

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: March 15 ~ April 24, 2019 Test Report S/N: LR500111904O Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

2AMMIMIRO-NR07SR

MIRO Corporation

Equipment Class	:	Digital Transmission System (DTS)
Manufacturing Description	:	Humidifier
Manufacturer	:	MIRO Corporation
Model name	:	MIRO-NR07SR
Variant Model name	:	MIRO-NR07BR, MIRO-NR07GR
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C ; ANSI C-63.4-2014
		ANSI C-63.10-2013
Frequency Range	:	2402 ~ 2480 MHz
Max. Output Power	:	Max 7.71 dBm – Conducted
Data of issue	:	April 24, 2019

This test report is issued under the authority of:

Jabeom. Koo

Ja-Beom, Koo / Manager

The test was supervised by:

jae-Hum, Yeon / Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1.	GENERAL INFORMATION	3
2.	INFORMATION ABOUT TEST ITEM	4
3.	TEST REPORT	5
	3.1 SUMMARY OF TESTS	5
	3.2 TECHNICAL CHARACTERISTICS TEST	6
	3.2.1 6 dB BANDWIDTH	6
	3.2.2 PEAK OUTPUT POWER	9
	3.2.3 POWER SPECTRAL DENSITY	12
	3.2.4 BAND EDGE	15
	3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
	3.2.6 RADIATED SPURIOUS EMISSIONS	21
	3.2.7 AC Conducted Emissions	33

APPENDIX

APPENDIX TEST EQUIPMENT USED FOR TESTS		34
--	--	----

1. General information

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 17159
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

<u>1-2 Accredited agencies</u>

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2019-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	Updating	FCC CAB
VCCI	JAPAN	C-4948	2020-09-10	VCCI registration
VCCI	JAPAN	T-2416	2020-09-10	VCCI registration
VCCI	JAPAN	R-4483(10m)	2020-10-15	VCCI registration
VCCI	JAPAN	G-847	2022-06-13	VCCI registration
IC	CANADA	5799A-1	2019-06-15	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.

2. Information about test item 2-1 Client & Manufacturer

Company name	:	MIRO Corporation		
Address	:	26F, M, 32, Songdogwahak-ro, Yeonsu-gu,	INCHEON,	Korea
Tel / Fax	:	TEL No: +82-10-4861-9286 / FAX No: 07	0-4032-5030	

<u>2-2 Equipment Under Test (EUT)</u>

Model name	:	MIRO-NR07SR
Serial number	:	Identical prototype
Date of receipt	:	March 15, 2019
EUT condition	:	Pre-production, not damaged
Antenna type	:	Pattern Antenna (Max Gain : 1.12 dBi)
Frequency Range	:	2402 ~ 2480 MHz
RF output power	:	Max 7.71 dBm - Conducted
Number of channels	:	40
Type of Modulation	:	GFSK
Power Source	:	24 Vdc

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2442	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	CR720	MS-1736	MSI

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Conducted	С
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 kHz		С
15.247(d)	Band Edge	> 20 dBc		С
15.209	Field Strength of Harmonics Emission		Radiated	С
15.207 AC Conducted Emissions Emissions Conducted		С		
15.203 Antenna requirement - C			С	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
<u>Note 2</u> : This product operates only with battery and does not operate during charging.				

 \rightarrow Antenna Requirement

MIRO Corporation. FCC ID: 2AMMIMIRO-NR07SR unit complies with the requirement of §15.203. The antenna type is Pattern Antenna

The sample was tested according to the following specification: 15247 ± 15247

*FCC Parts 15.247; ANSI C-63.4-2014 *FCC KDB Publication No. 558074 D01 v05r02 *FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz	Span = 5 MHz
VBW = 100 kHz (VBW \geq RBW)	Sweep = auto
Trace = max hold	Detector function = peak

Measurement Data : Complies

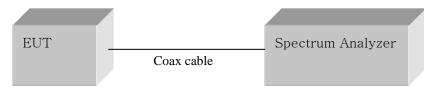
Frequency	Test Results		
(MHz)	Measured Bandwidth (MHz)	Result	
2402	0.716	Complies	
2442	0.680	Complies	
2480	0.666	Complies	

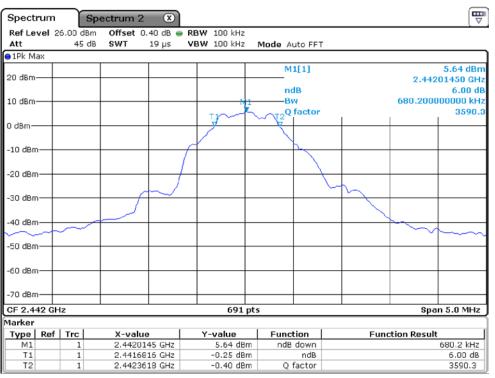
- See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500 kHz

Measurement Setup




Figure 1: Measurement setup for the carrier frequency separation

Low Channel

Spectrum	Sp	ectrum 2 🛛 🗴)			
Ref Level 🛛						
Att	45 dB	SWT 19 µs	VBW 100 kHz	Mode Auto FFT	,	
●1Pk Max						
20 dBm				M1[1]		5.78 dBm 2.40201450 GHz
10 dBm				Bw Bw		6.00 dB 716.400000000 kHz 3353.1
0 dBm						
-10 dBm				-		
-20 dBm					The second	
-30 dBm						
-40 dBm	~~~					
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.402 GI	lz		691 p	ts		Span 5.0 MHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	2.4020145 GHz	5.78 dBm			716.4 kHz
T1 T2	1	2.4016671 GHz 2.4023835 GHz	-0.20 dBm -0.31 dBm			6.00 dB 3353.1

Date: 17.APR.2019 08:04:30

Middle Channel

Date: 17.APR.2019 08:05:07

Spectrum	Sp	ectrum 2	×						₽
Ref Level 2	2.00 dBm	Offset 0.	40 dB 🥃 I	RBW 100 kH:	Z				
Att	40 dB	SWT	19 µs	VBW 100 kH:	Z Mode /	uto FFT			
⊖1Pk Max									
10 dBm						11[1] dB		2.4800000	5 dBm 0 GHz .00 dB
0 dBm				T1		factor		665.7000000	
-10 dBm			ļ.,						
-20 dBm						$ \rangle$			
-30 dBm			\sim				-		
-40 dBm		~~							
-50 dBm									~~~
-60 dBm									
-70 dBm									
CF 2.48 GHz	z			691	. pts			Span 5.0	MHz
Marker	1 - 1				1 -				
	Trc	X-value		Y-value	Fund	ction 3 down	Fun	ction Result	7 141-
M1 T1	1	2.47966	48 GHz	6.36 d 0.48 d		ndB		665.3	0 dB
T2	1	2.48033		0.29 di		factor			25.4

High Channel

Date: 17.APR.2019 08:25:38

3.2.2 Peak Output Power Measurement

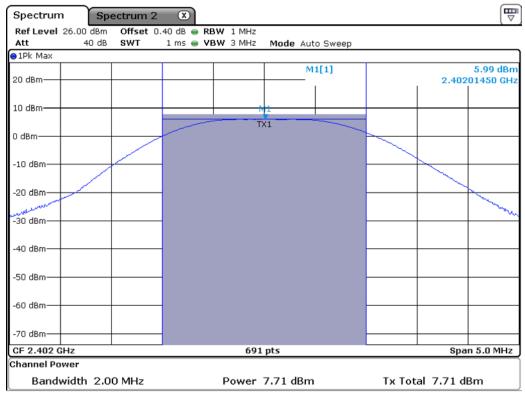
Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99 % bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:Center frequency = the highest, middle and the lowest channelsRBW = 1 MHzSpan = auto $VBW = 3 MHz (VBW \ge 3 * RBW)$ Sweep = autoDetector function = peak

Measurement Data : Complies

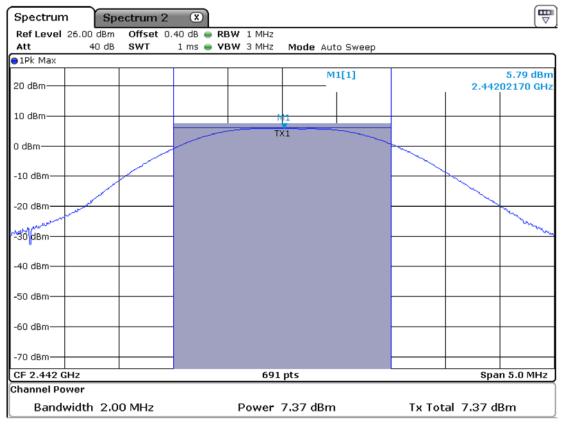
Frequency	Test Results					
(MHz)	dBm	mW	Result			
2402	7.71	5.902	Complies			
2442	7.37	5.458	Complies			
2480	5.17	3.289	Complies			

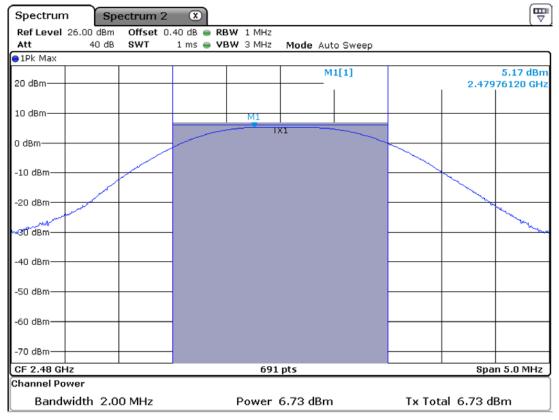

- See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power < 1 W

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)


Low Channel

Date: 17.APR.2019 08:06:14

Middle Channel

Date: 17.APR.2019 08:08:20

High Channel

Date: 17.APR.2019 08:08:35

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to: $RBW = 3 \text{ kHz} (3kHz \le RBW \le 100 \text{ kHz})$ Span = 1.5 times the DTS bandwidthVBW = 10 kHz (3 * RBW)Sweep = autoDetector function = peakTrace = max hold

Measurement Data : Complies

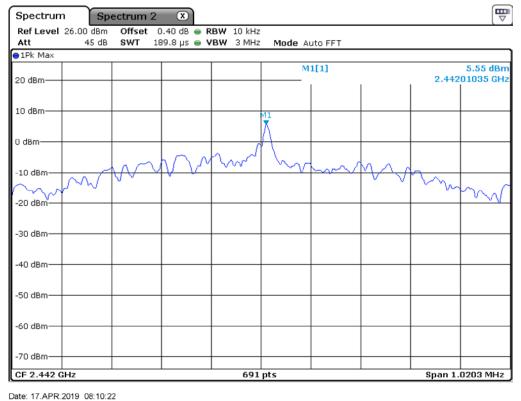
Frequency	Test Results					
(MHz)	dBm	Result				
2402	5.00	Complies				
2442	5.55	Complies				
2480	4.99	Complies				

- See next pages for actual measured spectrum plots.

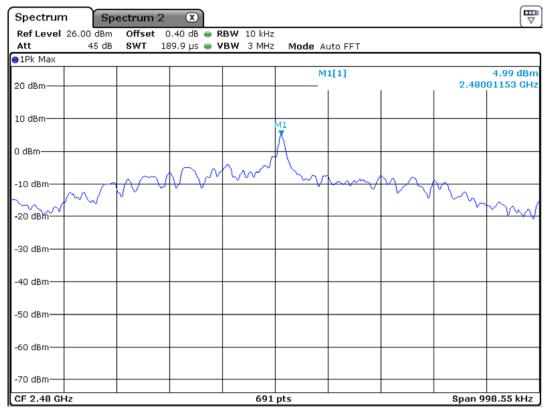
Minimum Standard:

Power Spectral Density	< 8 dBm @ 3 kHz BW
------------------------	--------------------

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel



Date: 17.APR.2019 08:09:50

Middle Channel

High Channel

Date: 17.APR.2019 08:10:54

3.2.4 Band Edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channelsRBW = 100 kHzVBW = 100 kHzSpan = 40 MHz, 100 MHzDetector function = peakTrace = max holdSweep = auto

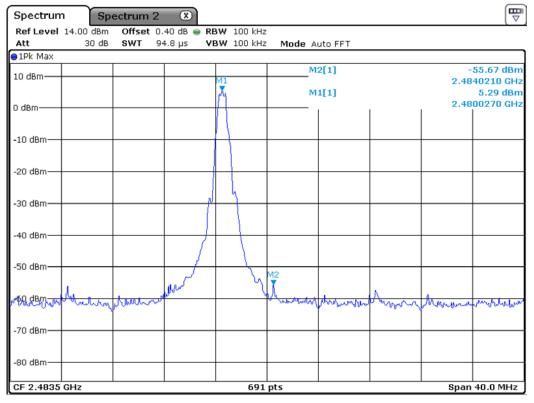
Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Center frequency = the highest, the lo	west channels		
PEAK:	RBW = 1 MHz,	VBW \geq 3 MHz,	Sweep=Auto
Average:	RBW = 1 MHz,	VBW = 10 Hz, Sv	veep=Auto
Measurement Distance:	3 m		
Polarization:	Horizontal / Vert	ical	

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.


Minimum Standard:	> 20 dBc
-------------------	----------

Spectrun	ר Sp	ectrum	2 🗶						
Ref Level Att	14.00 dBm 30 dB	Offset SWT	0.40 dB 👄 R 94.8 µs V	BW 100 kHz BW 100 kHz		uto FFT			
⊖1Pk Max									
10 dBm						2[1] 1[1]	м		-57.23 dBm /80170 GHz 6.15 dBm
0 dBm							ı [2.40)19830 GHz
-10 dBm								$\left\{ - \right\}$	
-20 dBm									
-30 dBm							لم	+	
-40 dBm								-	
-50 dBm								<u> </u>	
160 dBm	utwenter	2 mulury	mynowed	metro	howburg	north	Ņ	w	Marine
-70 dBm									
-80 dBm									
CF 2.39 GF			1	691	nts			Snar	40.0 MHz

Lower edge

Date: 17.APR.2019 08:16:01

Upper edge

Date: 17.APR.2019 08:16:21

Frequency		ding V/m]	Del	(Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		rgin B]		
[MHz]	AV /	/ Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak		AV / Peak AV / Peak		AV /	Peak
2378.1	24.52	29.81	Н	28.08	8.77	54 74		43.83	49.12	10.17	24.88		

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]		Del	(Correction Factor		nits V/m]		sult V/m]		rgin B]
[MHz]	AV /	' Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak AV / Peak		AV /	Peak
2484.1	24.16	29.88	Н	27.88	8.57	54	74	43.47	49.19	10.53	24.81

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

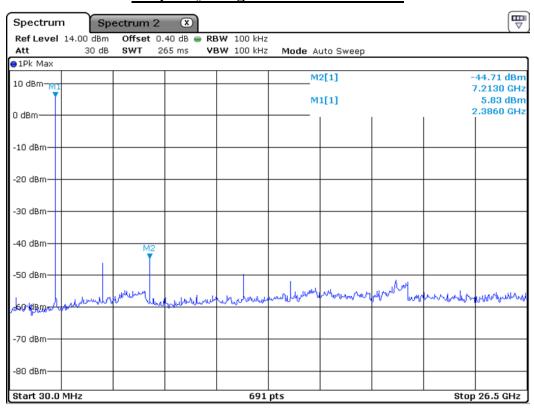
After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHzSweep = autoVBW = 100 kHzDetector function = peak

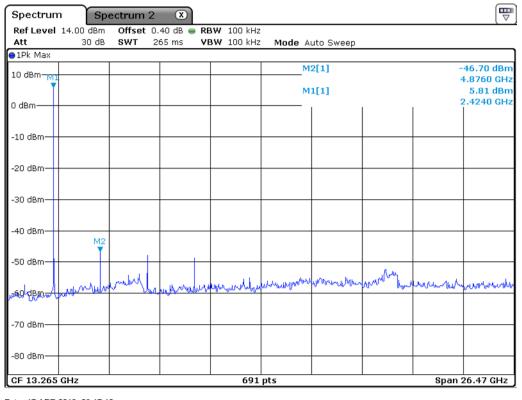
7Trace = max hold

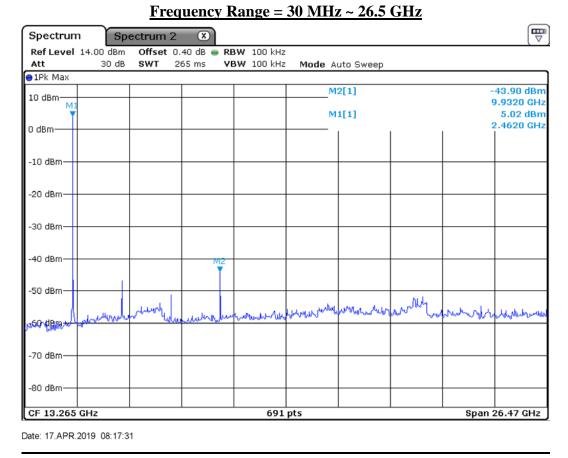

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)


<u>Unwanted Emission – Low Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

Date: 17.APR.2019 08:16:55

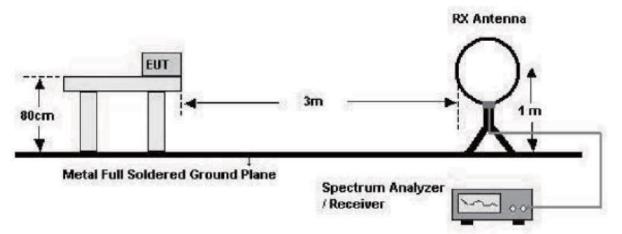
<u>Unwanted Emission – Middle Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

Date: 17.APR.2019 08:17:12

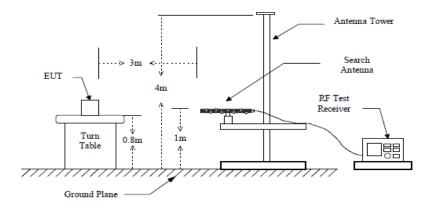
<u> Unwanted Emission – High Channel</u>

3.2.6 Radiated Spurious Emissions

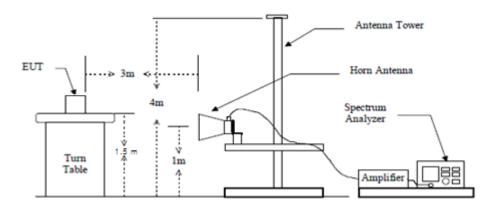
Procedure:


Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.

The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with


polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

The spectrum analyzer is set to:	
Center frequency = the worst channel	
Frequency Range = 9 kHz ~ 10^{th} harmonic.	
RBW = 100 kHz (30 MHz ~ 1 GHz)	$VBW \geq RBW$
= 1 MHz (1 GHz ~ 10^{th} harmonic)	
Span = 100 MHz	Detector function = peak
Trace = max hold	Sweep = auto



below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- 30 MHz or less 414788 D01 Radiated Test Site The results of the test were compared to confirm thes imilarity of the test results.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.

Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)

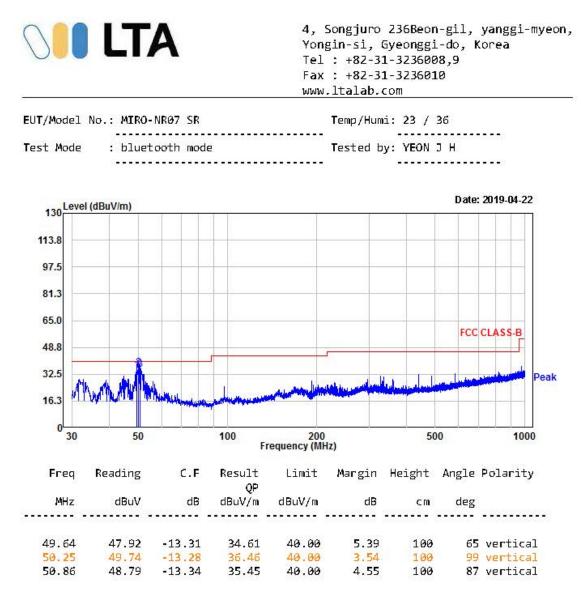
** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency		ding V/m]	Pol.	(Correction Factor	Lim	nits V/m]		sult V/m]		rgin IB]
[MHz]	_	/ Peak	1 01.	Antenna	Amp.Gain+Cable		' Peak	-	/ Peak	-	Peak
-	-	-	-	-	-	-	-	-	-	-	-
	No emissions were detected at a level greater than 20 dB below limit.										
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

Measurement Data : (9 kHz - 30 MHz)

Measurement Data : (Below 1 GHz)

Fraguanay	Reading		Correction	Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.	Factor	[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	[abuv/m]		Antenna-Amp.Gain+Cable	[abuv/m]	[abuv/m]	[αΒ]	
50.73	50.31	V	-13.32	40	36.99	3.01	
-	-	-	-	-	-	-	
-	-	-	-	-	-	-	


- No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data : (Above 1 GHz)

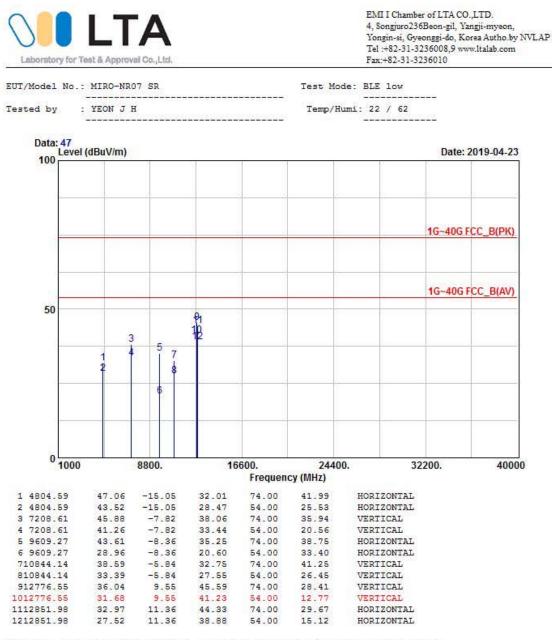
Fraguanay	Rea	ding		Correction	Lin	nits	Res	sult	Mai	rgin
Frequency	[dBuV/m]		Pol.	Factor	[dBu	V/m]	[dBu	V/m]	[d	В]
[MHz]	AV /	Peak		Antenna-Amp.Gain+Cable	AV/	Peak	AV/	Peak	AV /	Peak
13112.54	28.71	32.67	Н	14.16	54	74	47.87	46.83	11.13	27.17
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

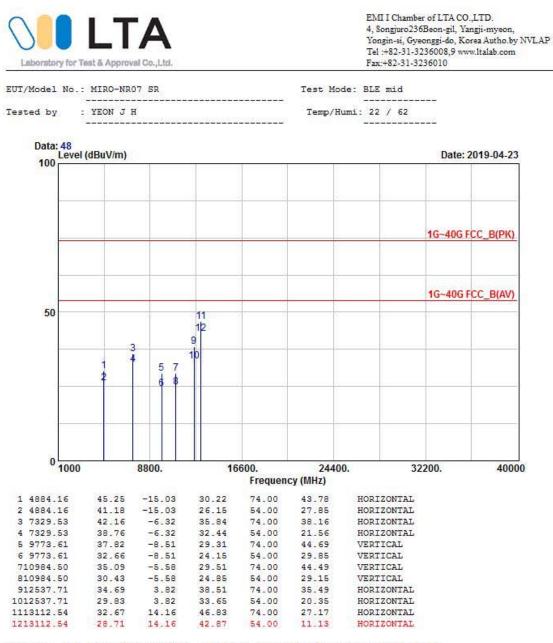
- No other emissions were detected at a level greater than 20 dB below limit.

Radiated Emissions - (Below 1 GHz)

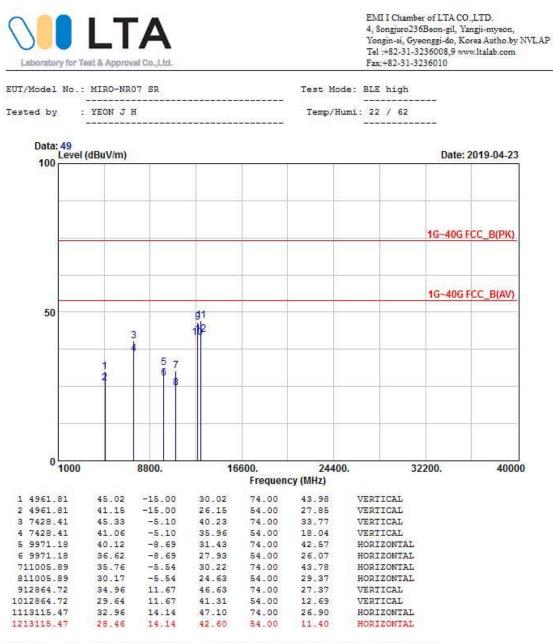
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

4, Songjuro 236Beon-gil, yanggi-myeon, Yongin-si, Gyeonggi-do, Korea Tel : +82-31-3236008,9 Fax : +82-31-3236010 www.ltalab.com


EUT/Model No.	: MIRO-NR07 SR	Temp/Humi: 23 / 36
Test Mode	: bluetooth mode	Tested by: YEON J H


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

- 1 -


Radiated Emissions - (Above 1 GHz)

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

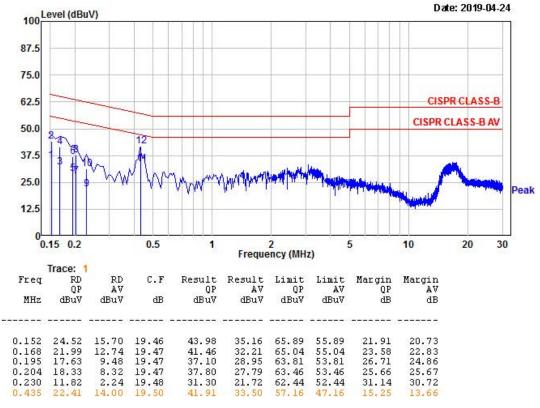
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

3.2.7 AC Conducted Emissions

Procedure:

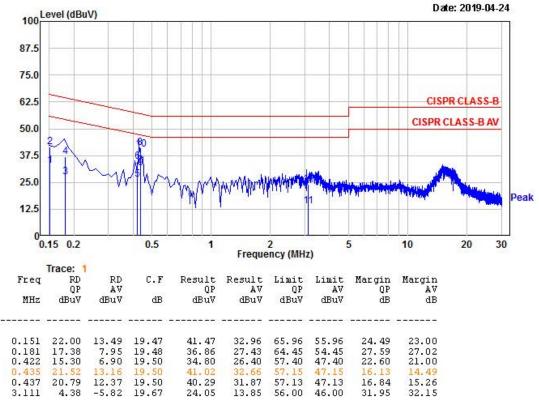
The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

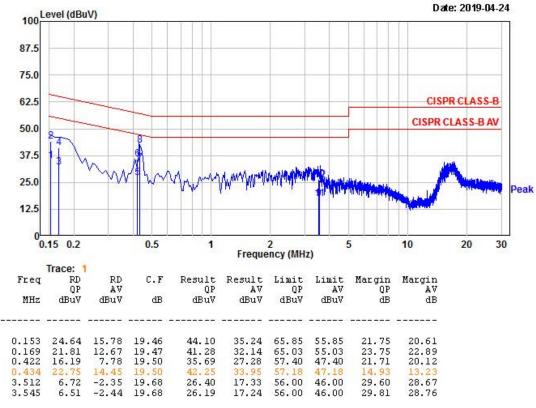

Minimum Standard: FCC Part 15.207(a) / EN 55022

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

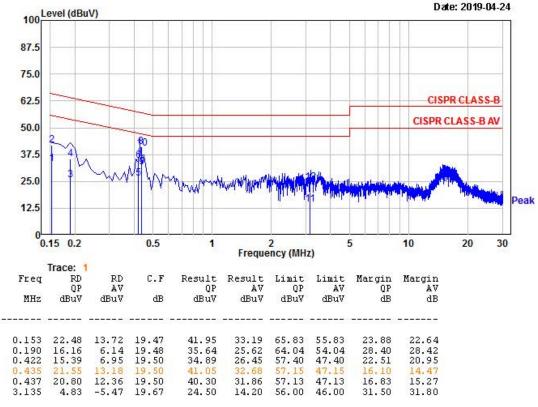
* Note: This product operates only with battery and does not operate during charging.



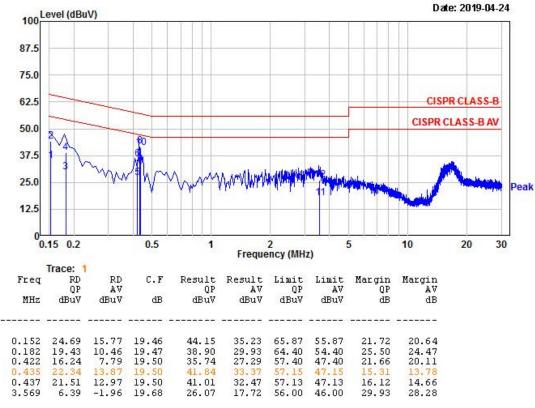
EUT /Model No	. : MIRO-NR07SR	Phase	: Line
Test Mode	: Ble Low mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H



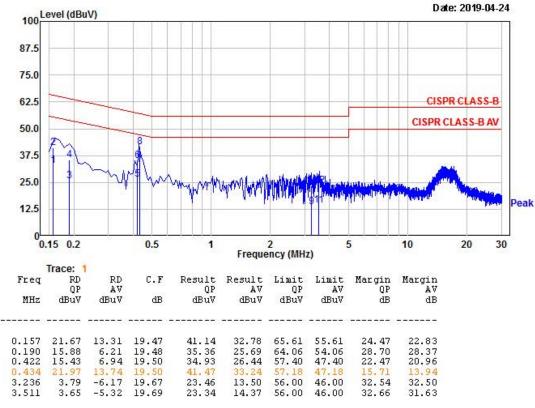
EUT /Model No	. : MIRO-NRO7SR	Phase	: Neutral
Test Mode	: Ble Low mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H



EUT /Model No	. : MIRO-NRO7SR	Phase	: Line
Test Mode	: Ble Mid mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H



EUT /Model No	. : MIRO-NRO7SR	Phase	: Neutral
Test Mode	: Ble Mid mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H



EUT /Model No.	. : MIRO-NR07SR	Phase	: LINE
Test Mode	: Ble High mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H

EUT /Model No	. : MIRO-NR07SR	Phase	: NEUTRAL
Test Mode	: Ble High mode	Test Power	: 120 / 60
Temp./ Humi.	: 24'C / 50% R.H.	Test Engineer	: Yeon J H

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2017-09-15
2		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2018-03-19
3		Attenuator (3 dB)	8491A	37822	HP	1 year	2017-09-07
4		Attenuator (10 dB)	8491A	63196	HP	1 year	2017-09-07
5		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2017-09-07
6		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	HP	1 year	2017-09-07
7		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2018-03-21
8		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2017-09-26
9		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2018-05-03
10		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2018-05-03
11		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2017-04-17
12		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2017-11-23
13		DC Power Supply	6674A	3637A01657	Agilent	-	-
14		AC Power Supply	HK-80	LR001	DAERIMTECH	-	-
15		Power Meter	EPM-441A	GB32481702	HP	1 year	2018-03-20
16		Power Sensor	8481A	3318A94972	HP	1 year	2017-12-26
17		Audio Analyzer	8903B	3729A18901	HP	1 year	2017-09-07
18		Modulation Analyzer	8901B	3749A05878	HP	1 year	2017-09-07
19		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2017-09-07
20		Stop Watch	HS-3	812Q08R	CASIO	2 year	2018-03-21
21		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2017-09-07
22		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2018-03-20
23		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2018-03-19
24		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2018-03-19
25		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2018-03-21
26		Signal Generator(100 kHz ~ 40 GHz)	SMB100A	177621	R&S	1 year	2018-03-20
27		Vector Signal Generator(9kHz ~ 6 GHz)	SMBV100A	255081	R&S	1 year	2018-03-20
28		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2018-03-20