Page: 1 of 97

Radio Test Report

FCC ID: 2AMM6-8822CSS3AH

Report No. : TBR-C-202206-0044-23

Applicant: Earda Technologies Co., Ltd

Equipment Under Test (EUT)

EUT Name : WiFi & BT combo module

Model No. : EWN-8822CSS3AH

Series Model No. : ----

Brand Name : EARDATEK

Sample ID : 202206-0044-01-01#& 202206-0044-01-02#

Receipt Date : 2022-06-17

Test Date : 2022-06-17 to 2022-07-06

Issue Date : 2022-07-06

Standards : FCC Part 15 Subpart E 15.407

Test Method : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor:

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	11
	1.8 Test Facility	12
2.	TEST SUMMARY	13
3.	TEST SOFTWARE	13
4.	TEST EQUIPMENT	14
5.	CONDUCTED EMISSION TEST	16
	5.1 Test Standard and Limit	16
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	17
	5.6 Test Data	17
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	21
	6.5 EUT Operating Mode	21
	6.6 Test Data	21
7.	RESTRICTED BANDS REQUIREMENT	22
	7.1 Test Standard and Limit	22
	7.2 Test Setup	23
	7.3 Test Procedure	23
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	24
	7.6 Test Data	
8.	BANDWIDTH TEST	25
	8.1 Test Standard and Limit	25
	8.2 Test Setup	25
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	27

9.	MAXIMUM CONDUCTED OUTPUT POWER	28
	9.1 Test Standard and Limit	28
	9.2 Test Setup	28
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	28
	9.5 EUT Operating Mode	
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	29
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	30
	10.5 Antenna Connected Construction	30
	10.6 Test Data	30
11.	FREQUENCY STABILITY	
	11.1 Test Standard and Limit	31
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	32
	11.5 Antenna Connected Construction	
	11.6 Test Data	32
12.	ANTENNA REQUIREMENT	33
	12.1 Test Standard and Limit	
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Test Data	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202206-0044-23 Page: 4 of 97

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202206-0044-23	Rev.01	Initial issue of report	2022-07-06
EUL TOTAL		1000	The state of the s
	3	MODE TO THE	
	WOR		
		CONTRACTOR OF THE PARTY OF THE	
	WORLD .		
			3
	137	The same	
	000		mili
	33		
0037	400		4097

Page: 5 of 97

1. General Information about EUT

1.1 Client Information

Applicant		Earda Technologies Co., Ltd
Address		Block A, LianFeng Creative Industry Park, 2 JiSheng Road., HuangGe Town, NanSha District, Guangzhou, PRC.
Manufacturer	1	Earda Technologies Co., Ltd
Address	:	Block A, LianFeng Creative Industry Park, 2 JiSheng Road., HuangGe Town, NanSha District, Guangzhou, PRC.

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	WiFi & BT combo mo	odule		
Models No.) <u>.</u>	EWN-8822CSS3AH			
U-NII-1			ration Frequency: I-1: 5180MHz~5240MHz, U-NII-2A: 5260MHz~5320MHz I-2C: 5500MHz~5700MHz, U-NII-3: 5745MHz~5825MHz		
Draduct	K	Antenna Gain:	2dBi PCB Antenna		
Product Description		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)		
		Bit Rate of Transmitter:	Up to 1200Mbps		
Power Rating		DC 3.3V	WORLD THE PARTY OF		
Software Version	7	v1.0			
Hardware Version	1	A1.6			

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Page: 6 of 97

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5180~5240MHz (U-NII-1)	36	5180 MHz	44	5220 MHz
	38	5190 MHz	46	5230 MHz
(O-NII-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5260~5320 MHz (U-NII-2A)	52	5260 MHz	60	5300 MHz
	54	5270 MHz	62	5310MHz
	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64.

For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

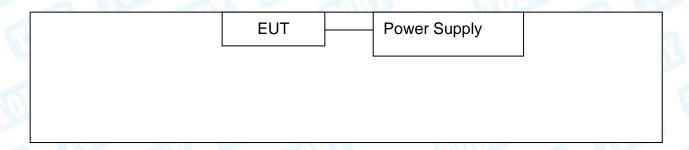
For 80 MHz Bandwidth, use channel 106, 122, 138.

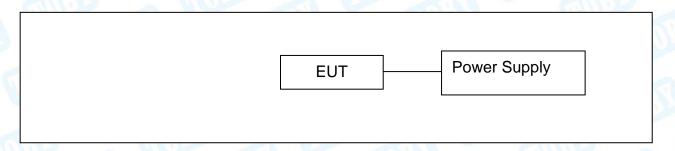
Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5745~5825MHz (U-NII-3)	149	5745 MHz	157	5785 MHz
	151	5755 MHz	159	5795 MHz
	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.




Page: 7 of 97

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

		Equipment Inforr	nation	
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
	(37) (
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note

Page: 8 of 97

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

respective	эіу.	For Conducted Tool
		For Conducted Test
Fina	Il Test Mode	Description
	Mode 1	TX a Mode(5180MHz)
	For	Radiated Test Below 1GHz
Fina	Il Test Mode	Description
man B	Mode 2	TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
CIII LE	Mode 3	TX Mode 802.11a Mode Channel 36/44/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/44/48
U-NII-1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/44/48
O-IVII-1	Mode 7	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11ac(VHT40) Mode Channel 38/46
	Mode 10	TX Mode 802.11ac(VHT80) Mode Channel 42
- UHI	Mode 12	TX Mode 802.11a Mode Channel 52/60/64
	Mode 13	TX Mode 802.11n(HT20) Mode Channel 52/60/64
U-NII-2A	Mode 14	TX Mode 802.11ac(VHT20) Mode Channel 52/60/64
O IVII Z/X	Mode 16	TX Mode 802.11n(HT40) Mode Channel 54/62
	Mode 17	TX Mode 802.11ac(VHT40) Mode Channel 54/62
	Mode 19	TX Mode 802.11ac(VHT80) Mode Channel 58
	Mode 21	TX Mode 802.11a Mode Channel 100/116/140
	Mode 22	TX Mode 802.11n(HT20) Mode Channel 100/116/140
U-NII-2C	Mode 23	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140
	Mode 25	TX Mode 802.11n(HT40) Mode Channel 102/110/134
	Mode 26	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134
	Mode 28	TX Mode 802.11ac(VHT80) Mode Channel 106/122
	Mode 30	TX Mode 802.11a Mode Channel 149/157/165
	Mode 31	TX Mode 802.11n(HT20) Mode Channel 149/157/165
U-NII-3	Mode 32	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165
	Mode 34	TX Mode 802.11n(HT40) Mode Channel 151/159
1:45	Mode 35	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 37	TX Mode 802.11ac(VHT80) Mode Channel 155

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest,

Page: 9 of 97

middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 97

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

iest	Software: AX_Series_MP U-NII-1		
		Paran	neters
Mode	Frequency (MHz)	Ant.1	Ant.2
	5180	94	104
802.11a	5220	94	96
	5240	94	98
	5180	84	96
802.11n(HT20)	5220	86	94
	5240	86	90
	5180	84	98
802.11ac(VHT20)	5220	88	96
	5240	88	92
802.11n(HT40)	5190	86	92
002.1111(H140)	5230	86	88
902 1120(VUT40)	5190	84	90
802.11ac(VHT40)	5230	84	86
802.11ac(VHT80)	5210	84	88
,	U-NII-2A		
Mode	Frequency (MHz)	Parameters	
Wiode		Ant.1	Ant.
	5260	94	96
802.11a	5300	96	98
	5320	96	98
	5260	88	92
802.11n(HT20)	5300	88	92
	5320	88	92
	5260	88	92
802.11ac(VHT20)	5300	88	92
	5320	88	92
(1)	5260	92	96
802.11ac(HE20)	5300	92	98
	5320	92	98
902 11 n/UT 10)	5270	90	94
802.11n(HT40)	5310	88	94
902 11 ap///UT 40\	5270	88	92
802.11ac(VHT40)	5310	88	94

Page: 11 of 97

Mada	F	Para	meters
Mode	Frequency (MHz)	Ant.1	Ant.
	5500	100	90
802.11a	5580	90	88
	5700	94	88
	5500	98	88
802.11n(HT20)	5580	88	84
	5700	94	88
	5500	92	84
802.11ac(VHT20)	5580	86	80
	5700	88	82
	5510	92	86
802.11n(HT40)	5550	88	82
	5670	88	86
802.11ac(VHT40)	5510	90	86
	5550	86	80
	5670	84	84
000 44 (VIIITO)	5530	84	80
802.11ac(VHT80)	5610	84	82
	U-NII-3		
Mode	Frequency (MHz)	Parameters	
	r requericy (Wiriz)	Ant.1	Ant.
	5745	90	90
802.11a	5785	88	94
	5825	84	96
	5745	88	84
802.11n(HT20)	5785	82	90
	5825	80	90
	5745	84	84
802.11ac(VHT20)	5785	82	88
	5825	80	92
902 11 n/UT 40\	5755	82	80
802.11n(HT40)	5795	82	86
902 44 (VIIIT 40)	5755	78	80
802.11ac(VHT40)	5795	78	80
802.11ac(VHT80)	5775	70	78

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$

Page: 12 of 97

Padiated Emission	Level Accuracy:	$\pm 4.60~\mathrm{dB}$	
Radiated Emission	9kHz to 30 MHz	±4.00 dB	
Radiated Emission	Level Accuracy:	\pm 4.50 dB	
	30MHz to 1000 MHz	±4.50 dB	
Radiated Emission	Level Accuracy:	± 4.20 dD	
	Above 1000MHz	\pm 4.20 dB	

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 13 of 97

2. Test Summary

Standard Section	Test Item	Toot Comple(s)	leadous sut	D	
FCC	Test item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	202206-0044-01-01#	PASS	N/A	
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	202206-0044-01-01#	PASS	N/A	
FCC 15.203	Antenna Requirement	202206-0044-01-02#	PASS	N/A	
FCC 15.407(a)	-26dB Emission Bandwidth	202206-0044-01-02#	PASS	N/A	
FCC 15.407(a)	99% Occupied Bandwidth	202206-0044-01-02#	PASS	N/A	
FCC 15.407(e)	-6dB Min Emission Bandwidth	202206-0044-01-02#	PASS	N/A	
FCC 15.407(a)	Maximum Conducted Output Power	202206-0044-01-02#	PASS	N/A	
FCC 15.407(a)	Power Spectral Density	202206-0044-01-02#	PASS	N/A	
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	202206-0044-01-02#	PASS	N/A	
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	202206-0044-01-02#	PASS	N/A	
FCC 15.407(g)	Frequency Stability	202206-0044-01-02#	PASS	N/A	
	On Time and Duty Cycle	202206-0044-01-02#	1	N/A	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202206-0044-23 Page: 14 of 97

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00117337	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024 Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024 Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2024 Feb.25, 2023
	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	Tonscend	TAP0184050	AP21C806129		
HF Amplifier	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emission 7	1	Medal No	Carial Na	1+ 0-1	Cal Dua Date
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer Spectrum Analyzer	Agilent Rohde & Schwarz	N9020A FSV40-N	MY49100060 102197	Sep. 03, 2021 Jun. 23, 2022	Sep. 02, 2022 Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 26, 2022	Feb.25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 16, 2021	Dec. 15, 2022
U. A. T	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022

Report No.: TBR-C-202206-0044-23 Page: 15 of 97

RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 03, 2021	Sep. 02, 2022
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023

Page: 16 of 97

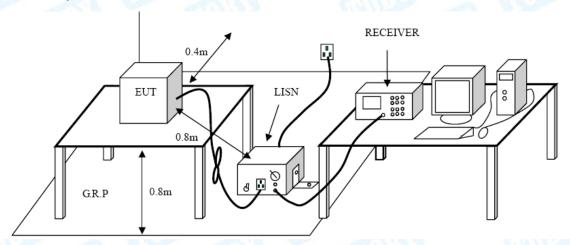
5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207

5.1.2 Test Limit


Eroguenev	Maximum RF Line	Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

TOBY

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 17 of 97

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 18 of 97

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General	General field strength limits at frequencies Below 30MHz			
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		

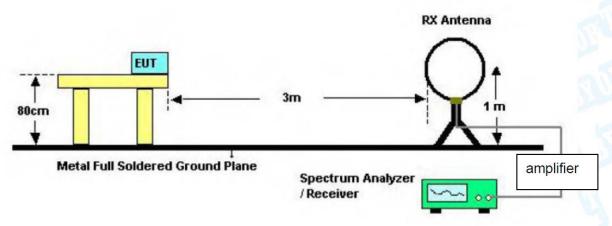
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz			
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

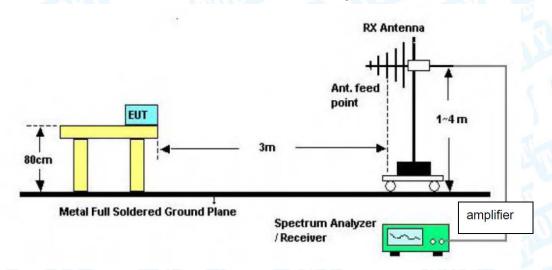
General field strength limits at frequencies Above 1000MHz		
Frequency	Distance of 3m (dBuV/m)	
(MHz)	Peak	Average
Above 1000	74	54

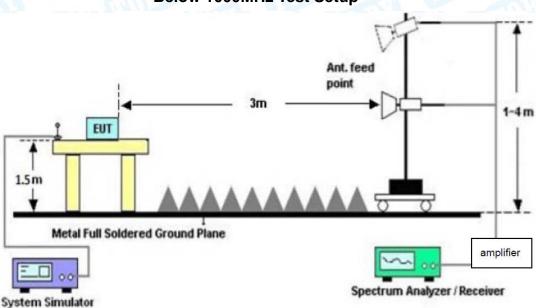
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

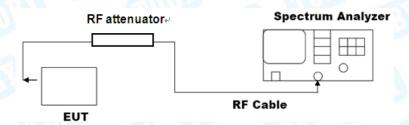

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Setup


Radiated measurement


Page: 19 of 97

Below 30MHz Test Setup


Below 1000MHz Test Setup

Above 1GHz Test Setup Conducted measurement

Page: 20 of 97

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- ●Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 21 of 97

--- Conducted measurement

● Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix D.

Page: 22 of 97

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)

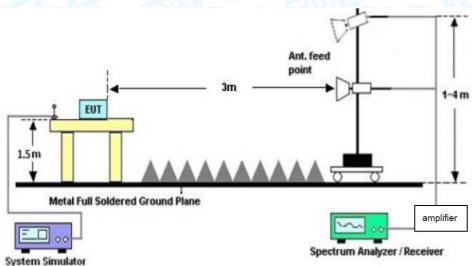
7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
THE PARTY OF THE P	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
a GULL	27(Note 2)	122.3

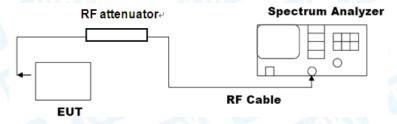
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$


2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.



7.2 Test Setup

Radiated measurement

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 24 of 97

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

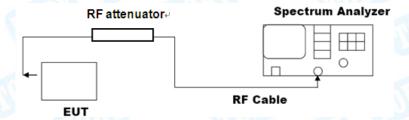
Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix D.

Page: 25 of 97

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
		5150~5250
99% Bandwidth	N/A	5250~5350
99% Dandwidth	IV/A	5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 26 of 97

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page: 27 of 97

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

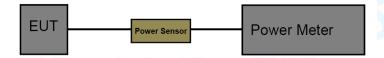
Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix D.

Page: 28 of 97

9. Maximum Conducted Output Power


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407(a)

9.1.2 Test Limit

	FCC Part 15 Sub	part E(15.407)		
Limit	Freq	uency Range(N	1Hz)	
Limit	5150~5250	5250~5350	5500~5725	5725~5850
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	B, whichever is	or 11 dBm+ 10 log lower (B= 26-dB ion BW)	1 Watt (30dBm)
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon	1 W (30 dBm) v	vith 6 dBi antenna	4 W (36 dBm) with 6 dBi antenna
TPC	NO	dBm) and able to	RP ≥ 500 mW (27 lower EIRP below dBm < 500mW (27dBm)	NO

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

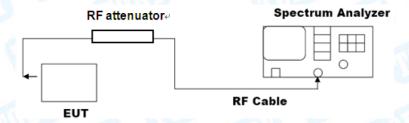
9.6 Test Data

Please refer to the Appendix D.

Page: 29 of 97

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
COS SOL	Master Device: 17dBm/MHz Client Device: 11dBm/MHz	5150~5250
Power Spectral	11dBm/MHz	5250~5350
Density	11dBm/MHz	5500~5725
(40)	30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power..."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d) The result is the PPSD.

Page: 30 of 97

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

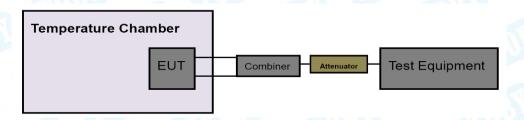
10.6 Test Data

Please refer to the Appendix D.

Page: 31 of 97

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement. 96 The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).
- 4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.

Page: 32 of 97

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW □ 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix D.

Page: 33 of 97

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

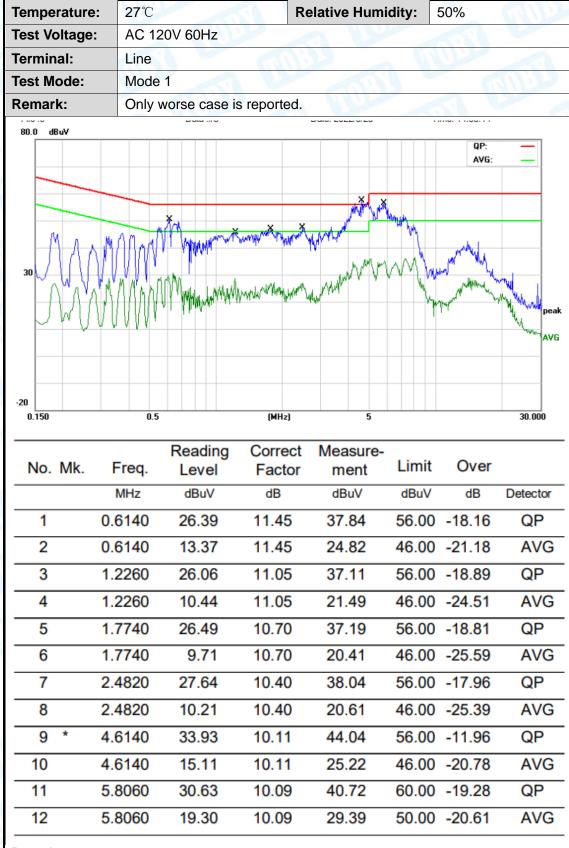
12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data


The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached antenna	MA
Unique connector antenna	
Professional installation antenna	0.0

Page: 34 of 97

Attachment A-- Conducted Emission Test Data

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	27 ℃		Relative H	umidity:	50%	
Test Voltage:	AC 120V 60Hz			33		CHILL
Terminal:	Neutral		1 W		100	
Test Mode:	Mode 1	ant		A AN	11	
Remark:	Only worse cas	se is reported				1117
30 dBuV		with savery productive for the forest of the	Almar Andrew Company		QP: AVG:	peak
-20 0.150	0.5	(MHz)	5			30.000
No. Mk. Fr	Reading req. Level	Correct Factor	Measure- ment	Limit	Over	
M	Hz dBuV	dB	dBuV	dBuV	dB	Detector
1 0.6	140 34.71	11.47	46.18	56.00	-9.82	QP
2 0.6	140 13.61	11.47	25.08	46.00	-20.92	AVG
3 2.48	820 31.77	10.32	42.09	56.00	-13.91	QP
4 2.48	820 14.04	10.32	24.36	46.00	-21.64	AVG
5 * 4.6	140 36.94	10.08	47.02	56.00	-8.98	QP
6 4.6	140 18.25	10.08	28.33	46.00	-17.67	AVG
7 5.80	060 36.65	10.05	46.70	60.00	-13.30	QP
8 5.80	060 21.61	10.05	31.66	50.00	-18.34	AVG
9 7.12	220 32.46	10.02	42.48	60.00	-17.52	QP
10 7.12	220 21.88	10.02	31.90	50.00	-18.10	AVG
11 13.97	700 24.10	10.31	34.41	60.00	-25.59	QP
12 13.97	700 16.10	10.31	26.41	50.00	-23.59	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 36 of 97

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

empe	eratu	re:	24.3	$^{\circ}$			Relative Hu	umidity:	45%	
est V	/oltag	je:	AC 1	20V	60Hz		CHILL		Alle	
nt. P	ol.		Horiz	zonta				4000		1 11
est M	/lode:	:	Mod	e 2	a V	HU			TITE OF THE PARTY	
Remai	rk:		Only	wors	se case	is reported.	MUNICIPALITY		MARIE	
80.0	dBuV/m	1								
70										
60								(RF)FCC 150	C 3M Radiation	
50								Margin -6 dE		
40							3	5		6
30										
						2		*		
20				1		A A A	. W	Ž.	be an entropy of the politic	, _М уреа
	iller on the Life con	valenta parti	regladiska a silabah	Å		WAR AND THE RESERVENCE OF THE PARTY OF THE P	Mary Mary Mary Mary Mary Mary Mary Mary	A A A A A A A A A A A A A A A A A A A	handa marka ka k	, _М иммрег
10	jh phoridijh,je	vojle _{lij} e je st	raffinisher op en sterpt	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	entrolythyror	w^**	My My market	N WWW	hr an adhard all and d	Here HAY pea
10 	ja jan de fi ^r ance	vojlagvagt ^{od} il	majorakan prophysik	*	majernia physicaria		HALL MARKET	N WANNER	in an admitted the other	Ду л. Н у грег
10 H	ja nkariteljaria	vojl _{eg} tsp ^{este}	majoribian proposition phi	1	and the second	" ^.^^.	The Manual	A CONTRACTOR	hy sain nelectric blanch	_{Дж}
10 	140 M	vojla _{lij} i op ^{isija} li	60.00	, 1 , 1	gajhrághtvínor	(MHz)	300.		h-co-velenter blanch	
		vojl _{eg} /s _p i st le	60.00	71 94	and the second			00		
10	F	•	60.00 lency	Re	eading	Factor	Level	00 Limit	Margin	1000.00
10 -10 -20 30.00	F	(MH	ency Hz)	Re (di	BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00
10 10 10 10 10 10 10 10	F	(MH 76.7	60.00 lency Hz)	Re (di	BuV) 3.24	Factor (dB/m) -25.96	Level (dBuV/m) 17.28	Limit (dBuV/m) 40.00	Margin (dB) -22.72	Detector peak
10 0 10 10 10 10 10 10 10 10 10 10 10 10	F	(MH 76.7 145.8	60.00 Hency Hz) 808 3611	Re (dl	3.24 1.07	Factor (dB/m) -25.96 -21.86	Level (dBuV/m) 17.28 29.21	Limit (dBuV/m) 40.00 43.50	Margin (dB) -22.72 -14.29	Detector peak peak
No. 1 2 3 *	F	76.7 145.8 199.9	808 8611 9856	Re (dl 4: 5: 6:	3.24 1.07 2.08	Factor (dB/m) -25.96 -21.86 -24.11	Level (dBuV/m) 17.28 29.21 37.97	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -22.72 -14.29 -5.53	Detector peak peak peak
No. 10 No. 1 2 3 *	F	(MF 76.7 145.8 199.9 355.4	808 3611 9856	Re (dl 4: 5: 6: 4:	3.24 1.07 2.08 9.17	Factor (dB/m) -25.96 -21.86 -24.11 -19.51	Level (dBuV/m) 17.28 29.21 37.97 29.66	Limit (dBuV/m) 40.00 43.50 43.50 46.00	Margin (dB) -22.72 -14.29 -5.53 -16.34	Detecto peak peak peak peak
10 0 10 10 10 10 10 10 10 10 10 10 10 10	F	76.7 145.8 199.9	60.00 Hency Hz) 808 3611 9856 4273 4319	Re (dl 4: 5: 6: 4: 5: 6: 4: 5: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6:	3.24 1.07 2.08	Factor (dB/m) -25.96 -21.86 -24.11	Level (dBuV/m) 17.28 29.21 37.97	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -22.72 -14.29 -5.53	Detector peak peak peak

^{*:}Maximum data x:Over limit !:over margin

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

emper	ature:	24.3°	С		R	elative Hur	nidity:	45%	
est Vo	Itage:	AC 1	20V 60	Hz	SI V	6.11	(187)		MIT:
nt. Po	l.	Vertic	cal	11(1)		av			
est Mo	de:	Mode	2	1			J BRI	1.4	
Remark	κ:	Only	worse	case	is reported.		13		
80.0 di	BuV/m								
70									
60							(RF)FCC 15	C 3M Radiation	
50							Margin -6 dl	B	
40									
30						*		\$ *	\$ *
					- 6				
			1 *		~^*		*	. Janyan Made	Whyl My My pea
20			Å	الاس		Mar we she in which	*	harand legal properties of the	(Kyk. 4) My pea
	da partina	hothophthical bully pro-	You North	djooksalderaalde ^{agd}		M Typeshirity separativities	Angeld Luthy Hyphonyland Land	house leptor hade	(Anti-Alphy) pea
20	Angus Maranas A	hetaelith William	Name of the second	djogled bloody of the		M. Synadhad Anarol Walifer	* Angelilly strategy to the second s	horosaid leggly-producted	Mark An Marie
20	/A The plant of the party	heterophites (Mayor	North North	dynkallytady ta ^{lk}		M The market of free contradition	* Angelility of the leaves of the second of	house lay have been	(MAN) pea
20	ha at hand	60.00	nya Nashi	ityakalistaalis sila				ing a land	1000.00
20 10 10 -10 -20	/pris, plantings	60.00	npd North	dyd ddiadd d	(MHz)	300		horas de la primita de la composition della comp	
20 10 10 -10 -20		iency	Read	ding	(MHz)	300 Level	.00	Margin	
20 10 0 -10 -20 30.000				ding	(MHz)	300 Level	.00	Margin	1000.00
20 10 0 -10 -20 30.000	(MI	iency	Read	ding uV)	(MHz)	300 Level	.00	Margin	1000.00
20 10 0 -10 -20 30.000	(MI 76.7	uency Hz)	Read (dBt	ding uV) 82	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.00
20 10 0 -10 -20 30.000	76.7 150.0	uency Hz) '808	Read (dBt	ding uV) 82 29	Factor (dB/m) -25.96	Level (dBuV/m) 21.86	Limit (dBuV/m) 40.00	Margin (dB) -18.14	Detector peak
20 10 0 -10 -20 30.000 No.	76.7 150.0	uency Hz) 7808 0108 9856	Read (dBu 47.49.	ding uV) 82 29 35	Factor (dB/m) -25.96 -21.74	Level (dBuV/m) 21.86 27.55	Limit (dBuV/m) 40.00 43.50	Margin (dB) -18.14 -15.95	Detector peak peak
20 10 0 -10 -20 30.000 No.	76.7 150.0 199.9	uency Hz) 7808 0108 9856 4319	Read (dBu 47.49.5	ding uV) 82 29 35 24	Factor (dB/m) -25.96 -21.74 -24.11	Level (dBuV/m) 21.86 27.55 33.24	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -18.14 -15.95 -10.26	Detector peak peak peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 38 of 97

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	THU .

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.358	38.13	16.08	54.21	68.30	-14.09	peak
2 *	10360.417	27.76	16.08	43.84	54.00	-10.16	AVG

Remark:

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		MULL
Ant. Pol.	Vertical		W. W.
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.258	27.13	16.08	43.21	54.00	-10.79	AVG
2	10360.410	40.73	16.08	56.81	68.30	-11.49	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 39 of 97

į,	Temperature:	26℃	Relative Humidity:	55%
1	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11a Mode 5220M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10440.284	38.32	16.26	54.58	68.30	-13.72	peak
2 *	10440.358	27.42	16.26	43.68	54.00	-10.32	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		The state of the s
Ant. Pol.	Vertical		The same
Test Mode:	TX 802.11a Mode 5220N	1Hz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10440.258	39.95	16.26	56.21	68.30	-12.09	peak
2 *	10440.368	27.02	16.26	43.28	54.00	-10.72	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 97

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	anily a	allin
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11a Mode 5240N	MHz (U-NII-1)	NU STATE OF THE PARTY OF THE PA

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.170	37.52	16.32	53.84	68.30	-14.46	peak
2 *	10480.384	24.76	16.32	41.08	54.00	-12.92	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	N. W.
Test Mode:	TX 802.11a Mode 5240N	1Hz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.147	27.22	16.32	43.54	54.00	-10.46	AVG
2	10480.241	38.49	16.32	54.81	68.30	-13.49	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anil)	Milia
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	e 5180MHz (U-NII-1)	W. Taranta

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10359.784	14.86	26.08	40.94	54.00	-13.06	AVG
2	10360.435	26.29	26.08	52.37	68.30	-15.93	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz		170		
Ant. Pol.	Vertical		0		
Test Mode:	Dde: TX 802.11n(HT20) Mode 5180MHz (U-NII-1)				

I	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	10359.765	26.33	26.08	52.41	68.30	-15.89	peak
	2 *	10360.293	14.94	26.08	41.02	54.00	-12.98	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 42 of 97

Temperature:	26℃	Relative Humidity:	54%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal							
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5220MHz (U-NII-1)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10439.978	24.41	26.26	50.67	68.30	-17.63	peak
2 *	10440.432	15.05	26.26	41.31	54.00	-12.69	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	TX 802.11n(HT20) Mode	5220MHz (U-NII-1)	OV.				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10440.052	26.98	26.26	53.24	68.30	-15.06	peak
2 *	10440.309	15.05	26.26	41.31	54.00	-12.69	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 43 of 97

	Temperature:	26℃	Relative Humidity:	54%					
V	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
	Ant. Pol.	Horizontal							
	Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	W					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.906	22.55	26.32	48.87	68.30	-19.43	peak
2 *	10479.911	15.07	26.32	41.39	54.00	-12.61	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		The same				
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.087	15.11	26.32	41.43	54.00	-12.57	AVG
2	10480.337	23.79	26.32	50.11	68.30	-18.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 97

	Temperature:	26℃	Relative Humidity:	54%				
V	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
	Ant. Pol.	Horizontal						
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5180MHz (U-NII-1)	W				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	ı
1 *	10360.144	14.92	26.08	41.00	54.00	-13.00	AVG	
2	10360.386	23.20	26.08	49.28	68.30	-19.02	peak	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz		M C			
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mo	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.138	14.86	26.08	40.94	54.00	-13.06	AVG
2	10360.301	25.94	26.08	52.02	68.30	-16.28	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 97

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5220MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10439.834	15.08	26.26	41.34	54.00	-12.66	AVG
2	10439.888	21.59	26.26	47.85	68.30	-20.45	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		U D
Ant. Pol.	Vertical		WILD T
Test Mode:	TX 802.11ac(VHT20) Mo	de 5220MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10439.814	24.02	26.26	50.28	68.30	-18.02	peak
2 *	10440.083	15.08	26.26	41.34	54.00	-12.66	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	a w	
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5240MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.663	21.20	26.32	47.52	68.30	-20.78	peak
2 *	10479.940	15.11	26.32	41.43	54.00	-12.57	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.729	23.41	26.32	49.73	68.30	-18.57	peak
2 *	10479.729	15.10	26.32	41.42	54.00	-12.58	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	an B	Unna
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)	NU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10379.941	24.51	26.13	50.64	68.30	-17.66	peak
2 *	10380.357	14.96	26.13	41.09	54.00	-12.91	AVG

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Vertical	THU .	0.0			
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.255	14.93	26.13	41.06	54.00	-12.94	AVG
2	10380.286	22.75	26.13	48.88	68.30	-19.42	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		Million
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10459.852	15.04	26.29	41.33	54.00	-12.67	AVG
2	10460.073	22.51	26.29	48.80	68.30	-19.50	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		Ja U
Ant. Pol.	Vertical		WUD?
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10460.058	21.76	26.29	48.05	68.30	-20.25	peak
2 *	10460.245	15.09	26.29	41.38	54.00	-12.62	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 97

e	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal	1	
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10379.456	16.85	26.12	42.97	54.00	-11.03	AVG
2	10380.043	25.97	26.13	52.10	68.30	-16.20	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		A U
Ant. Pol.	Vertical		WW P
Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10379.564	16.81	26.13	42.94	54.00	-11.06	AVG
2	10380.686	25.06	26.14	51.20	68.30	-17.10	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 97

į,	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.532	25.01	26.29	51.30	68.30	-17.00	peak
2 *	10459.790	16.95	26.29	43.24	54.00	-10.76	AVG

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical		C		
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10460.097	14.93	26.29	41.22	54.00	-12.78	AVG
2	10460.373	25.03	26.29	51.32	68.30	-16.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 97

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Horizontal	11:33	W. A.		
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10419.522	24.97	26.23	51.20	68.30	-17.10	peak
2 *	10419.570	16.89	26.23	43.12	54.00	-10.88	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	COURT -	MAN		
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10419.138	16.93	26.23	43.16	54.00	-10.84	AVG
2	10420.472	24.98	26.23	51.21	68.30	-17.09	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 52 of 97

Temperature:	26 ℃	Relative Humidity:	54%	
Test Voltage:	AC 120V/60Hz			
Ant. Pol.	Horizontal	11:33	W. A.	
Test Mode:	TX 802.11ax(VHT80) Mode 5210MHz (U-NII-1)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10420.295	23.05	26.23	49.28	68.30	-19.02	peak
2 *	10420.362	14.98	26.23	41.21	54.00	-12.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical		MU		
Test Mode:	TX 802.11ax(VHT80) Mode 5210MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10420.154	23.40	26.23	49.63	68.30	-18.67	peak
2 *	10420.484	14.91	26.23	41.14	54.00	-12.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 53 of 97

5260MHz-5320MHz(U-NII-2A)

Tamananatura	2000	Dolotivo Urmiditur	FF0/			
Temperature:	26℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11a Mode 5260	MHz (U-NII-2A)	W.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10520.147	29.92	16.36	46.28	54.00	-7.72	AVG
2	10520.237	40.82	16.36	57.18	68.30	-11.12	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	WILLIAM -				
Test Mode:	TX 802.11a Mode 5260MHz (U-NII-2A)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10520.208	25.82	16.36	42.18	54.00	-11.82	AVG
2	10520.357	37.59	16.36	53.95	68.30	-14.35	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 54 of 97

Temperature:	26℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11a Mode 5300N	TX 802.11a Mode 5300MHz (U-NII-2A)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10600.288	38.49	16.32	54.81	68.30	-13.49	peak
2 *	10600.374	27.49	16.32	43.81	54.00	-10.19	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26 ℃	Relative Humidity:	55%			
AC 120V/60Hz					
Vertical		TIVI			
TX 802.11a Mode 5300MHz (U-NII-2A)					
	AC 120V/60Hz Vertical	AC 120V/60Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10600.106	27.49	16.32	43.81	54.00	-10.19	AVG
2	10600.238	39.96	16.32	56.28	68.30	-12.02	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 55 of 97

í	Temperature:	26℃	Relative Humidity:	55%		
ľ	Test Voltage: AC 120V/60Hz					
	Ant. Pol.	Horizontal				
f	Test Mode:	TX 802.11a Mode 5320M	1Hz (U-NII-2A)	NU S		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10640.187	26.96	16.54	43.50	54.00	-10.50	AVG
2	10640.250	39.73	16.55	56.28	68.30	-12.02	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26 ℃	Relative Humidity:	55%			
AC 120V/60Hz					
Vertical	WILLIAM >	THU			
TX 802.11a Mode 5320MHz (U-NII-2A)					
	AC 120V/60Hz Vertical	AC 120V/60Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10640.147	38.94	16.54	55.48	68.30	-12.82	peak
2 *	10640.358	26.73	16.55	43.28	54.00	-10.72	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 56 of 97

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5260MHz (U-NII-2A)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10519.645	23.89	26.36	50.25	68.30	-18.05	peak
2 *	10519.656	14.99	26.36	41.35	54.00	-12.65	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	WILLIAM -			
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10519.982	14.93	26.36	41.29	54.00	-12.71	AVG
2	10520.024	27.69	26.36	54.05	68.30	-14.25	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 57 of 97

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal	1	
	Test Mode:	TX 802.11n(HT20) Mode	5300MHz (U-NII-2A)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10599.915	14.54	26.32	40.86	54.00	-13.14	AVG
2	10600.243	23.49	26.32	49.81	68.30	-18.49	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM >	MAG
Test Mode:	TX 802.11n(HT20) Mode	5300MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10599.759	14.52	26.32	40.84	54.00	-13.16	AVG
2	10599.808	25.23	26.32	51.55	68.30	-16.75	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 58 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10639.747	14.37	26.54	40.91	54.00	-13.09	AVG
2	10639.885	22.75	26.54	49.29	68.30	-19.01	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%	
Test Voltage:	AC 120V/60Hz			
Ant. Pol.	Vertical			
Test Mode: TX 802.11n(HT20) Mode 5320MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10640.150	14.40	26.54	40.94	54.00	-13.06	AVG
2	10640.373	21.93	26.55	48.48	68.30	-19.82	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 59 of 97

	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal		
Test Mode: TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10519.975	24.96	26.36	51.32	68.30	-16.98	peak
2 *	10520.191	15.00	26.36	41.36	54.00	-12.64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	Relative Humidity:	54%			
Test Voltage: AC 120V/60Hz					
Ant. Pol.	Vertical		MAG		
Test Mode:	Test Mode: TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10519.617	23.06	26.36	49.42	68.30	-18.88	peak
2 *	10519.915	15.01	26.36	41.37	54.00	-12.63	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 60 of 97

ĺ	Temperature:	26℃	Relative Humidity:	54%		
7	Test Voltage:	AC 120V/60Hz				
	Ant. Pol.	Horizontal				
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5300MHz (U-NII-2A			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10600.284	22.09	26.32	48.41	68.30	-19.89	peak
2 *	10600.312	14.56	26.32	40.88	54.00	-13.12	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mc	de 5300MHz (U-NII-2A	1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10600.012	14.54	26.32	40.86	54.00	-13.14	AVG
2	10600.427	22.15	26.32	48.47	68.30	-19.83	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 61 of 97

į,	Temperature:	26℃	Relative Humidity:	54%
1	Test Voltage:	AC 120V/60Hz		W. W.
	Ant. Pol.	Horizontal	1	
	Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5320MHz (U-NII-2/	4)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10639.732	14.37	26.54	40.91	54.00	-13.09	AVG
2	10639.874	24.52	26.54	51.06	68.30	-17.24	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	mperature: 26°C Relative Humidity:					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Vertical	TUL				
Test Mode:	TX 802.11ac(VHT20) Mc	de 5320MHz (U-NII-2A				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10640.296	14.36	26.55	40.91	54.00	-13.09	AVG
2	10640.450	23.48	26.55	50.03	68.30	-18.27	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 62 of 97

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal		W			
Test Mode:	: TX 802.11n(HT40) Mode 5270MHz (U-NII-2A)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10540.065	22.05	26.34	48.39	68.30	-19.91	peak
2 *	10540.373	14.85	26.34	41.19	54.00	-12.81	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode: TX 802.11n(HT40) Mode 5270MHz (U-NII-2A)							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10539.718	22.00	26.34	48.34	68.30	-19.96	peak
2 *	10540.165	14.89	26.34	41.23	54.00	-12.77	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 63 of 97

	Temperature:	26℃	Relative Humidity:	54%				
V	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
	Ant. Pol.	Horizontal						
	Test Mode:	TX 802.11n(HT40) Mode	5310MHz (U-NII-2A)	W				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10620.165	22.42	26.44	48.86	68.30	-19.44	peak
2 *	10620.219	14.56	26.44	41.00	54.00	-13.00	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	William .	N. C.				
Test Mode: TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10619.970	14.55	26.44	40.99	54.00	-13.01	AVG
2	10619.977	22.12	26.44	48.56	68.30	-19.74	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 64 of 97

e	Temperature:	26℃	Relative Humidity:	54%				
	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
	Ant. Pol.	Horizontal	7					
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5270MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10540.026	16.72	26.34	43.06	54.00	-10.94	AVG
2	10540.604	25.02	26.34	51.36	68.30	-16.94	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%	
Test Voltage:	AC 120V/60Hz		TIVU	
Ant. Pol.	Vertical			
Test Mode: TX 802.11ac(VHT40) Mode 5270MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10540.632	25.02	26.34	51.36	68.30	-16.94	peak
2 *	10540.912	16.75	26.34	43.09	54.00	-10.91	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 65 of 97

	Temperature:	26℃	Relative Humidity:	54%
1	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal		
P	Test Mode:	TX 802.11ac(VHT40) Mo	de 5310MHz (U-NII-2A)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10619.498	16.42	26.44	42.86	54.00	-11.14	AVG
2	10620.626	25.71	26.44	52.15	68.30	-16.15	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		N. C.				
Test Mode:	TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10619.178	16.40	26.44	42.84	54.00	-11.16	AVG
2	10619.314	23.03	26.44	49.47	68.30	-18.83	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 66 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		YOU
Ant. Pol.	Horizontal		U
Test Mode:	TX 802.11ac(VHT80) M	ode 5290MHz (U-NII-2A	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10579.426	16.55	26.32	42.87	54.00	-11.13	AVG
2	10580.888	24.24	26.32	50.56	68.30	-17.74	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz		THU		
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A)				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10580.378	16.59	26.32	42.91	54.00	-11.09	AVG
2	10580.390	22.08	26.32	48.40	68.30	-19.90	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 67 of 97

5500MHz-5720MHz(U-NII-2C)

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	an D	
Ant. Pol.	Horizontal	7	NO.
Test Mode:	TX 802.11a Mode 5500N	MHz (U-NII-2C)	NO.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.105	38.64	17.64	56.28	68.30	-12.02	peak
2 *	11000.369	25.58	17.64	43.22	54.00	-10.78	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz	COUNTY OF	MUL		
Ant. Pol.	Vertical	THE REAL PROPERTY.			
Test Mode:	TX 802.11a Mode 5500MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.147	25.88	17.64	43.52	54.00	-10.48	AVG
2	11000.325	38.74	17.64	56.38	68.30	-11.92	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 68 of 97

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	MUDIA	The same
Ant. Pol.	Horizontal	and the	anne
Test Mode:	TX 802.11a Mode 5580N	/IHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11160.147	23.97	17.31	41.28	54.00	-12.72	AVG
2	11160.258	37.07	17.31	54.38	68.30	-13.92	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode: TX 802.11a Mode 5580MHz (U-NII-2C)							

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	I	Margin (dB)	Detector
1 *	11160.258	24.95	17.31	42.26	54.00	-11.74	AVG
2	11160.325	37.58	17.31	54.89	68.30	-13.41	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 69 of 97

	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		W. W.
	Ant. Pol.	Horizontal	100	
f	Test Mode:	TX 802.11a Mode 5700M	IHz (U-NII-2C)	NO.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11399.522	25.13	28.41	53.54	68.30	-14.76	peak
2 *	11399.949	14.96	28.41	43.37	54.00	-10.63	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		N. C.				
Test Mode:	TX 802.11a Mode 5700MHz (U-NII-2C)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11400.252	23.12	28.41	51.53	68.30	-16.77	peak
2 *	11400.447	14.92	28.41	43.33	54.00	-10.67	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 70 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	an B	W. W.
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT20) Mode	5500MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.185	14.52	27.64	42.16	54.00	-11.84	AVG
2	11000.337	23.08	27.64	50.72	68.30	-17.58	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	WILLIAM STATE			
Test Mode:	TX 802.11 n(HT20) Mode 5500MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.048	14.47	27.64	42.11	54.00	-11.89	AVG
2	11000.266	23.67	27.64	51.31	68.30	-16.99	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 71 of 97

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz	anily a	Ullive			
Ant. Pol.	Horizontal	7				
Test Mode:	TX 802.11n(HT20) Mode 5580MHz (U-NII-2C)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10159.716	25.00	25.65	50.65	68.30	-17.65	peak
2 *	10159.978	14.58	25.66	40.24	54.00	-13.76	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical				
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10159.944	14.57	25.66	40.23	54.00	-13.77	AVG
2	10160.298	22.87	25.66	48.53	68.30	-19.77	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 72 of 97

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz		Million				
Ant. Pol.	Horizontal	1					
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5700MHz (U-NII-2C)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.275	14.94	28.41	43.35	54.00	-10.65	AVG
2	11400.430	22.89	28.41	51.30	68.30	-17.00	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11400.168	14.91	28.41	43.32	54.00	-10.68	AVG
2	11400.194	21.93	28.41	50.34	68.30	-17.96	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 73 of 97

e	Temperature:	26℃	Relative Humidity:	55%
	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5500MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.258	24.74	17.64	42.38	54.00	-11.62	AVG
2	11000.361	38.64	17.64	56.28	68.30	-12.02	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	emperature: 26°C Relative Humidity:		55%					
Test Voltage:	AC 120V/60Hz	C 120V/60Hz						
Ant. Pol.	Vertical		N. C.					
Test Mode: TX 802.11 ac(VHT20) Mode 5500MHz (U-NII-2C)								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.235	38.57	17.64	56.21	68.30	-12.09	peak
2 *	11000.368	26.18	17.64	43.82	54.00	-10.18	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 74 of 97

e	Temperature:	26℃	Relative Humidity:	55%
	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5580MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11160.108	25.97	17.31	43.28	54.00	-10.72	AVG
2	11160.338	39.07	17.31	56.38	68.30	-11.92	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	emperature: 26°C Relative Humidity:		55%					
Test Voltage:	AC 120V/60Hz	C 120V/60Hz						
Ant. Pol.	Vertical		N. C.					
Test Mode: TX 802.11 ac(VHT20) Mode 5580MHz (U-NII-2C)								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11160.247	25.90	17.31	43.21	54.00	-10.79	AVG
2	11160.340	39.50	17.31	56.81	68.30	-11.49	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 75 of 97

Temperature:	26℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz	MUDIA				
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11 ac(VHT20) Mo	TX 802.11 ac(VHT20) Mode 5700MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.109	24.24	18.41	42.65	54.00	-11.35	AVG
2	11400.354	38.43	18.41	56.84	68.30	-11.46	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	mperature: 26°C Relative Humidity:		55%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Vertical							
Test Mode: TX 802.11 ac(VHT20) Mode 5700MHz (U-NII-2C)								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.144	25.20	18.41	43.61	54.00	-10.39	AVG
2	11400.217	38.40	18.41	56.81	68.30	-11.49	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 76 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anily a	Ullive
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	NU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11020.187	22.70	27.55	50.25	68.30	-18.05	peak
2 *	11020.256	14.72	27.55	42.27	54.00	-11.73	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11019.931	22.82	27.56	50.38	68.30	-17.92	peak
2 *	11020.009	14.78	27.56	42.34	54.00	-11.66	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 77 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	MUDE	The same
Ant. Pol.	Horizontal	ann's s	ann.
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11099.887	15.01	27.23	42.24	54.00	-11.76	AVG
2	11100.114	22.80	27.23	50.03	68.30	-18.27	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11100.232	24.24	27.23	51.47	68.30	-16.83	peak
2 *	11100.314	15.03	27.23	42.26	54.00	-11.74	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 78 of 97

į,	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5670MHz (U-NII-2C)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11299.853	23.78	28.30	52.08	68.30	-16.22	peak
2 *	11299.984	14.52	28.30	42.82	54.00	-11.18	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	N. C.
Test Mode:	TX 802.11n(HT40) Mode	5670MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11300.055	22.25	28.30	50.55	68.30	-17.75	peak
2 *	11300.348	14.51	28.30	42.81	54.00	-11.19	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 79 of 97

e	Temperature:	26℃	Relative Humidity:	54%			
V	Test Voltage:	AC 120V/60Hz		William .			
	Ant. Pol.	Horizontal	7				
	Test Mode:	TX 802.11ac(VHT40) Mo	(802.11ac(VHT40) Mode 5510MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11019.798	24.04	27.56	51.60	68.30	-16.70	peak
2 *	11020.212	16.62	27.55	44.17	54.00	-9.83	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	WILLIAM STATE					
Test Mode:	TX 802.11ac(VHT40) Mo	TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C)					

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	11019.766	22.96	27.56	50.52	68.30	-17.78	peak
2 *	11020.036	13.74	27.56	41.30	54.00	-12.70	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 80 of 97

MINA LE LOS			
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	an:D	Unna
Ant. Pol.	Horizontal	7	TO THE REAL PROPERTY.
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5550MHz (U-NII-20	()

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11099.546	16.88	27.23	44.11	54.00	-9.89	AVG
2	11100.100	23.36	27.23	50.59	68.30	-17.71	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5550MHz (U-NII-20	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11100.370	16.86	27.23	44.09	54.00	-9.91	AVG
2	11100.830	23.77	27.23	51.00	68.30	-17.30	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 81 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anily a	W. Collins
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5670MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11339.546	23.35	28.35	51.70	68.30	-16.60	peak
2 *	11340.196	16.48	28.35	44.83	54.00	-9.17	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical		N. C.			
Test Mode:	TX 802.11ac(VHT40) Mc	X 802.11ac(VHT40) Mode 5670MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	11339.812	16.48	28.35	44.83	54.00	-9.17	AVG
2	11340.060	22.64	28.35	50.99	68.30	-17.31	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 82 of 97

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	11:33	W.			
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5530MHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11059.544	16.75	27.39	44.14	54.00	-9.86	AVG
2	11059.964	22.50	27.39	49.89	68.30	-18.41	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		WILLIAM TO
Ant. Pol.	Vertical	The state of the s	and it
Test Mode:	TX 802.11ac(VHT80) Mo	de 5530MHz (U-NII-20	<u>()</u>

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11059.906	16.78	27.39	44.17	54.00	-9.83	AVG
2	11060.238	24.98	27.39	52.37	68.30	-15.93	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 83 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	anis)	Ullive
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5610MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11220.326	16.61	27.57	44.18	54.00	-9.82	AVG
2	11220.924	23.79	27.57	51.36	68.30	-16.94	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	WILLIAM STATE					
Test Mode:	TX 802.11ac(VHT80) Mc	TX 802.11ac(VHT80) Mode 5610MHz (U-NII-2C)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11220.154	22.48	27.57	50.05	68.30	-18.25	peak
2 *	11220.636	13.48	27.57	41.05	54.00	-12.95	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 84 of 97

5745MHz-5825MHz(U-NII-3)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	an D	
Ant. Pol.	Horizontal	7	NO.
Test Mode:	TX 802.11a Mode 5745	MHz (U-NII-3)	NO.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.724	25.52	28.30	53.82	68.30	-14.48	peak
2 *	11490.427	15.40	28.30	43.70	54.00	-10.30	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	N. C.
Test Mode:	TX 802.11a Mode 5745M	IHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.086	23.70	28.30	52.00	68.30	-16.30	peak
2 *	11490.170	15.42	28.30	43.72	54.00	-10.28	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 85 of 97

WILLIAM TO COMPANY							
Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11a Mode 5785M	X 802.11a Mode 5785MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.924	22.46	27.96	50.42	68.30	-17.88	peak
2 *	11570.263	15.61	27.96	43.57	54.00	-10.43	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5785M	1Hz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.981	22.63	27.96	50.59	68.30	-17.71	peak
2 *	11570.205	15.62	27.96	43.58	54.00	-10.42	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 86 of 97

	Temperature:	26℃	Relative Humidity:	54%
1	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal	7	
P	Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11649.752	15.45	27.83	43.28	54.00	-10.72	AVG
2	11649.973	23.21	27.83	51.04	68.30	-17.26	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26 ℃	Relative Humidity:	54%		
AC 120V/60Hz				
Vertical				
TX 802.11a Mode 5825MHz (U-NII-3)				
	AC 120V/60Hz Vertical	AC 120V/60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11649.886	15.38	27.83	43.21	54.00	-10.79	AVG
2	11650.180	23.02	27.82	50.84	68.30	-17.46	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 87 of 97

WALL TO BE AND THE SECOND PARTY OF THE SECOND							
Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal	1					
Test Mode:	TX 802.11n(HT20) Mode	X 802.11n(HT20) Mode 5745MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.846	22.66	28.30	50.96	68.30	-17.34	peak
2 *	11490.204	15.48	28.30	43.78	54.00	-10.22	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. W.	
Ant. Pol.	Vertical		D O
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	WU1972

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.510	15.45	28.31	43.76	54.00	-10.24	AVG
2	11489.598	24.20	28.31	52.51	68.30	-15.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 88 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.682	23.64	27.96	51.60	68.30	-16.70	peak
2 *	11569.891	15.58	27.96	43.54	54.00	-10.46	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60Hz		MUL			
Ant. Pol.	Vertical					
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11569.942	15.51	27.96	43.47	54.00	-10.53	AVG
2	11569.966	24.20	27.96	52.16	68.30	-16.14	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 89 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	HULL	W. College
Ant. Pol.	Horizontal		A PULL
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11649.624	23.59	27.83	51.42	68.30	-16.88	peak
2 *	11649.775	15.38	27.83	43.21	54.00	-10.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Vertical	China Car	100					
Test Mode:	t Mode: TX 802.11n(HT20) Mode 5825MHz (U-NII-3)							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11649.903	15.42	27.83	43.25	54.00	-10.75	AVG
2	11649.970	23.28	27.83	51.11	68.30	-17.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 90 of 97

Temperature:	26℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz				
Ant. Pol.	Horizontal	7				
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5745MHz (U-NII-3)	W. San			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	11490.144	25.51	18.30	43.81	54.00	-10.19	AVG
2	11490.320	37.98	18.30	56.28	68.30	-12.02	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	TX 802.11ac(VHT20)	X 802.11ac(VHT20) Mode 5745MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.328	35.24	18.30	53.54	68.30	-14.76	peak
2 *	11490.421	22.78	18.30	41.08	54.00	-12.92	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 91 of 97

	Temperature:	26℃	Relative Humidity:	55%
N	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal		
P	Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.166	25.25	17.96	43.21	54.00	-10.79	AVG
2	11570.347	38.42	17.96	56.38	68.30	-11.92	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	C Relative Humidity:						
Test Voltage:	AC 120V/60Hz	C 120V/60Hz						
Ant. Pol.	Vertical	WILLIAM STATE	110					
Test Mode:	TX 802.11ac(VHT20) Mc	de 5785MHz (U-NII-3)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.140	25.25	17.96	43.21	54.00	-10.79	AVG
2	11570.327	38.32	17.96	56.28	68.30	-12.02	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 92 of 97

Temperature:	26℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	an B	Unnig
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5825MHz (U-NII-3)	NU P

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.108	38.39	17.82	56.21	68.30	-12.09	peak
2 *	11650.241	25.46	17.82	43.28	54.00	-10.72	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mc	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.247	38.82	17.82	56.14	68.30	-12.06	peak
2 *	11650.321	25.35	17.82	43.17	54.00	-10.73	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 93 of 97

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	W

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	11510.184	23.98	28.24	52.22	68.30	-16.08	peak
2 *	11510.325	15.53	28.24	43.77	54.00	-10.23	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11509.716	24.59	28.24	52.83	68.30	-15.47	peak
2 *	11509.958	15.56	28.24	43.80	54.00	-10.20	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 94 of 97

į,	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	I
1 *	11589.631	15.58	27.87	43.45	54.00	-10.55	AVG	
2	11589.792	23.09	27.87	50.96	68.30	-17.34	peak	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. C.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	WURP I

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.876	15.58	27.87	43.45	54.00	-10.55	AVG
2	11590.208	24.26	27.87	52.13	68.30	-16.17	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 95 of 97

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	C 120V/60Hz	
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5755MHz (U-NII-3)	NU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.302	24.20	28.24	52.44	68.30	-15.86	peak
2 *	11510.614	15.28	28.24	43.52	54.00	-10.48	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	Voltage: AC 120V/60Hz				
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)			

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	ı
1	11510.260	24.46	28.24	52.70	68.30	-15.60	peak	
2 *	11510.622	17.37	28.24	45.61	54.00	-8.39	AVG	

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 96 of 97

e	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	AC 120V/60Hz		William .
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5795MHz (U-NII-3)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.316	23.21	28.24	51.45	68.30	-16.85	peak
2 *	11510.618	13.11	28.24	41.35	54.00	-12.65	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	THU	
Ant. Pol.	Vertical		The state of
Test Mode:	TX 802.11ac(VHT40) Mo	de 5795MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.044	17.38	28.24	45.62	54.00	-8.38	AVG
2	11510.522	24.54	28.24	52.78	68.30	-15.52	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 97 of 97

ALVA I RADIO			
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mc	de 5775MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11550.402	17.47	28.05	45.52	54.00	-8.48	AVG
2	11550.558	24.26	28.05	52.31	68.30	-15.99	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5775MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11550.278	17.43	28.05	45.48	54.00	-8.52	AVG
2	11550.326	24.38	28.05	52.43	68.30	-15.87	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.