

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: March 15 ~ April 23, 2019 Test Report S/N: LR500111904L Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

2AMMIMIR-001

APPLICANT

MIRO Corporation

Equipment Class : **Digital Transmission System (DTS)**

Manufacturing Description:Humidifier WiFi CardManufacturer:MIRO Corporation

Model name : MIR-001

Test Device Serial No.: : Identical prototype

Rule Part(s) FCC Part 15.247 Subpart C; ANSI C-63.4-2014

ANSI C-63.10-2013

Frequency Range : 2412 MHz ~ 2462 MHz(802.11 b/g/n)

Max. Output Power : Max 11.49 dBm - Conducted(802.11 b)

Max 14.79 dBm - Conducted(802.11 g) Max 13.79 dBm - Conducted(802.11 n)

Data of issue : April 23, 2019

This test report is issued under the authority of:

Jabeom. Koo

The test was supervised by:

Ja-Beom, Koo / Manager

Jae-hum, Yeon / Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6 dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	13
3.2.3 POWER SPECTRAL DENSITY	20
3.2.4 BAND EDGE	27
3.2.5 CONDUCTED SPURIOUS EMISSIONS	34
3.2.6 RADIATED SPURIOUS EMISSIONS	40
3.2.7 AC CONDUCTED EMISSIONS	70
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	89

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2019-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	Updating	FCC CAB
VCCI	JAPAN	C-4948	2020-09-10	VCCI registration
VCCI	JAPAN	T-2416	2020-09-10	VCCI registration
VCCI	JAPAN	R-4483(10m)	2020-10-15	VCCI registration
VCCI	JAPAN	G-847	2022-06-13	VCCI registration
IC	CANADA	5799A-1	2019-06-15	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacturer

Company name : MIRO Corporation

Address : 26F, M, 32, Songdogwahak-ro, Yeonsu-gu, INCHEON, Korea

Tel / Fax : TEL No : +82-10-4861-9286 / FAX No : 070-4032-5030

:

:

2-2 Equipment Under Test (EUT)

Model name : MIR-001

Serial number : Identical prototype

Date of receipt : March 15, 2019

EUT condition : Pre-production, not damaged

Antenna type : Chip Antenna - Max Gain 3.3 dBi

Frequency Range : $2412 \text{ MHz} \sim 2462 \text{ MHz} (802.11 \text{ b/g/n})$

RF output power : Max 11.49 dBm – Conducted (802.11 b)

 $Max\ 14.79\ dBm-Conducted\ (802.11\ g)$

Max 13.79 dBm – Conducted (802.11 n20)

Number of channels : 11 (802.11 b/g/n)

Type of Modulation : QPSK, Direct Sequence Spread Spectrum(DSSS)

Power Source : DC 5 V Firmware Version : V1.0.0

2-3 Tested frequency

802.11 b/g/n	LOW	MID	HIGH
Frequency (MHz)	2412	2442	2462

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	CR720	MS-1736	MSI

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)	
15.247(a)	6 dB Bandwidth	> 500 kHz		С	
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Conducted	С	
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 kHz	Conducted	С	
15.247(d)	Band Edge	> 20 dBc		С	
15.209	Field Strength of Harmonics	Emission	Radiated	С	
15.207	AC Conducted Emissions	Emissions	Conducted	NA	
15.203	Antenna requirement	-	-	С	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					

 $\underline{Note\ 2}$: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

MIRO Corporation. FCC ID: 2AMMIMIR-001 unit complies with the requirement of \$15.203. The antenna type is Chip Antenna

The sample was tested according to the following specification:

*FCC Parts 15.247; ANSI C-63.4-2014

*FCC KDB Publication No. 558074 D01 v05r02

*FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 5 MHz, 30 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data: Complies

(802.11 b)

Frequency	Test Res	cults
(MHz)	Measured Bandwidth (MHz)	Result
2412	10.724	Complies
2442	10.724	Complies
2462	10.724	Complies

(802.11 g)

Frequency	Test Results		
(MHz)	Measured Bandwidth (MHz)	Result	
2412	16.570	Complies	
2442	16.570	Complies	
2462	16.643	Complies	

(802.11 n)

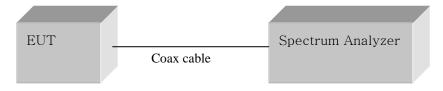
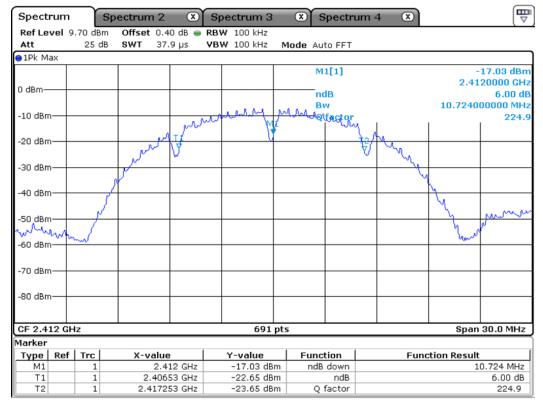
Frequency	Test Res	cults
(MHz)	Measured Bandwidth (MHz)	Result
2412	17.873	Complies
2442	17.873	Complies
2462	17.873	Complies

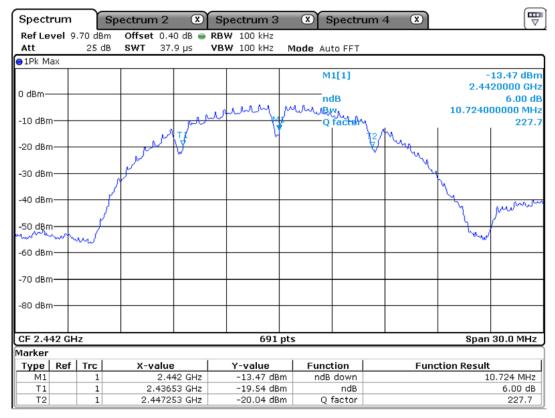
- See next pages for actual measured spectrum plots.

Minimum Standard:

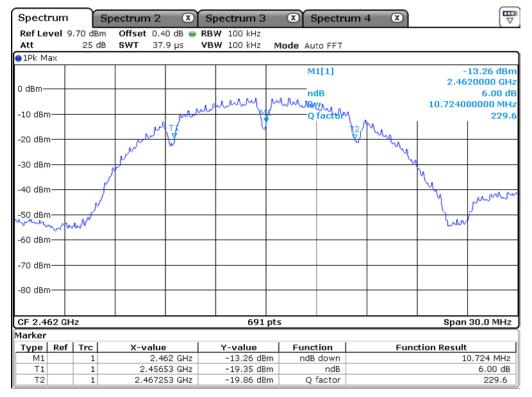
6 dB Bandwidth > 500 kHz

Measurement Setup


Figure 1: Measurement setup for the carrier frequency separation

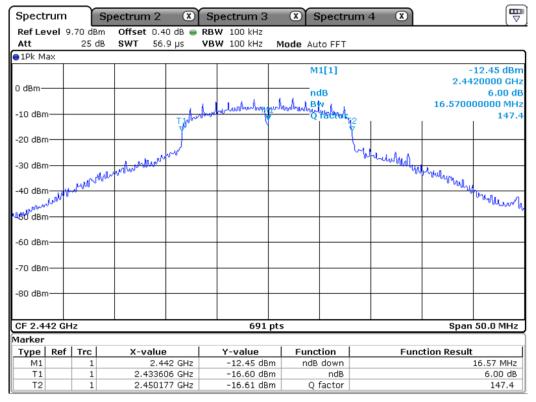
Low Channel – 802.11 b


Date: 23.APR.2019 11:06:36

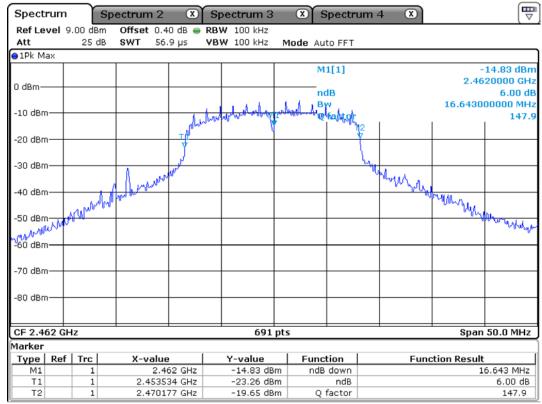
Middle Channel – 802.11 b


Date: 23.APR.2019 11:07:24

High Channel - 802.11 b


Date: 23.APR.2019 11:07:44

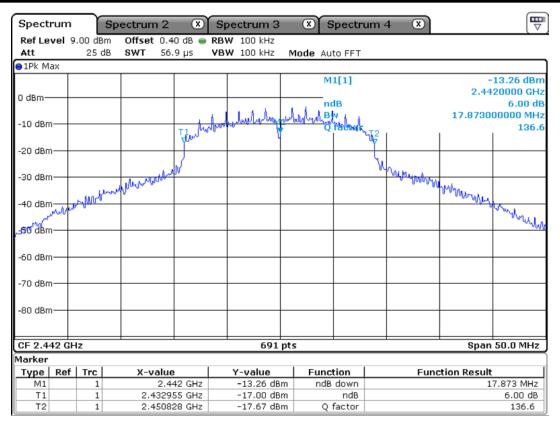
Low Channel – 802.11 g


Date: 23.APR.2019 11:08:20

Middle Channel – 802.11 g

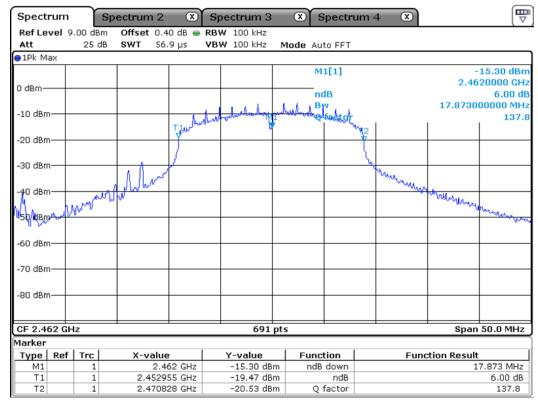
Date: 23.APR.2019 11:18:14

High Channel – 802.11 g


Date: 23.APR.2019 11:18:46

Spectrum Spectrum 2 Spectrum 3 Spectrum 4 X Offset 0.40 dB @ RBW 100 kHz Ref Level 9.00 dBm 56.9 µs **VBW** 100 kHz Mode Auto FFT ●1Pk Max M1[1] -18.79 dBm 2.4120000 GHz 0 dBmndB 6.00 dB 17.873000000 MHz Bw -10 dBm 135.0 Justhalan -20 dBm--30 dBm -40 dBm--50 dBmmullim -60 dBm -70 dBm -80 dBm CF 2.412 GHz 691 pts Span 50.0 MHz Marker Type | Ref | Trc | -value Y-value Function **Function Result** 2.412 GHz -18.79 dBm ndB down 17.873 MHz 2.402955 GHz -22.93 dBm ndB 2.420828 GHz -23.90 dBm Q factor

Low Channel - 802.11 n


Date: 23.APR.2019 11:19:23

Middle Channel - 802.11 n

Date: 23.APR.2019 11:19:46

High Channel – 802.11 n

Date: 23.APR.2019 11:30:10

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = auto

 $VBW = 3MHz (VBW \ge 3 * RBW)$ Sweep = auto

Detector function = peak

Measurement Data: Complies

(802.11 b)

Frequency			
(MHz)	dBm	W	Result
2412	8.09	0.006	Complies
2442	11.49	0.014	Complies
2462	11.03	0.013	Complies

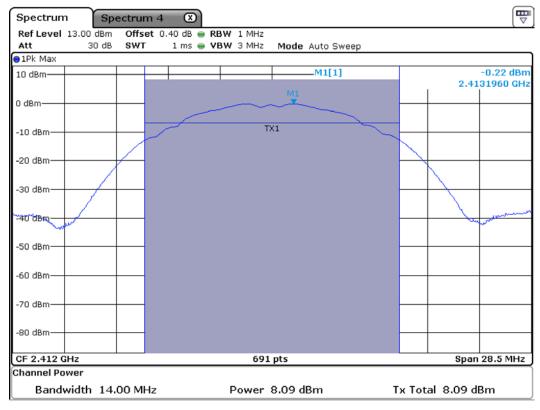
(802.11 g)

Frequency		Test Results	
(MHz)	dBm	W	Result
2412	10.12	0.010	Complies
2442	14.79	0.030	Complies
2462	13.22	0.021	Complies

(802.11 n)

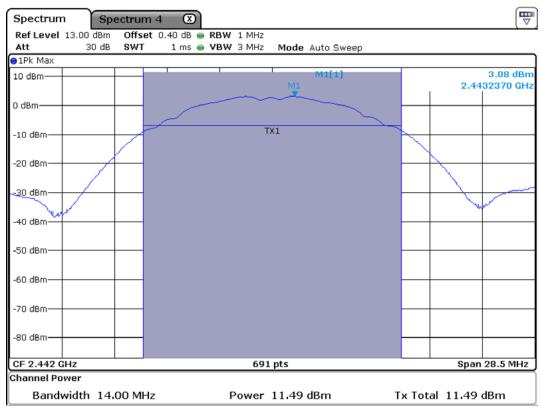
Frequency		Test Results	
(MHz)	dBm	W	Result
2412	9.53	0.009	Complies
2442	13.79	0.024	Complies
2462	12.42	0.017	Complies

⁻ See next pages for actual measured spectrum plots.

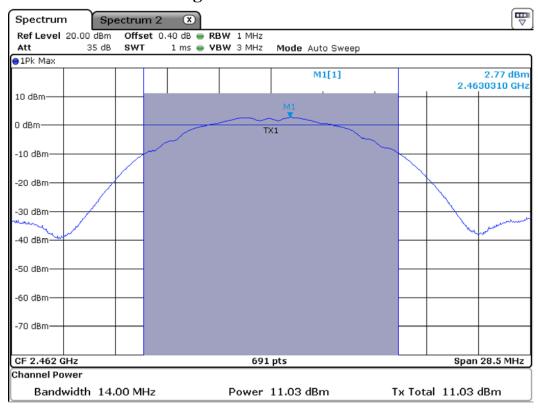

٨	Tin	imum	Stan	dard:

Peak output power	< 1 W

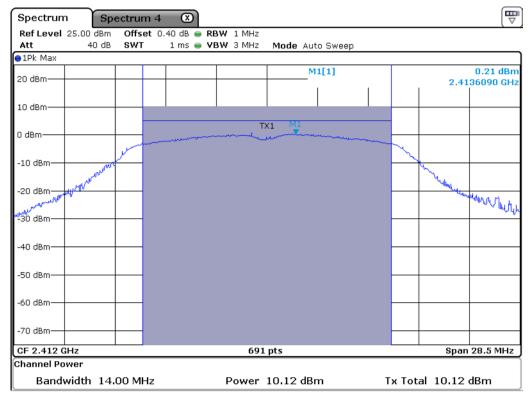
Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

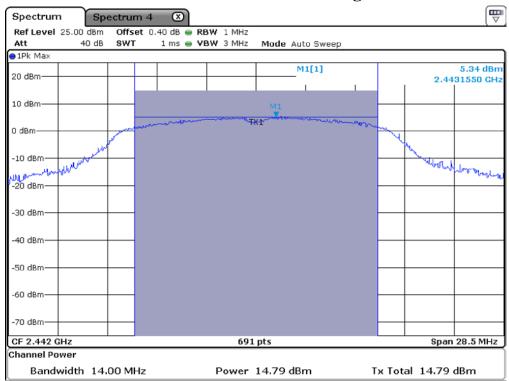
Low Channel – 802.11 b


Date: 16.APR.2019 11:45:07

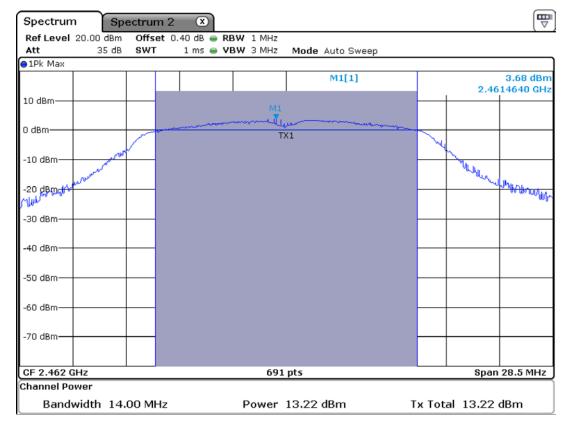
Middle Channel – 802.11 b


Date: 16.APR.2019 11:45:24

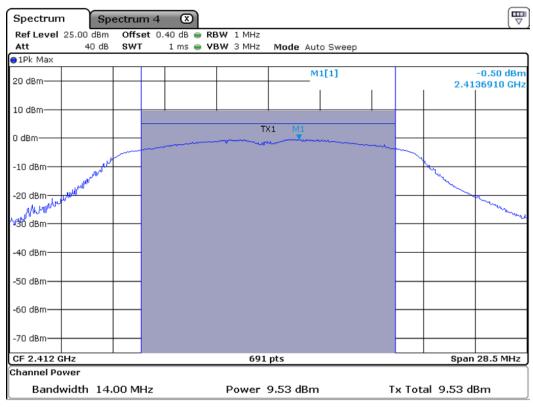
High Channel – 802.11 b


Date: 18.APR.2019 03:24:00

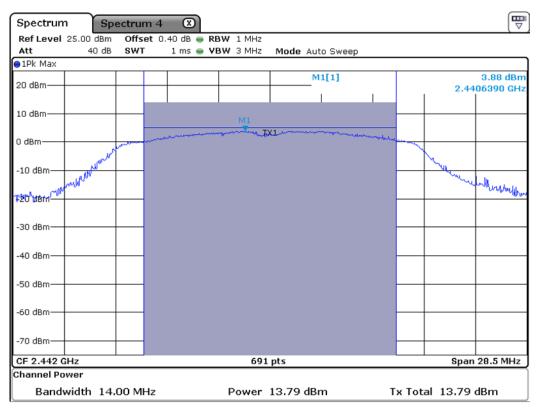
Low Channel - 802.11 g


Date: 16.APR.2019 12:15:45

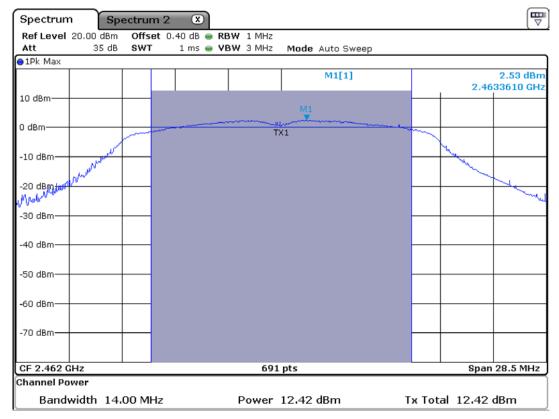
Middle Channel - 802.11 g


Date: 16.APR.2019 12:15:30

High Channel – 802.11 g


Date: 18.APR.2019 03:25:00

Low Channel - 802.11 n


Date: 16.APR.2019 12:16:28

Middle Channel - 802.11 n

Date: 16.APR.2019 12:16:44

High Channel – 802.11 n

Date: 18.APR.2019 03:24:36

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

 $RBW = 3 \text{ kHz} (3\text{kHz} \le RBW \le 100\text{kHz})$ Span = 1.5 times the DTS bandwidth

VBW = 10 kHz (3 * RBW) Sweep = auto

Detector function = peak Trace = max hold

Measurement Data: Complies

(802.11 b)

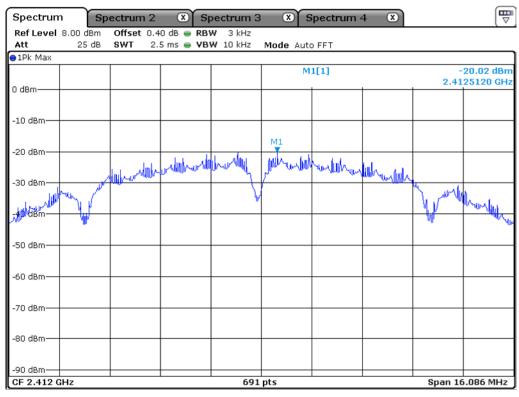
Frequency	Test Res	ults
(MHz)	dBm	Result
2412	-20.02	Complies
2442	-16.89	Complies
2462	-16.61	Complies

(802.11 g)

Frequency	Test Res	cults
(MHz)	dBm	Result
2412	-23.93	Complies
2442	-19.12	Complies
2462	-20.04	Complies

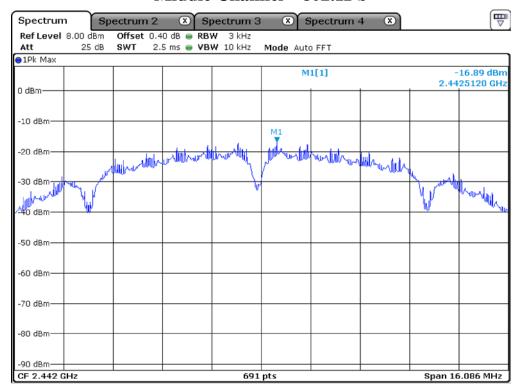
(802.11 n)

Frequency	Test Res	sults
(MHz)	dBm	Result
2412	-23.34	Complies
2442	-19.09	Complies
2462	-20.04	Complies

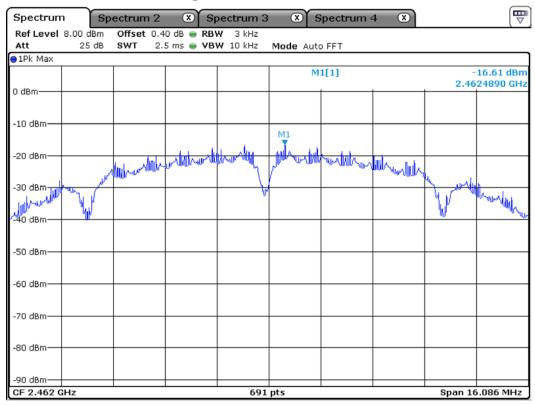

- See next pages for actual measured spectrum plots.

Minimum Standard:	
Power Spectral Density	< 8 dBm @ 3 kHz BW

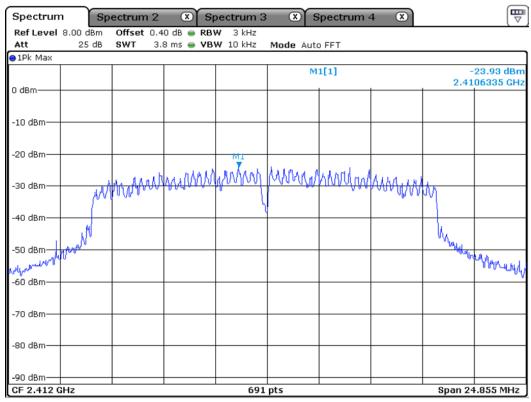
Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

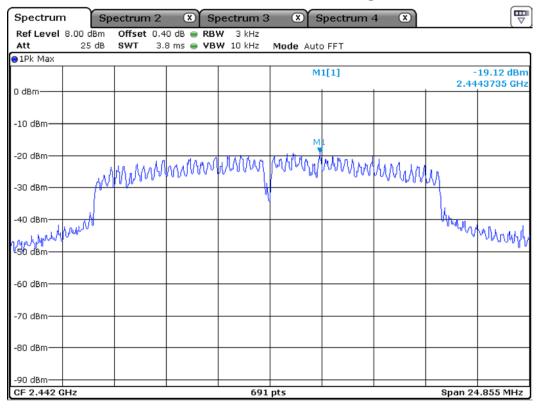
Low Channel - 802.11 b


Date: 23.APR.2019 11:38:42

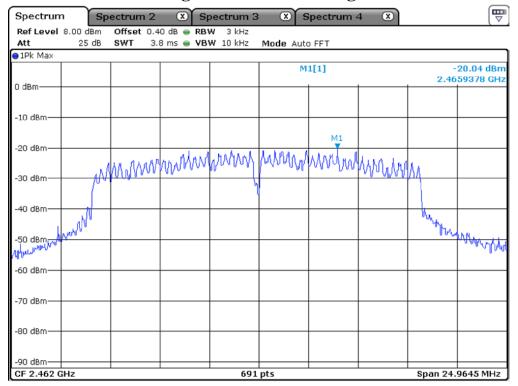
Middle Channel – 802.11 b


Date: 23.APR.2019 11:39:05

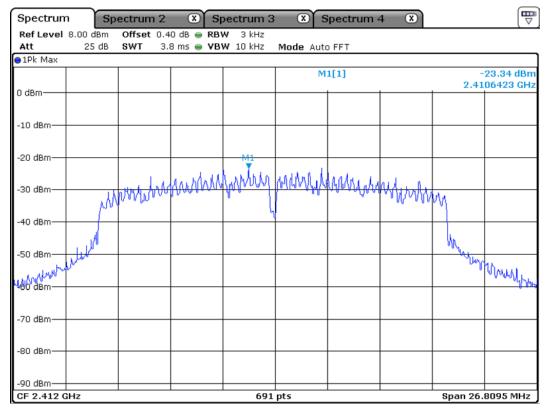
High Channel – 802.11 b


Date: 23.APR.2019 11:39:27

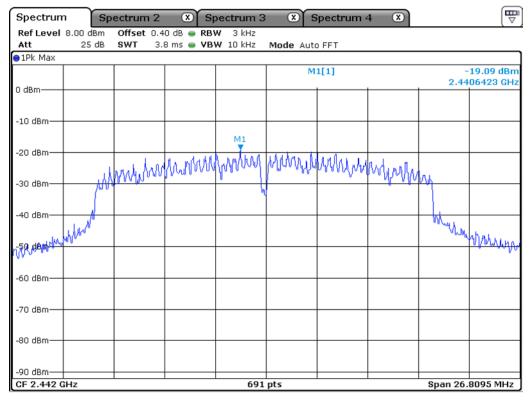
Low Channel – 802.11 g


Date: 23.APR.2019 11:40:17

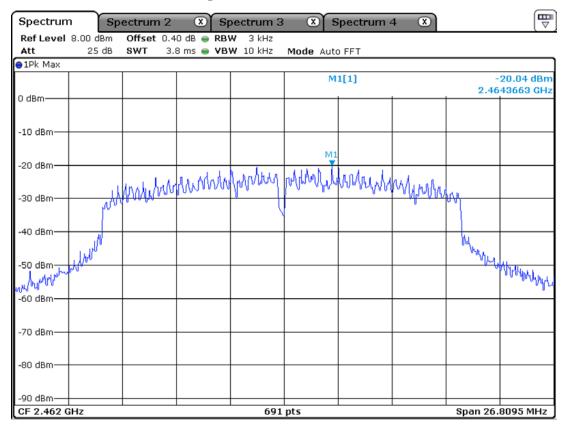
Middle Channel - 802.11 g


Date: 23.APR.2019 11:40:39

High Channel - 802.11 g


Date: 23.APR.2019 11:41:33

Low Channel - 802.11 n


Date: 23.APR.2019 11:42:17

Middle Channel - 802.11 n

Date: 23.APR.2019 11:42:49

High Channel – 802.11 n

Date: 23.APR.2019 11:43:16

3.2.4 Band - edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz, 80 MHz Detector function = peak

Trace = \max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

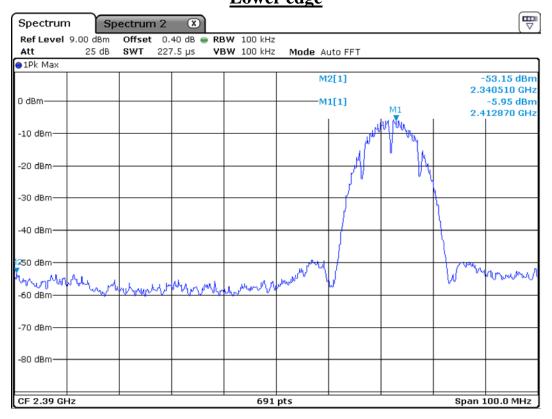
The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels

PEAK: RBW = VBW = 1 MHz, Sweep=Auto

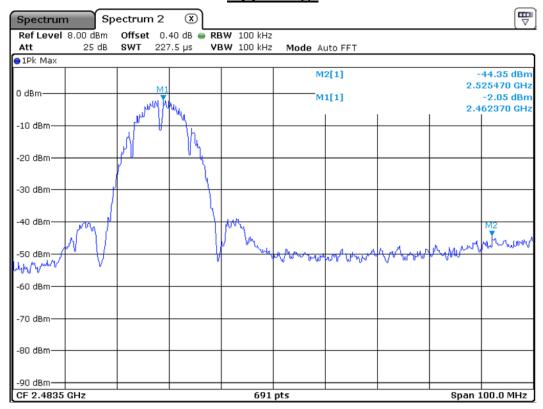
Average: RBW = 1 MHz, VBW=10 Hz, Sweep=Auto

Measurement Distance: 3 m


Polarization: Horizontal / Vertical

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.


Minimum Standard:	> 20 dBc
-------------------	----------

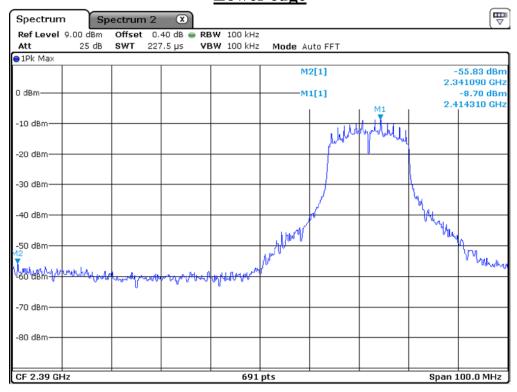
Band edge – 802.11b Lower edge

Date: 17.APR.2019 06:59:46

Upper edge

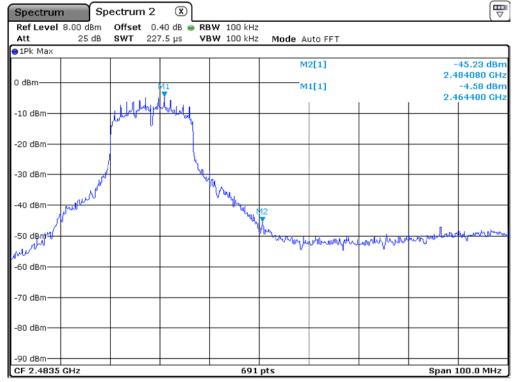
Date: 18.APR.2019 03:52:35

Radiated Band-edges in the restricted band 2310-2390 MHz measurement


Frequency	Reading		Reading		Reading Correction		Limits		Result		Margin	
rrequericy	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV /	' Peak	FOI.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV /	Peak	AV /	Peak	
2340.5	22.71	27.55	Н	27.9	8.75	54	74	41.86	46.7	12.14	27.3	

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]	D-1	(Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]	AV / Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV /	' Peak	AV /	Peak	AV /	Peak	
2525.5	22.96 27.88	Н	27.95	8.59	54	74	42.32	47.24	11.68	26.76	


Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

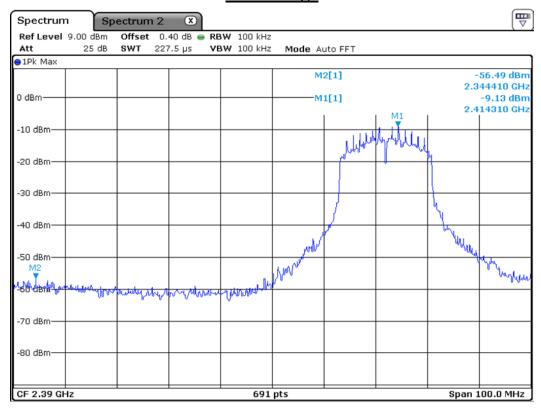
Band edge – 802.11g Lower edge

Date: 17.APR.2019 07:01:02

Upper edge

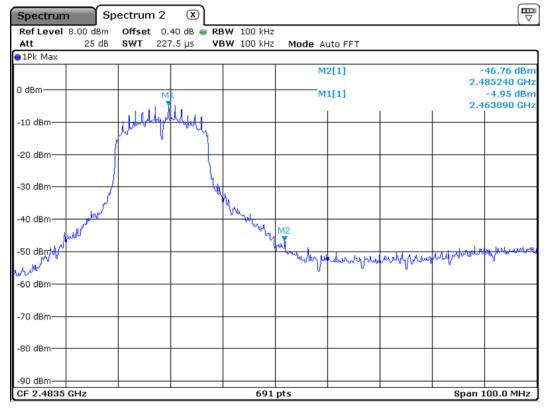
Date: 18.APR.2019 03:53:24

Radiated Band-edges in the restricted band 2310-2390 MHz measurement


Frequency	Reading		Reading		Reading Correction		Limits		Result		Margin	
rrequericy	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV /	' Peak	POI.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV /	Peak	AV /	Peak	
2341.1	22.76	27.27	Н	27.9	8.75	54	74	41.91	46.42	12.09	27.58	

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]	D-I	(Correction Factor		nits V/m]	Res [dBu	sult V/m]	Mar [d	
[MHz]	AV / Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV A	AV / Peak		Peak	AV /	Peak
2484.1	23.12 28.03	Н	28.08	8.77	54	74	42.43	47.34	11.57	26.66


Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

Band edge – 802.11n Lower edge

Date: 17.APR.2019 07:02:13

Upper edge

Date: 18.APR.2019 03:53:59

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/m]		Del	(Correction Factor	Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]	AV /	' Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV /	Peak	AV /	Peak
2344.4	20.37	25.42	Н	27.9	8.75	54	74	39.52	44.57	14.48	29.43

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m]	Pol.	(Correction Factor	Limits [dBuV/m]				Result [dBuV/m]	Margin [dB]	
[MHz]	AV / Peak	POI.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak	AV / Peak			
2485.5	22.96 27.88	Н	28.08	8.77	54	74	42.27 47.19	11.73 26.81			

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

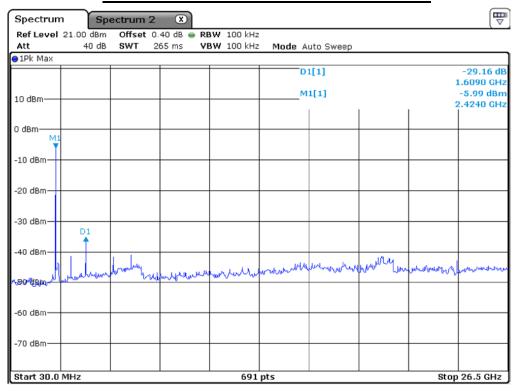
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

VBW = 100 kHz Detector function = peak

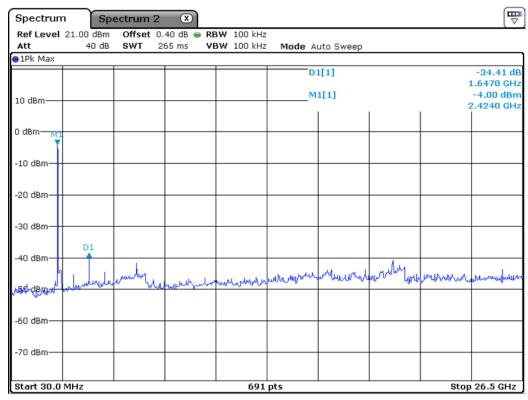
Trace = max hold

Measurement Data: Complies

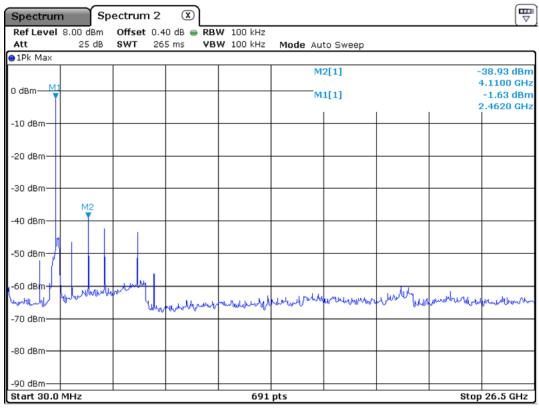

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

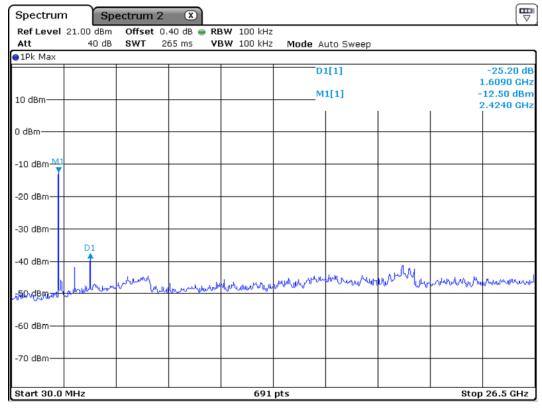
Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

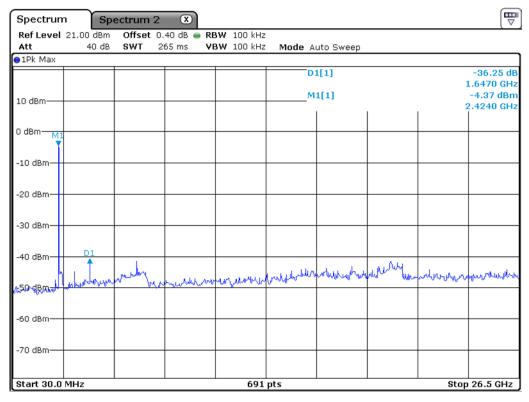
<u>Frequency Range = 30 MHz ~ 26.5 GHz</u> <u>Unwanted Emission – Low Channel – 802.11 b</u>


Date: 17.APR.2019 07:06:33

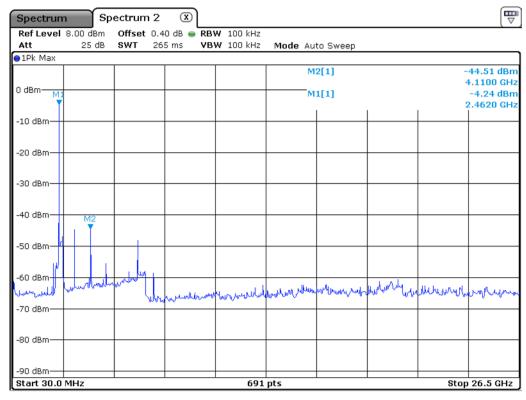
Middle Channel - 802.11 b


Date: 17.APR.2019 07:06:55

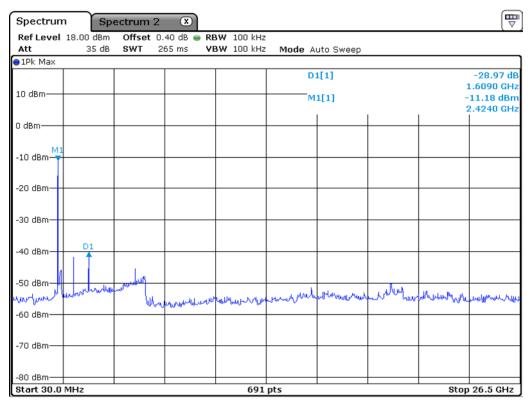
High Channel – 802.11 b


Date: 18.APR.2019 04:00:02

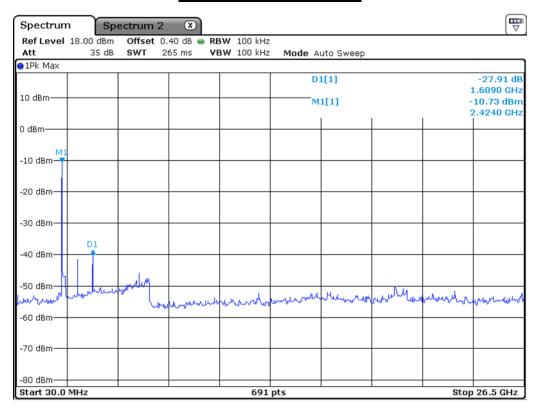
<u>Frequency Range = 30 MHz ~ 26.5 GHz</u> Unwanted Emission – Low Channel – 802.11 g


Date: 17.APR.2019 07:07:38

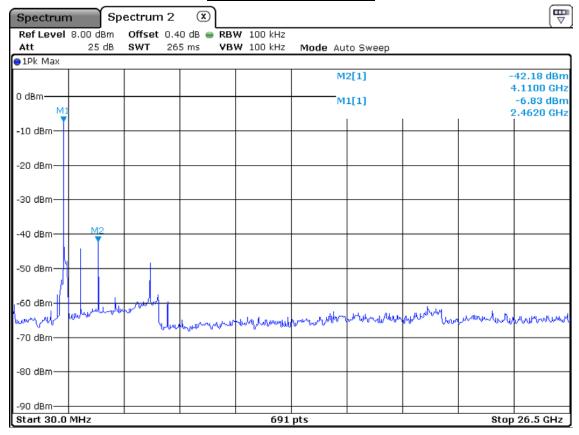
Middle Channel - 802.11 g


Date: 17.APR.2019 07:08:00

High Channel - 802.11 g


Date: 18.APR.2019 04:00:21

Frequency Range = 30 MHz ~ 26.5 GHz Unwanted Emission – Low Channel – 802.11 n


Date: 17.APR.2019 07:09:05

Middle Channel - 802.11 n

Date: 17.APR.2019 07:11:45

High Channel – 802.11 n

Date: 18.APR.2019 04:00:36

3.2.6 Radiated Spurious Emissions

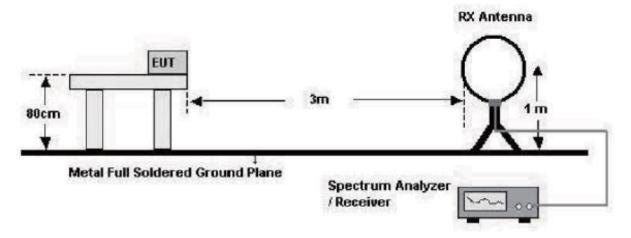
Procedure:

The EUT was placed on a 0.8 m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

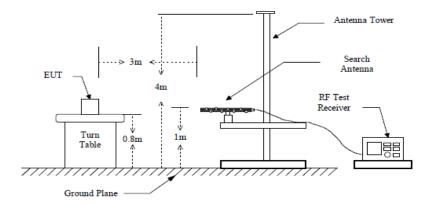
The spectrum analyzer is set to:

Center frequency = the worst channel

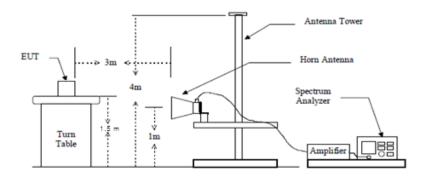
Frequency Range = $9 \text{ kHz} \sim 10^{\text{th}} \text{ harmonic.}$


 $RBW = 100 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$


Span = 100 MHz Detector function = peak

 $Trace = max \ hold Sweep = auto$


below 30 MHz

below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30 MHz.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-80 6 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: (9 kHz - 30 MHz)

Fraguera	Reading			Correction		Limits		Result		Maı	gin	
Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[d	в]	
[MHz]	AV / Peak			Antenna	Amp.Gain+Cable	AV /	AV / Peak		AV / Peak		AV / Peak	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
	*No emissions were detected at a level greater than 20 dB below limit.											
-	-	-	-	-	-	-	-	-	-	-	-	

^{*}No emissions were detected at a level greater than 20 dB below limit.

Measurement Data: 802.11 b (Above 1 GHz)

Francis	Reading [dBuV/m]			Correction Factor		Limits [dBuV/m]		Result		Margin	
Frequency			Pol.					[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna-Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
4825.51	46.72	51.68	Н		-15.05		74	31.67	36.63	22.33	37.37
-	-	-	-			-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: 802.11 g (Above 1 GHz)

Frequency [MHz]	[dBu	ding V/m] ' Peak	Pol.	Correction Factor Antenna-Amp.Gain+Cable		Limits [dBuV/m] AV/Peak		Result [dBuV/m] AV/Peak		Margin [dB] AV / Peak	
7486.61	33.76	38.94	Н		-4.39		74	29.37	34.55	24.63	39.45
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than $20\ \mathrm{dB}$ below limit.

Measurement Data: 802.11 n (Above 1 GHz)

Frequency	Reading [dBuV/m] Pol.		Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]		
[MHz]	AV /	Peak		Antenna-Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
7331.15	38.06	42.74	Н		-6.30		74	31.76	36.44	22.24	37.56
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: 802.11 b (Below 1 GHz)

Francis	Reading		(Correction	Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.		Factor	FalDr W (mail	E-ID: W/m-1	E-ID1	
[MHz]			Antenna	-Amp.Gain+Cable	[dBuV/m]	[dBuV/m]	[dB]	
288.38	50.96	Н	-11.31		46	39.65	6.35	
-		-	-	-				
-		-	-	-				

⁻ No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: 802.11 g (Below 1 GHz)

Frague may	Reading		Correction		Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.		Factor		[dBuV/m]	r.ip1	
[MHz]	[ubuv/III]		Antenna	-Amp.Gain+Cable	[dBuV/m]	[ubuv/III]	[dB]	
288.38	49.65	Н	-11.31		46	38.34	7.66	
-		-	-	-				
-		-	-	-				

⁻ No other emissions were detected at a level greater than 20 dB below limit.

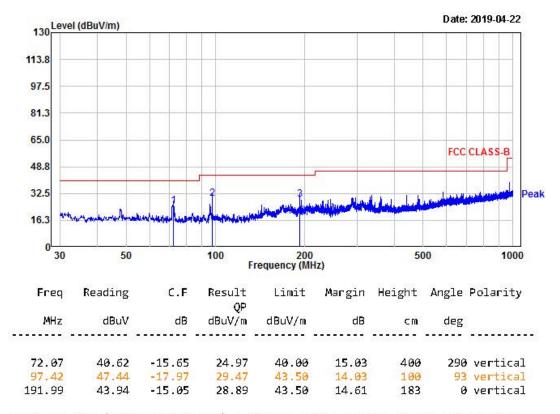
Measurement Data: 802.11 n (Below 1 GHz)

Fraguanay	Reading		O	Correction	Limits	Result	Margin	
Frequency	FalDral/ (mail	Pol.		Factor	EdD: W/m.1	EdD: W/mal	E-ID3	
[MHz]	[dBuV/m]		Antenna-Amp.Gain+Cable		[dBuV/m]	[dBuV/m]	[dB]	
288.14	50.74	Н		-11.32		39.42	6.58	
-		-	-	-				
-		-	-	-				

⁻ No other emissions were detected at a level greater than 20 dB below limit.

Radiated Emissions (Below 1 GHz) – 802.11 b mode, Vertical

4, Songjuro 236Beon-gil, yanggi-myeon,


Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

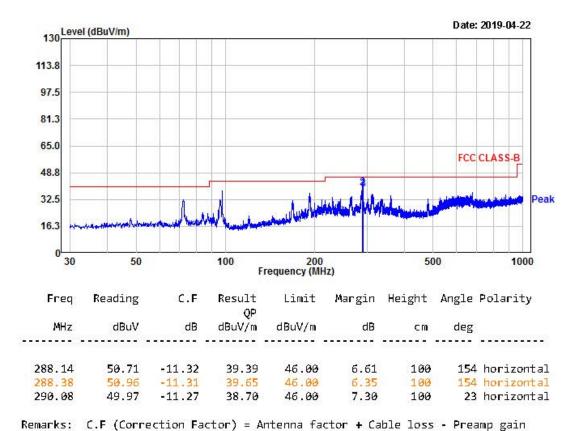
Tested by: YEON J H Test Mode : Wireless a mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) – 802.11 b mode, Horizontal

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

Tested by: YEON J H Test Mode

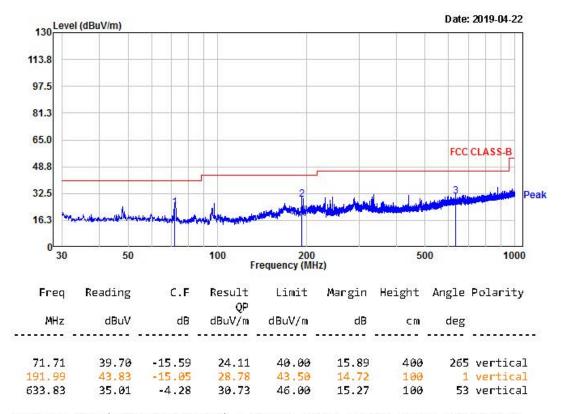
: Wireless b mode

- 1 -

Radiated Emissions (Below 1 GHz) – 802.11 g mode, Vertical

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

Tested by: YEON J H Test Mode

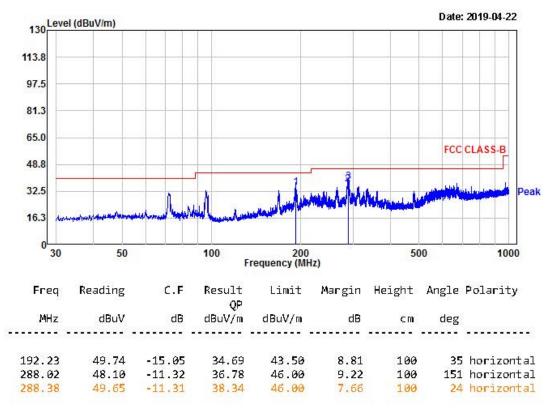
: Wireless g mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) – 802.11 g mode, Horizontal

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

Made There are a series of the Company of the Compa

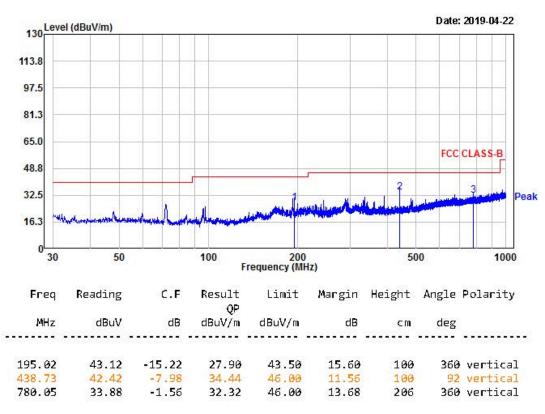
Test Mode : Wireless g mode Tested by: YEON J H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) – 802.11 n20 mode, Vertical

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

Test Mode : Wireless n mode Tested by: YEON J H

st mode . Witeless it mode lested by . Teom 3 in

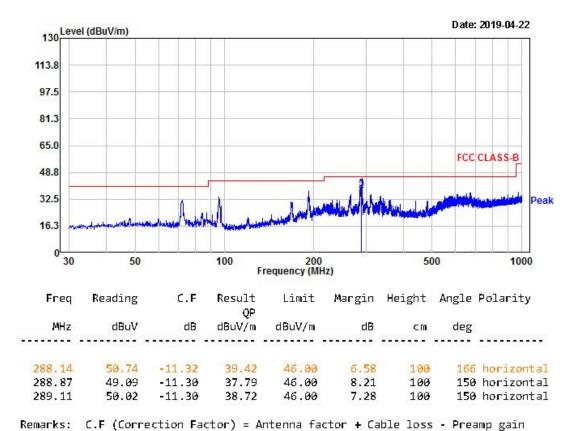
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) - 802.11 n20 mode, Horizontal

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

Tel: +82-31-3236008,9 Fax: +82-31-3236010

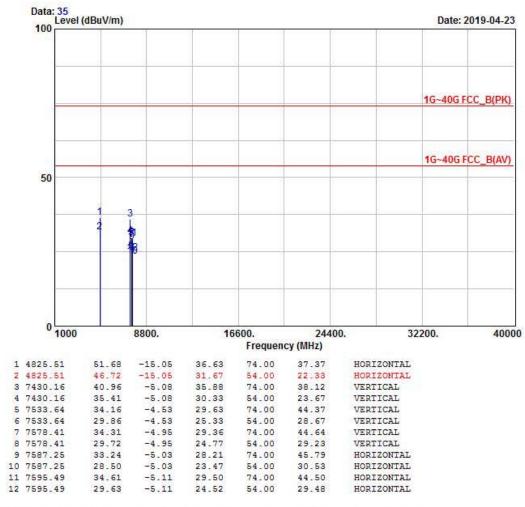

www.ltalab.com

EUT/Model No.: MIR-001 Temp/Humi: 23 / 36

.

Test Mode : Wireless n mode Tested by: YEON J H

.....


- 1 -

Radiated Emissions (Above 1 GHz) – 802.11 b(LOW) mode

EMI I Chamber of LTA CO.,LTD.
4, Songjuro236Beon-gil, Yangji-myeon,
Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP
Tel:+82-31-3236008,9 www.ltalab.com
Fax:+82-31-3236010

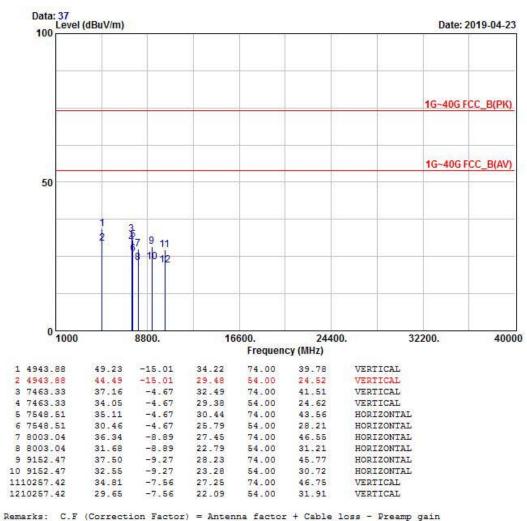
EUT/Model No.: MIR-001 Test Mode: wireless b(low)
Tested by : YEON J H Temp/Humi: 22 / 62

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

Radiated Emissions (Above 1 GHz) – 802.11 b(MID) mode

EMI I Chamber of LTA CO.,LTD.
4, Songjuro236Beon-gil, Yangji-myeon,
Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP
Tel:+82-31-3236008,9 www.ltalab.com
Fax:+82-31-3236010

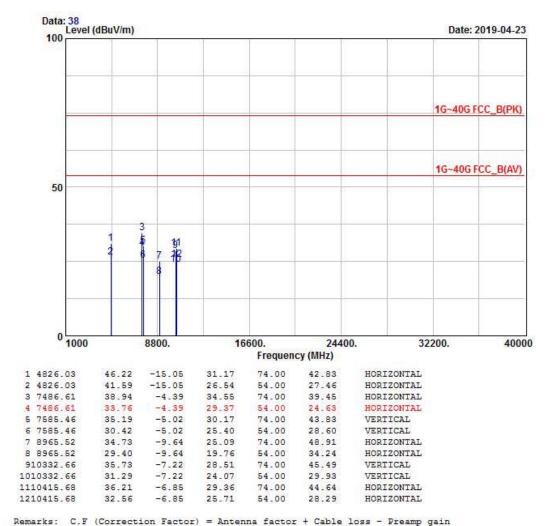
EUT/Model No.: MIR-001 Test Mode: wireless b(mid)
Tested by : YEON J H Temp/Humi: 22 / 62


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

Radiated Emissions (Above 1 GHz) – 802.11 b(HIGH) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

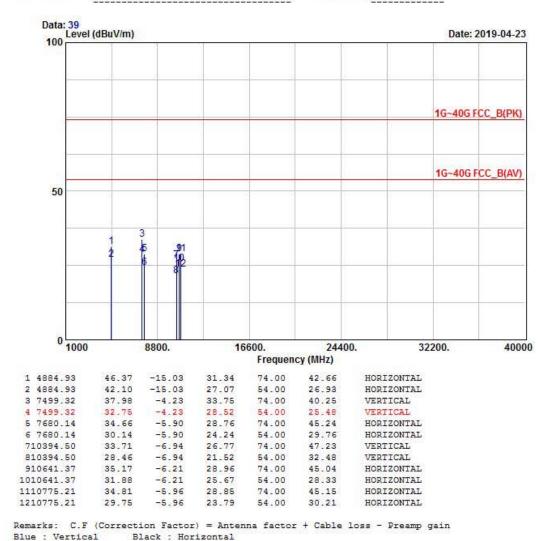
EUT/Model No.: MIR-001 Test Mode: wireless b(high)
Tested by : YEON J H Temp/Humi: 22 / 62


Blue : Vertical Black : Horizontal

Radiated Emissions (Above 1 GHz) – 802.11 g(LOW) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

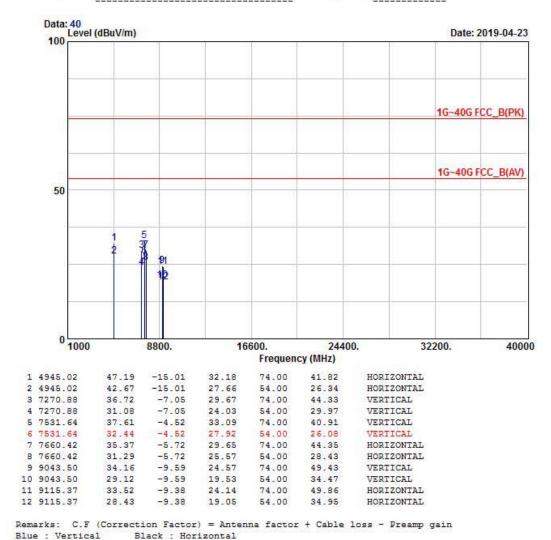
EUT/Model No.: MIR-001 Test Mode: wireless g(low)
Tested by : YEON J H Temp/Humi: 22 / 62


Blue : Vertical Black : Horizontal

Radiated Emissions (Above 1 GHz) – 802.11 g(MID) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

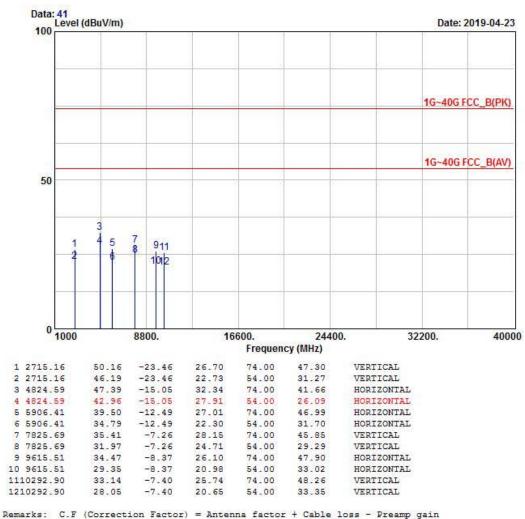
EUT/Model No.: MIR-001 Test Mode: wireless g(mid)
Tested by : YEON J H Temp/Humi: 22 / 62



Radiated Emissions (Above 1 GHz) – 802.11 g(HIGH) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

EUT/Model No.: MIR-001 Test Mode: wireless g(high)
Tested by : YEON J H Temp/Humi: 22 / 62

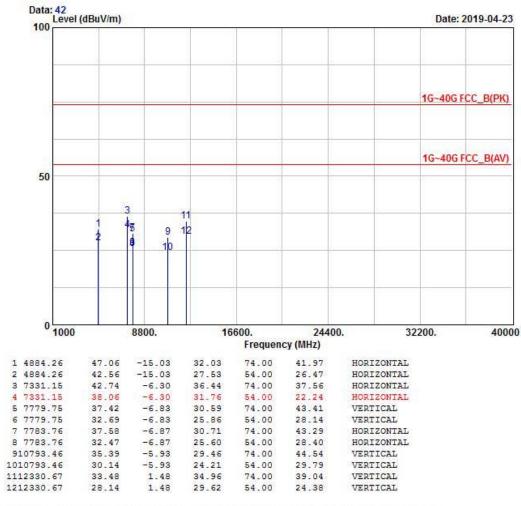

Radiated Emissions (Above 1 GHz) – 802.11 n20(LOW) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

EUT/Model No.: MIR-001 Test Mode: wireless n20(low)

Tested by : YEON J H Temp/Humi: 22 / 62

Remarks: C.F (Correction Factor) = Antenna Factor + Cable loss - Freamp gain Blue : Vertical Black : Horizontal


Radiated Emissions (Above 1 GHz) – 802.11 n20(MID) mode

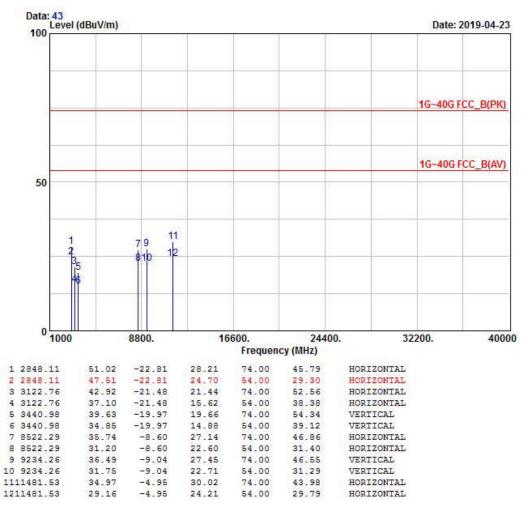
EMI I Chamber of LTA CO.,LTD. 4, Songjuro236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

EUT/Model No.: MIR-001 Test Mode: wireless n20 (mid)

Tested by Temp/Humi: 22 / 62 : YEON J H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Blue : Vertical Black : Horizontal


Radiated Emissions (Above 1 GHz) – 802.11 n20(HIGH) mode

EMI I Chamber of LTA CO.,LTD. 4, Songiuro.236Beon-gil, Yangji-myeon, Yongin-si, Gyeonggi-do, Korea Autho.by NVLAP Tel:+82-31-3236008,9 www.ltalab.com Fax:+82-31-3236010

EUT/Model No.: MIR-001 Test Mode: wireless n20(high)

Tested by : YEON J H Temp/Humi: 22 / 62

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain Blue : Vertical Black : Horizontal

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: NA

Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Decreases with the logarithm of the frequency

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2018-09-06
2		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2019-03-16
3		Attenuator (3 dB)	8491A	37822	HP	1 year	2018-09-06
4		Attenuator (10 dB)	8491A	63196	НР	1 year	2018-09-06
5		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2018-09-06
6		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	НР	1 year	2018-09-06
7		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	НР	1 year	2019-03-16
8		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2018-09-26
9		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2018-05-03
10		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2018-05-03
11		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2019-03-23
12		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2018-09-06
13		DC Power Supply	6674A	3637A01657	Agilent	-	-
14		Power Meter	EPM-441A	GB32481702	НР	1 year	2019-03-16
15		Power Sensor	8481A	3318A94972	НР	1 year	2018-09-06
16		Audio Analyzer	8903B	3729A18901	НР	1 year	2018-09-06
17		Modulation Analyzer	8901B	3749A05878	НР	1 year	2018-09-06
18		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2018-09-06
19		Stop Watch	HS-3	812Q08R	CASIO	2 year	2019-03-16
20		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2018-09-06
21		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2019-03-16
22		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2019-03-16
23		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2019-03-16
24		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2019-03-16
25		Signal Generator(100 kHz ~ 40 GHz)	SMB100A	177621	R&S	1 year	2019-03-16
26		Vector Signal Generator(9kHz ~ 6 GHz)	SMBV100A	255081	R&S	1 year	2019-03-16
27		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2019-03-16