ATTACHMENT

**** MPE Calculations ****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 14.79 dBm + 3.3 dBi	P = Power input to the antenna (mW)
EIRP = 18.09 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$\mathbf{S} = \mathbf{PG}/(4\mathbf{R}^2\boldsymbol{\pi})$	Where,
	S = Maximum power density (mW/cm2)
$\mathbf{S} = (30.13 * 2.14) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0128 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,		
	P = Power input to the antenna (mW)		
	$R = \sqrt{(30.13 \times 2.14 / 4\pi)}$	G = Numeric power gain of the antenna	
		R = Distance to the center of the radiation of the antenna	
	R = 2.26 cm	(20 cm = limit for MPE)	

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)
 $G = Log^{-1} (3.3 / 10)$
 $G = 2.14$