.70	52.70	68.20	-15.50	ek H nor	Peak		
5470.00	38.13	16.70	54.83	68.20	-13.37 no	V	ore ^k Peak And		
5470.00	26.68	16.70	43.38	54.00	-10.62	pore H An	AVG		
5470.00	27.23	16.70	43.93	54.00	-10.07	Produc	AVG		
		TM3 / B	and: 5470-57	725 MHz / BV	V: 80 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	35.60	17.05	52.65	68.20	-15.55	H Nore	Peak		
5725.00	37.12	17.05	54.17	68.20	-14.03	V	Reak Peak		
5725.00	26.61	17.05	43.66	54.00	-10.34	poter H And	AVG		
5725.00	27.19	17.05	44.24	54.00	-9.76	boteV P	AVG		

Remark: 1. Result=Reading + Factor

Hotline

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 28 of

10. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	Anbore And	Anboren Anbo
Anbotek Anb	Unwanted emissions below strength limits set forth in §	v 1 GHz must comply with t § 15.209.	he general field
tek Anbotek		nere in this subpart, the emi ot exceed the field strength	
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30 John D
	1.705-30.0	30 rek 000	30,000
	30-88	100 **	otek 3 Anbote
Test Limit:	88-216	150 **	3 solek
	216-960	200 **	nbo 3 Anbo
	Above 960	500 ores Anto	3ek nobote
	The emission limits shown	e, the tighter limit applies at in the above table are base peak detector except for the	
	90 kHz, 110–490 kHz and these three bands are bas	above 1000 MHz. Radiated ed on measurements emplo	l emission limits in
Test Method:	90 kHz, 110–490 kHz and	above 1000 MHz. Radiated ed on measurements emplo	l emission limits in
Test Method: Procedure:	90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varied ground to determine the mand vertical polarizations of	above 1000 MHz. Radiated ed on measurements employed in 12.7.4, 12.7.5 IT was placed on the top of at a 3 meter semi-anechoic of determine the position of the meters away from the integrated from one meter to four aximum value of the field soft the antenna are set to many set on the top of a variable-aried from one meter to four aximum value of the field soft the antenna are set to many set on the set of the antenna are set to many set on the set of the antenna are set to many set on the set of the antenna are set to many set of the	a rotating table 0.8 chamber. The table the highest radiation. erference-receiving height antenna tower. meters above the trength. Both horizontake the measurement.
otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbot	90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected eminand then the antenna was test frequency of below 30	above 1000 MHz. Radiated ed on measurements employed in 12.7.4, 12.7.5 IT was placed on the top of at a 3 meter semi-anechoic of determine the position of the meters away from the integrated from one meter to four aximum value of the field state of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the meters are set to make the meters are set to make the set of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the set of the antenna are set to make the set of	a rotating table 0.8 chamber. The table the highest radiation. Erference-receiving height antenna tower. The meters above the trength. Both horizontalke the measurement and to its worst case ter to 4 meters (for the ed to heights 1 meter)
Anbotek	90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emand then the antenna was test frequency of below 30 and the rotatable table was	above 1000 MHz. Radiated ed on measurements employed in 12.7.4, 12.7.5 IT was placed on the top of at a 3 meter semi-anechoic of determine the position of 0 meters away from the integrated on the top of a variable-aried from one meter to four aximum value of the field state of the antenna are set to make its sion, the EUT was arrange tuned to heights from 1 me	a rotating table 0.8 chamber. The table the highest radiation. Erference-receiving height antenna tower. The meters above the trength. Both horizontalke the measurement and to its worst case ter to 4 meters (for the ed to heights 1 meter)
Anbotek	90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varying ground to determine the mand vertical polarizations of d. For each suspected eminand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system	above 1000 MHz. Radiated ed on measurements employed on the top of at a 3 meter semi-anechoic determine the position of the top of a variable-aried from one meter to four aximum value of the field stated on the EUT was arrange tuned to heights from 1 me MHz, the antenna was tuned to the top of degrees to the turned from 0 degrees to the turned from 0 degrees to the turned from 0 degrees to the twest of the turned from 0 degrees to the twest of the turned from 0 degrees to the twest of the turned from 0 degrees to turned from 0 degrees to the turned from 0 degrees to turned from 0 degrees t	a rotating table 0.8 chamber. The table the highest radiation. erference-receiving height antenna tower. meters above the trength. Both horizontalke the measurement. ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the
Jotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varying ground to determine the mand vertical polarizations of d. For each suspected eminand then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum	above 1000 MHz. Radiated ed on measurements employed on the top of at a 3 meter semi-anechoic determine the position of the top of a variable-aried from one meter to four aximum value of the field stated on the EUT was arrange tuned to heights from 1 me MHz, the antenna was tuned to the top of degrees to the turned from 0 degrees to the turned from 0 degrees to the turned from 0 degrees to the twest of the turned from 0 degrees to the twest of the turned from 0 degrees to the twest of the turned from 0 degrees to turned from 0 degrees to the turned from 0 degrees to turned from 0 degrees t	a rotating table 0.8 chamber. The table the highest radiation. erference-receiving height antenna tower. meters above the trength. Both horizontalke the measurement. ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the unction and Specified

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 29 of 48

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 30 of

when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

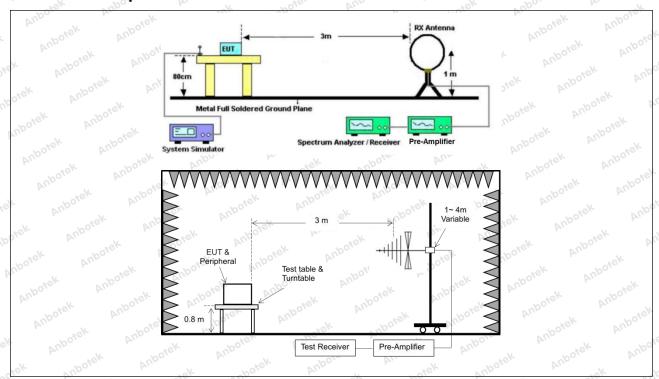
10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

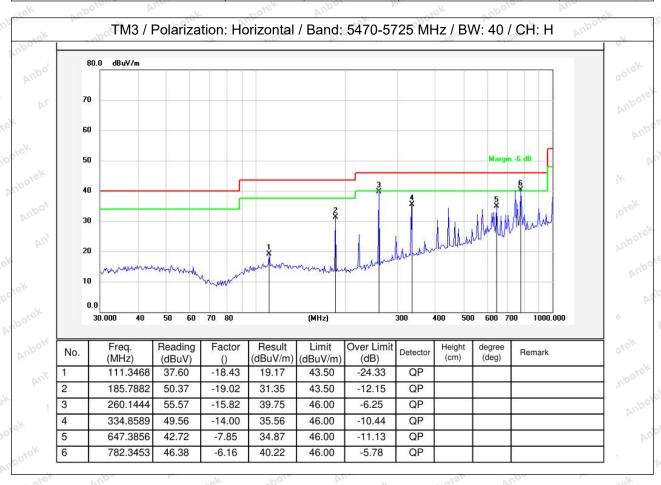
- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX

Page 31 of

10.2. Test Setup

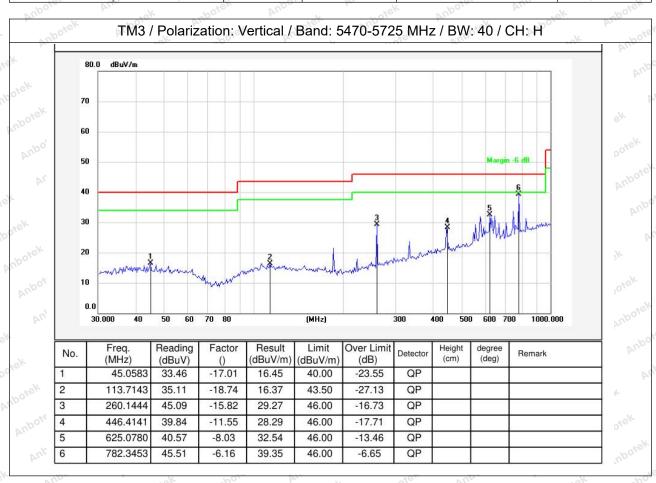


Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 32 of

10.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 23.5 °C Humidity: 49 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC40033902

FCC ID: 2AMOD-CHASINGCAMX

Page 33 of 48

Temperature: 23.5 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 34 of

11. Undesirable emission limits (above 1GHz)

ek Anbotek	For transmitters operar of the 5.47-5.725 GHz MHz 0.090-0.110 10.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218 6.26775-6.26825		ed an e.i.r.p. of – MHz 399.9-410 608-614 960-1240 1300-1427 1435-1626.5	GHz 4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5
Anbotek	0.090-0.110 10.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.42-16.423 16.69475- 16.69525 16.80425- 16.80475 25.5-25.67 37.5-38.25	399.9-410 608-614 960-1240 1300-1427 1435-1626.5	4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	10.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.69475- 16.69525 16.80425- 16.80475 25.5-25.67 37.5-38.25	960-1240 1300-1427 1435-1626.5	5.35-5.46 7.25-7.75 8.025-8.5
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	10.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.69475- 16.69525 16.80425- 16.80475 25.5-25.67 37.5-38.25	960-1240 1300-1427 1435-1626.5	5.35-5.46 7.25-7.75 8.025-8.5
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.80475 25.5-25.67 37.5-38.25	1300-1427 1435-1626.5	8.025-8.5
	4.17725-4.17775 4.20725-4.20775 6.215-6.218	37.5-38.25	1435-1626.5	
	4.20725-4.20775 6.215-6.218		1461	
	6.215-6.218	73-74.6	404F F-0	9.0-9.2
		~~	1645.5- 1646.5	9.3-9.5
	6 26775-6 26825	74.8-75.2	1660-1710	10.6-12.7
	0.20113-0.20023	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
est Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
est Limit: Andorek	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	rek anboie.	And	hotek Anb
	¹ Until February 1, 1999 ² Above 38.6	9, this restricted band	d shall be 0.490-	0.510 MHz.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The field strength of er not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 I 15.209shall be demonstrated	hown in § 15.209. At e with the limits in § 1 strumentation emplo MHz, compliance wit	frequencies equals. 15.209shall be de ying a CISPR que he the emission li	ual to or less tha emonstrated uasi-peak mits in §
	emissions. The provisi Except as provided els intentional radiator sha	ons in § 15.35apply to sewhere in this subpa	to these measure art, the emissions	ements. s from an
	tollowing toble:			- T
	following table:		~U_	for you
	Frequency (MHz)	Field strength (microvolts/me	eter)	Measurement distance (meters)

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 35 of 48

rek oboře.	Ant k soiek	Aupor Al.	abore. And
	0.490-1.705	24000/F(kHz)	30 Mbole.
	1.705-30.0	30	And 30
	30-88	100 **	310 And
	88-216	150 **	3
in otek an	216-960	200 **	3uport Am
	Above 960	500 mbores Anto	ak 3 motels
	VU.	70° 1.	Mr. Dur
		paragraph (g), fundamental e	
hotek Anbor		ating under this section shall	
		MHz, 76-88 MHz, 174-216 MH	
		n these frequency bands is po	ermitted under other
	sections of this part, e.g.,		the Milbore And
		ve, the tighter limit applies at	
		n in the above table are base	
		si-peak detector except for the	
	- /c	d above 1000 MHz. Radiated	
		ised on measurements emplo	ying an average
botek Anbo	detector.	Ans shotek Ar	ibo
Test Method:	ANSI C63.10-2020, secti	on 12.7.4, 12.7.6, 12.7.7	Aupoten Aupo
Augo Care	Above 1GHz:	abolek Anbo	niek Anbore
	- V	EUT was placed on the top of	a rotating table 1.5
		at a 3 meter fully-anechoic of	
		etermine the position of the h	
		eters away from the interferer	
		ne top of a variable-height and	
		varied from one meter to four	
		maximum value of the field st	
And		of the antenna are set to ma	
anboten Anb		mission, the EUT was arrange	
		s tuned to heights from 1 me	
		0MHz, the antenna was tune	
		as turned from 0 degrees to 3	360 degrees to find th
	maximum reading.		ok botek
tek anbote.		em was set to Peak Detect Fu	inction and Specified
Procedure:	Bandwidth with Maximum		
-botek Anbo		the EUT in peak mode was 1	
		ng could be stopped and the p	
	would be reported. Other	wise the emissions that did n	ot have 10dB margin
	would be re-tested one b	y one using peak or average	method as specified
	and then reported in a da	ita sheet.	v sotek or
	g. Test the EUT in the lov	vest channel, the middle char	nnel, the Highest
	channel.		tek aboten
		ments are performed in X, Y,	Z axis positioning for
	(2)	ound the X axis positioning w	V
	case.	A. Stoker	in " " " " " " otek
ek abotek		res until all frequencies meas	ured was complete.
	Remark:	Auport Augusta	*ek
		able Loss+ Antenna Factor- F	Preamp Factor
		0GHz, the disturbance above	
	The points marked on ab	ove plots are the highest emi	3310113 COUIU DE 10UNC
	Myuban taatina aayanir - I	ove points had been displayed	

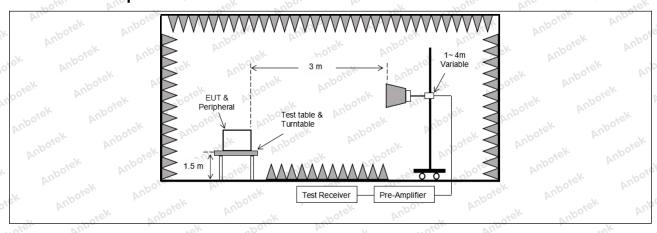
Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40033902 Page 36 of FCC ID: 2AMOD-CHASINGCAMX

> spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation


Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

11.2. Test Setup

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX Page 37 of

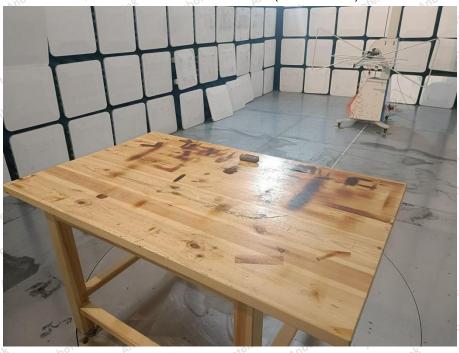
11.3. Test Data

Temperature:	23.5 °C	aupote	Humidity:	49 %	abotel	Atmospheric Pressure: 101 kPa
	VAU	Pare .		_ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

D11.	*61	- 40-	V.	LO1	D1.	2:C)	1. VD.
		TM3 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11020.000	27.57	24.12	51.69	68.20	-16.51	Wpour A	Peak
16530.000	27.87	32.96	60.83	68.20	-7.37	Aupo V	Peak
11020.000	28.69	24.12	52.81	68.20	-15.39	Hotek	Peak
16530.000	27.51	32.96	60.47	68.20	-7.73	H hotel	Peak
11020.000	17.29	24.12	41.41	54.00	-12.59	V	AVG
16530.000	17.99	32.96	50.95	54.00	-3.05	Jien A Vupo	AVG
11020.000	16.89	24.12	41.01	54.00	-12.99	obotek H Ar	AVG
16530.000	17.61	32.96	50.57	54.00	-3.43	~°⁄₽,	AVG
		TM1 / Ban	d: 5470-5725	MHz / BW:	40 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11180.000	26.91	23.86	50.77	68.20	-17.43	ek V abot	Peak
16770.000	28.09	32.25	60.34	68.20	-7.86	V	Peak
11180.000	27.44	23.86	51.30	68.20	-16.90	Pur H	Peak
16770.000	27.66	32.25	59.91	68.20	-8.29	nboith H	Peak
11180.000	16.53	23.86	40.39	54.00	-13.61	No _K	AVG
16770.000	16.70	32.25	48.95	54.00	-5.05	V Votek	AVG
11180.000	16.47	23.86	40.33	54.00	-13.67	H	AVG
16770.000	17.16	32.25	49.41	54.00	-4.59	H Vupper	AVG
		TM1 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11340.000	27.91	23.60	51.51	68.20	-16.69	AUP	Peak
17010.000	28.09	31.58	59.67	68.20	-8.53	Motek	Peak
11340.000	26.44	23.60	50.04	68.20	-18.16	H bote	Peak
17010.000	27.11	31.58	58.69	68.20	-9.51nbo	H	√ Peak
11340.000	17.32	23.60	40.92	54.00	-13.08	Ose A VUE	AVG
17010.000	17.94 M	31.58	49.52	54.00	-4.48	nboteV A	AVG
11340.000	16.95	23.60	40.55	54.00	-13.45	~/PH/ _K	AVG
17010.000	17.76	31.58	49.34	54.00	-4.66	Hatek	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case is recorded in the report.


Report No.: 18220WC40033902 FCC ID: 2AM

FCC ID: 2AMOD-CHASINGCAMX

Page 38 of

APPENDIX I -- TEST SETUP PHOTOGRAPH

Undesirable emission limits (below 1GHz)

Undesirable emission limits (above 1GHz)

FCC ID: 2AMOD-CHASINGCAMX

Page 39 of 48

DFS

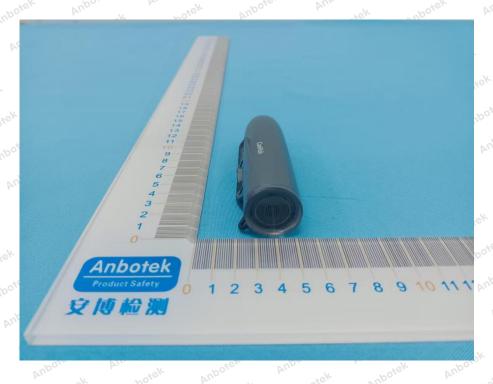
Hotline

400-003-0500

FCC ID: 2AMOD-CHASINGCAMX

Page 40 of 48

APPENDIX II -- EXTERNAL PHOTOGRAPH



FCC ID: 2AMOD-CHASINGCAMX

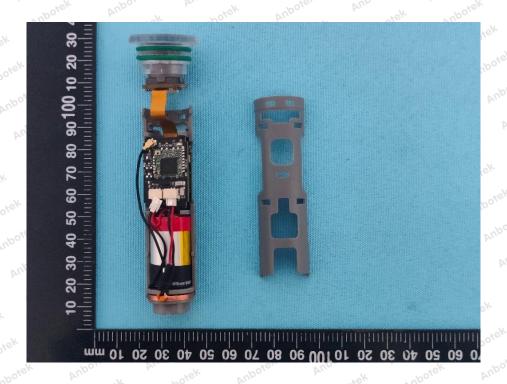
Page 41 of 48

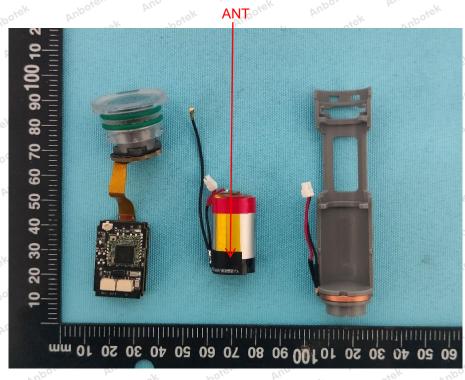
Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX

Page 42 of 48

Report No.: 18220WC40033902 FCC ID: 2AMOD-CHASINGCAMX

Page 43 of 48

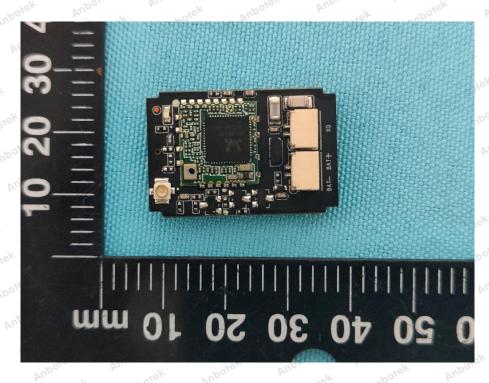


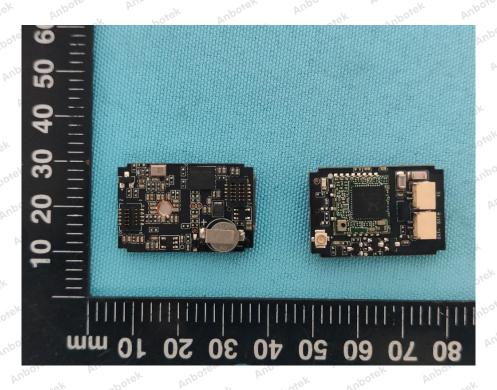


FCC ID: 2AMOD-CHASINGCAMX

Page 44 of 48

APPENDIX III -- INTERNAL PHOTOGRAPH

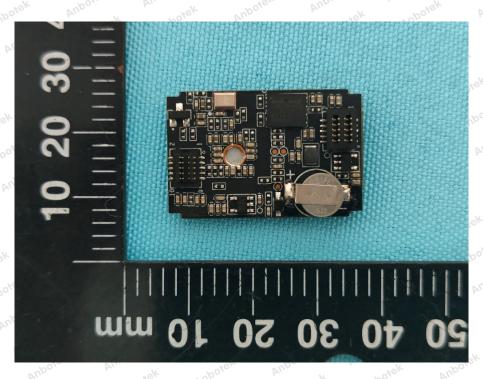


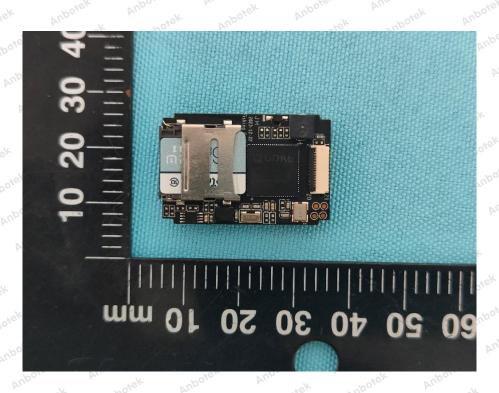


Report No.: 18220WC40033902 FCC

FCC ID: 2AMOD-CHASINGCAMX

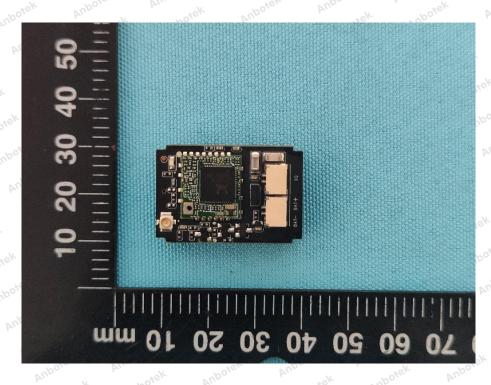
Page 45 of 48

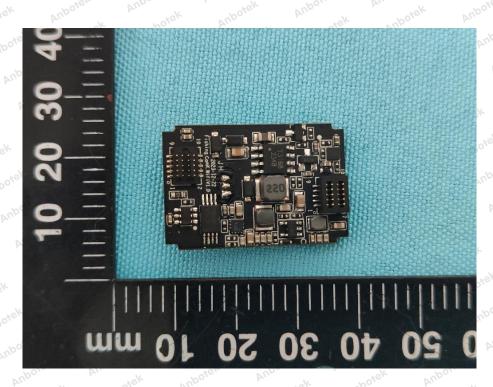




FCC ID: 2AMOD-CHASINGCAMX

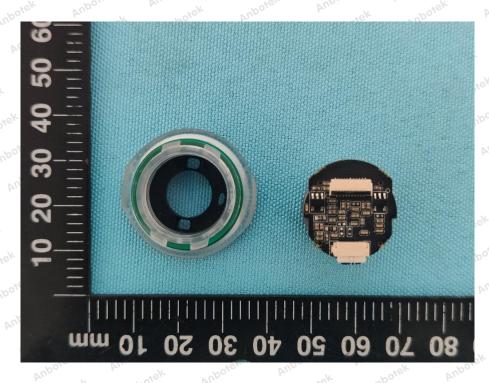
Page 46 of 48

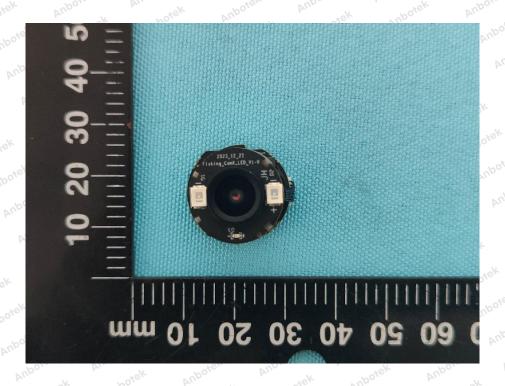




FCC ID: 2AMOD-CHASINGCAMX

Page 47 of 48




Report No.:

18220WC40033902

FCC ID: 2AMOD-CHASINGCAMX

Page 48 of 48

----- End of Report -----

