

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202308-0079-22 Page: 1 of 71

RF Test Report

FCC ID: 2AMM6-8822CSE3AA

Report No.	2	TBR-C-202308-0079-22				
Applicant	:	Earda Technologies Co., Ltd				
Equipment Under Te	Equipment Under Test (EUT)					
EUT Name	me : WiFi & BT combo module					
Model No.		EWN-8822CSE3AA				
Series Model No.						
Brand Name	:	EARDATEK				
Sample ID	÷	HC-C-202308-0079-01-03-1#& HC-C-202308-0079-01-03-2#				
Receipt Date	:	2023-08-22				
Test Date	:	2023-08-22 to 2023-09-06				
Issue Date	:	2023-09-06				
Standards	:	FCC Part 15 Subpart C 15.247				
Test Method	:	ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01				
Conclusions	in	PASS				
		In the configuration tested, the EUT complied with the standards specified above.				
Witness Engineer		: Jude W Wade Lv Wade Lv Wade Lv Ivan Sv Hs * Ray Lat				
Engineer Supervisor		: WAN SU TOBU				
Engineer Manager		: fuy toi. <u>Ray Lai</u>				

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	10
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	14
	5.4 Deviation From Test Standard	15
	5.5 EUT Operating Mode	15
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	RESTRICTED BANDS AND BAND EDGE REQUIREMENT	
	7.1 Test Standard and Limit	
	7.2 Test Setup	20
	7.3 Test Procedure	21
	7.4 Deviation From Test Standard	

	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	
9.	RF OUTPUT POWER	25
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	
	11.1 Test Standard and Limit	
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	
	11.4 Test Data	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT BUNWANTED EMISSIONS DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	

 Report No.: TBR-C-202308-0079-22

 Page:
 4 of 71

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202308-0079-22	Rev.01	Initial issue of report	2023-09-06
Con Con Con	<u> </u>		The solution
a Contract			A COD
	MBY	1000 00 00	THE W
Land Star	200	and the second	
	TBU L	TODO TO	
LE TOTAL	603		and a
and line		TOPP TOPP	E ST
A BU	moB J	The state	
A LE AND		Out of the	

1. General Information about EUT

1.1 Client Information

Applicant		Earda Technologies Co., Ltd		
Address Block A, LianFeng Creative Industry Park, 2 JiSheng Road., HuangGe Town, NanSha District, Guangzhou, PRC.				
Manufacturer		Earda Technologies Co., Ltd		
Address	5	Block A, LianFeng Creative Industry Park, 2 JiSheng Road., HuangGe Town, NanSha District, Guangzhou, PRC.		

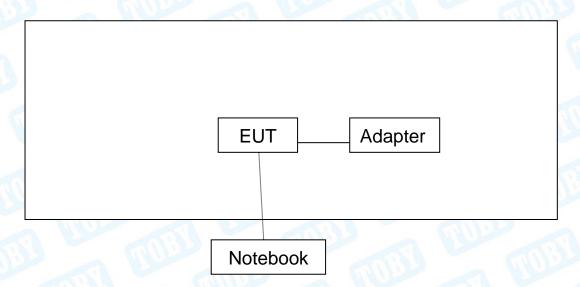
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	WiFi & BT combo module		
Models No.		EWN-8822CSE3AA		
Model Different	:			
TOBI		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz-2452MHz	
Product		Number of Channel:	802.11b/g/n(HT20): 11 channels 802.11n(HT40): 7 channels	
Description		Antenna Gain:	5dBi PCB Antenna 1 5dBi PCB Antenna 2	
		Modulation Type:	802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM)	
Power Rating	2	Input: DC 3.3V		
Software Version	-	v5.15.0.1-36		
Hardware Version	:	A1.0		

Remark:

(1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.



(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20); CH 03~CH 09 for 802.11n(HT40)

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information					
Name	Model	S/N	Manufacturer	Used "√"	
Notebook	Inspiron 5493		DELL	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test				
Final Test Mode	Description			
Mode 1	TX b Mode Channel 01			
For Radiate	For Radiated and RF Conducted Test			
Final Test Mode	Description			
Mode 2	TX Mode b Mode Channel 01/06/11			
Mode 3	TX Mode g Mode Channel 01/06/11			
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11			
Mode 5 TX Mode n(HT40) Mode Channel 03/06/09				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

- 802.11b Mode: CCK 802.11g Mode: OFDM 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test Sof	tware: MPTool			
Test Mode: Continuously transmitting					
Mada	Data Data	Champel	Parameters		
Mode	Data Rate	Channel	Ant.1	Ant.2	
600	CCK/ 1Mbps	01	DEF	DEF	
802.11b	CCK/ 1Mbps	06	DEF	DEF	
	CCK/ 1Mbps	11	DEF	DEF	
TUP .	OFDM/ 6Mbps	01	DEF	DEF	
802.11g	OFDM/ 6Mbps	06	DEF	DEF	
	OFDM/ 6Mbps	11	DEF	DEF	
Nu la	MCS 0	01	73	75	
802.11n(HT20)	MCS 0	06	73	75	
COD .	MCS 0	11	73	75	
	MCS 0	03	72	72	
802.11n(HT40)	MCS 0	06	72	72	
	MCS 0	09	72	72	

Note: 802.11n Support MIMO.

Report No.: TBR-C-202308-0079-22 Page: 9 of 71

Start Testing MAP	E-FUSE	2*2_PG Quit Reset Help	Enable AutoInstall Flash
Testing Item Packets Tx A 86 Band Bandwidth 2.4G 20M Data Rate MCS0 Preamble Long GI Channel 1 X Path Rx Path AB	HW Tx Packet Setting Pattern LDPC Random V STBC Length Count 1000 Type Period Normal V 2000 Mac Address Self Get A8711686D226 Tx Dest Set FFFFFFFFFF FW V	Switch RF path OK Tx Packets 1905 Rx OK 0 Rx CRG32 Error 0 Rx P/M OK PHYOK MACOK PHYOK MACOK PHYOK MACOK PHYOK BYTE WiFi Offset Value	RF RiPath_A
DPK Mode DPD Enab DPK Tracking Start BT test	Radio Table BT+WIFI WIFI Only RSSI CCK OFDM		□ PwrIndexFromEfuse Crystal Calibration Xin/Xout 0x3A ☑ EnableTxPowerLimit Change settings Power by rate file: Defaul ▼

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	Tarkhan			D	
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	HC-C-202308-0079-01-03-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	HC-C-202308-0079-01-03-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.247(a)(2)	6dB Bandwidth	HC-C-202308-0079-01-03-2#	PASS	N/A	
1	99% Occupied bandwidth	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.247(b)(3)	RF Output Power and E.I.R.P	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.247(e)	Power Spectral Density	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.247(d)	Band Edge Measurements	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	HC-C-202308-0079-01-03-2#	PASS	N/A	
FCC 15.247(d)	Emissions in Restricted Bands	HC-C-202308-0079-01-03-2#	PASS	N/A	
	On Time and Duty Cycle	HC-C-202308-0079-01-03-2#	1	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

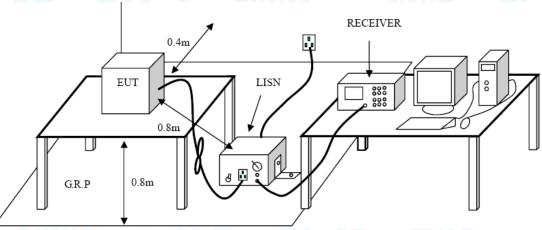
Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
	Compliance			3.0	
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
	Inc	1	CU C	0022	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 06, 2023	Jun. 05, 2024
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024
Radiation Emissi	on Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conduc	ted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024

Report No.: TBR-C-202308-0079-22 Page: 13 of 71

MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 30, 2023	Aug. 29, 2024
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 30, 2023	Aug. 29, 2024
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 30, 2023	Aug. 29, 2024
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 30, 2023	Aug. 29, 2024
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio	Rohde & Schwarz	CMW500	144382	Aug. 30, 2023	Aug. 29, 2024
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024


5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Fraguanay	Maximum RF Line Voltage (dB μ V)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

•The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz			
Frequency (MHz)	Field Strength (μA/m)*	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~30.0	0.08	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

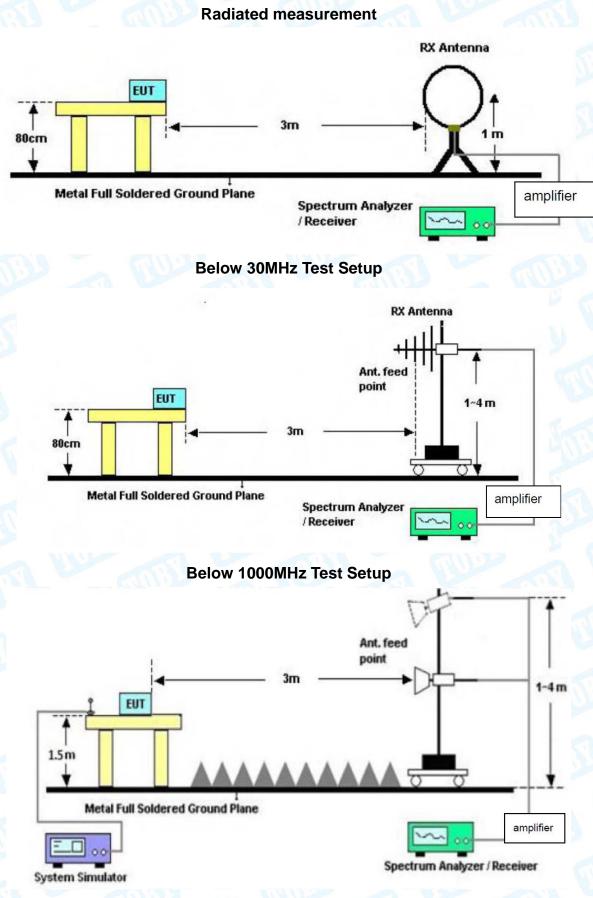
2, *is for RSS Standard, **is for FCC Standard.

General field s	strength limits at frequenc	ies above 30 MHz
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

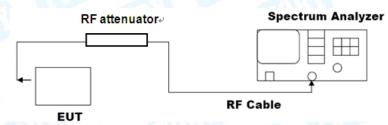
General field strength limits at frequencies Above 1000MHz		
Frequency	Distance of 3m (dBuV/m)	
(MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


Report No.: TBR-C-202308-0079-22 Page: 17 of 71

6.2 Test Setup

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

•Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

• Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.
 Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.
- 6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

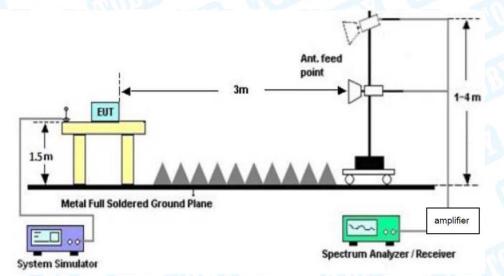
Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

7. Restricted Bands and Band Edge Requirement

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

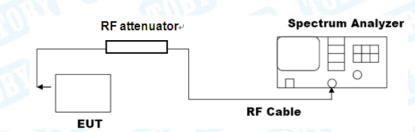
FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit


Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-21.20	-41.20	
2483.5 ~2500	-21.20	-41.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


7.2 Test Setup

Radiated measurement

Conducted measurement

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = \text{EIRP-20} \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

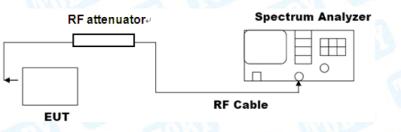
7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

Please refer to the Attachment C inside test report.

8. Bandwidth Test


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
-6dB bandwidth	>=500 KHz	2400~2483.5	
(DTS bandwidth)	>=500 KHZ	2400~2403.3	
99% occupied bandwidth		2400~2483.5	

8.2 Test Setup

8.3 Test Procedure

- ---DTS bandwidth
- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

• The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency.
 The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequence between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

9. RF Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	not exceed 1 W or 30dBm	2400, 2482 5	
E.I.R.P	not exceed 4 W or 36dBm	2400~2483.5	

9.2 Test Setup

EUT	Power Sensor	Power Meter	
	Fower Sensor		

9.3 Test Procedure

• The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

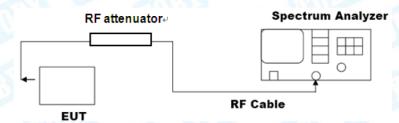
9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

10. Power Spectral Density


- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

10.2 Test Setup

10.3 Test Procedure

• The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The Max. gains of the antenna used for transmitting is 5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type			
	Permanent attached antenna		
2 100	Unique connector antenna		
	Professional installation antenna		

Attachment A-- Conducted Emission Test Data

Cemperature:	22.8 ℃	Relative	Humidity:	50%	C.
Fest Voltage:	AC 120V/60Hz	CAN D	6	MUL	
Ferminal:	Line	UL A		6	672
Fest Mode:	Mode 1			AN V	
Remark:	Only worse case is re	eported.	JPD -	100	
				QP: AVG:	
-20	WWM way WWW WWW was a war a	HANN MU MANA AND	WWWWWWW 	Weine for a state of the forest	AV

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	11.26	11.21	22.47	65.78	-43.31	QP
2		0.1539	-3.34	11.21	7.87	55.78	-47.91	AVG
3		0.2700	7.75	11.08	18.83	61.12	-42.29	QP
4		0.2700	-3.67	11.08	7.41	51.12	-43.71	AVG
5		0.4300	9.92	11.32	21.24	57.25	-36.01	QP
6		0.4300	-3.35	11.32	7.97	47.25	-39.28	AVG
7		2.0420	3.24	10.69	13.93	56.00	-42.07	QP
8		2.0420	-4.06	10.69	6.63	46.00	-39.37	AVG
9		8.3180	17.88	10.22	28.10	60.00	-31.90	QP
10	*	8.3180	11.48	10.22	21.70	50.00	-28.30	AVG
11		17.0980	12.48	10.75	23.23	60.00	-36.77	QP
12		17.0980	8.50	10.75	19.25	50.00	-30.75	AVG

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature: 22.8°C Relative Humidity: 50% Test Voltage: AC 120V/60Hz Image: Constrained in the second in the seco				
Terminal: Neutral Test Mode: Mode 1 Remark: Only worse case is reported. BB.0 dBuV OP: AVG: 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 0 48.0 48.0 0 48.0 48.0 0 49.0 48.0 0 49.0 48.0 0 49.0 49.0 0 49.0 49.0 0 49.0 49.0 0 49.0 49.0 0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 40.0 49.0 49.0 4	Temperature:	22.8℃	Relative Humidity:	50%
Test Mode: Mode 1 Remark: Only worse case is reported. ^{80.0} dBuV ^{90.0} dBuV	Test Voltage:	AC 120V/60Hz	THE PARTY	A 19
Remark: Only worse case is reported.	Terminal:	Neutral		100
80.0 dBuV QP: AVG: 30 X X M A AUG AVG AVG AVG AVG AVG AVG AVG AV	Test Mode:	Mode 1		Con St
30 X X M M M M M M M M M M M M M M M M M M	Remark:	Only worse case is report	rted.	
	T X	M. M	William Marker Marker	
-20 0.150 0.5 (MHz) 5	-20			30.000

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1660	10.72	11.19	21.91	65.15	-43.24	QP
2	0.1660	-2.75	11.19	8.44	55.15	-46.71	AVG
3	0.1860	8.07	11.17	19.24	64.21	-44.97	QP
4	0.1860	-3.14	11.17	8.03	54.21	-46.18	AVG
5	0.4420	14.33	10.99	25.32	57.02	-31.70	QP
6	0.4420	-1.51	10.99	9.48	47.02	-37.54	AVG
7	0.7260	9.09	11.35	20.44	56.00	-35.56	QP
8	0.7260	-3.44	11.35	7.91	46.00	-38.09	AVG
9	8.7020	19.18	10.36	29.54	60.00	-30.46	QP
10 *	8.7020	11.29	10.36	21.65	50.00	-28.35	AVG
11	14.5700	10.41	10.26	20.67	60.00	-39.33	QP
12	14.5700	3.74	10.26	14.00	50.00	-36.00	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temp	erature:	23.3°	С		Relative H	umidity:	48%	in the
Test V	/oltage:	AC 1	20V/60Hz	1200		an Bi		
Ant. P	Pol.	Horiz	ontal	NULL S			1	3
Test N	/lode:	Mode	e 1		000		The second	
Rema	rk:	Only	worse case	is reported.	5	0.00		Char
80.0	dBu¥/m							
70								
60 -						(05)500 15	C 3M Radiatio	
50						Margin -6 d		
40								
30							7	peak
20				3	5		an any many and and	www.howw.peal
	enter the second	holeman	Harley and header hills	American	www.mullythink	Address and the second second		
			All Constants					
0								
-10 -20								
30.00	0	60.00		(MHz)	300	.00		1000.00
No.	Frequ (Mł		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	42.1	542	39.12	-22.83	16.29	40.00	-23.71	peak
2	51.1	209	39.13	-22.63	16.50	40.00	-23.50	peak
3	121.9	9755	42.51	-23.69	18.82	43.50	-24.68	peak
4	163.1	1818	38.39	-22.41	15.98	43.50	-27.52	peak
5	275.1	1570	38.74	-21.65	17.09	46.00	-28.91	peak
6	315.4	1808	41.36	-20.54	20.82	46.00	-25.18	peak
7*	737.0)714	37.28	-10.40	26.88	46.00	-19.12	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

					-
Temperature:	23.3 ℃	Rel	ative Humidity:	48%	
Test Voltage:	AC 120V/60H	Iz	A TUP		June -
Ant. Pol.	Vertical			100	~
Test Mode:	Mode 1	AU			139
Remark:	Only worse ca	ase is reported.	CIU-		0
80.0 dBuV/m					
70					
50			(RF)FCC Margin	C 15C 3M Radiation -6 dB	
			an and the second states and the second stat	6	"" _{Makiawi} , peak
20	and have a start way of	when the second the second	and a supplicity of the second s		
-10					
-20					
30.000	60.00	(MHz)	300.00		1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	36.7662	45.53	-22.92	22.61	40.00	-17.39	peak
2	46.6664	43.95	-22.64	21.31	40.00	-18.69	peak
3	76.7808	44.26	-26.13	18.13	40.00	-21.87	peak
4	121.9755	40.92	-23.69	17.23	43.50	-26.27	peak
5	416.1791	41.24	-17.46	23.78	46.00	-22.22	peak
6 *	779.6068	38.27	-9.50	28.77	46.00	-17.23	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

Ten	nperature:	23.5 ℃		49%			
Tes	t Voltage:	DC 3.3V	MUP	1	Co.	-02	
Ant	. Pol.	Horizontal		200		N.C.	-
Tes	t Mode:	TX B Mode	e 2412MHz	Ant.1-SISO	angr		AUD.
90.0	dBu¥/m	1				1	
80							
70						(RF) FCC PART 1	15C (PEAK)
60							
50			l	2	3	(RF) FCC PART 1	
40		Mannahana	Lash of Man Mark Loly	and a state of the	and and a second se	a	White and
30	- suman low	Monart					
20	-uhm						
10							
0							
-10							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	39.15	8.21	47.36	74.00	-26.64	peak
2	13087.000	38.38	9.81	48.19	74.00	-25.81	peak
3 *	17906.500	32.47	17.52	49.99	74.00	-24.01	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humic	dity: 49%
Test Voltage:	DC 3.3V	UN CU	
Ant. Pol.	Vertical	(AR)	6000
Test Mode:	TX B Mode 24	12MHz Ant.1-SISO	anis.
90.0 dBuV/m			
80			(RF) FCC PART 15C (PEAK)
70			
60			(RF) FCC PART 15C (AVG)
50	- In Internet	tome to a providence	with the second of the address of the
40 30 mm	and the second and the second		
20			
10			
.10			
	6100.00 8650.00	11200.00 (MHz) 16300.00 1885	0.00 21400.00 23950.00 26500

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10970.500	40.22	8.18	48.40	74.00	-25.60	peak
2	12806.500	37.89	9.35	47.24	74.00	-26.76	peak
3 *	14362.000	37.92	10.73	48.65	74.00	-25.35	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No extended to detected

No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	49%	
Test Voltage: DC 3.3V				
Ant. Pol.	Horizontal		1000	
Test Mode:	TX B Mode 2437MHz A	nt.1-SISO	anis!	
90.0 dBu¥/m				
80				
70			CC PART 15C (PEAK)	
60		(BF) F	CC PART 15C (AVG)	
50	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	normation warman and a	him white the most and pe	
40 30	warmen and a stand and a stand a			
20				
10				
-10				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10945.000	40.05	8.20	48.25	74.00	-25.75	peak
2 *	13087.000	38.60	9.81	48.41	74.00	-25.59	peak
3	14897.500	36.61	11.35	47.96	74.00	-26.04	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$) 3. Margin (dB) = Peak/AVG ($dB\mu V/m$)-Limit PK/AVG($dB\mu V/m$)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise,

No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

emperature:	23.5℃	Relative Humid	ity: 49%			
est Voltage:	DC 3.3V					
nt. Pol.	Vertical		6000			
est Mode:	TX B Mode 243	37MHz Ant.1-SISO				
)0.0 dBu∀/m						
:0			(RF) FCC PART 15C (PEAK)			
0						
;0			(RF) FCC PART 15C (AVG)			
		A marken of the second	when we all me and a second			
10 80 May manufactures	August and a series and a series	W				
20						
0						
10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	40.58	8.21	48.79	74.00	-25.21	peak
2	13291.000	38.33	9.79	48.12	74.00	-25.88	peak
3	14642.500	37.49	10.87	48.36	74.00	-25.64	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:23.5℃			Relative Humidit	y: 49%	49%	
est Voltage:	EU.					
nt. Pol.	nt. Pol. Horizontal					
est Mode:	TX B Mod	e 2462MHz /	Ant.1-SISO			
0.0 dBu¥/m					_	
0						
0				(RF) FCC PART 15C (PEAK)		
0					_	
0		1 2	3	(BF) FCC PART 15C (AVG)		
0	1 with resolution	and the Property of a state of the state of	and with the and the second	and the second s	~~ p	
0 Lower war war good	and the state of t				_	
0					_	
o					_	
10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10868.500	39.68	8.07	47.75	74.00	-26.25	peak
2	12118.000	37.64	9.34	46.98	74.00	-27.02	peak
3 *	13520.500	37.93	10.07	48.00	74.00	-26.00	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected

No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Cemperature:	23.5℃	Relative Humidity:	49%
Fest Voltage:	DC 3.3V		
Ant. Pol.	Vertical	Inn	anus -
est Mode:	TX B Mode 246	2MHz Ant.1-SISO	and's
0.0 dBuV/m			
0			
0		(RF	FCC PART 15C (PEAK)
0		(BF	F) FCC PART 15C (AVG)
0		2 3 MWMMM	ath the of the manufactures of
0	and an and a start Annut	and the second	2 Mr Mariana and
0 www.www.warnaharink	and marked and and	~	
0			
o			
10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10894.000	39.87	8.20	48.07	74.00	-25.93	peak
2	12475.000	37.22	9.07	46.29	74.00	-27.71	peak
3	14285.500	36.22	10.30	46.52	74.00	-27.48	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	-	Relative Humic	dity:	49%	
Test Voltage:	DC 3.3V	ansy		122		1995
Ant. Pol.	Horizontal	and a		5	UPP	-
Test Mode:	TX G Mode	e 2412MHz An	nt.1-SISO			any.
90.0 dBu¥/m						
80				(RF) FC	C PART 15C (P	'EAK)
70						
60					C PART 15C (A	
50		1 2 company and the second second	maphinithing branchistor	and and and the second	man where	Mr. Sended Participan De.
40 30 20	hterned when the second					
10						
-10						
1000.000 3550.00	6100.00 8650.	00 11200.00 ()	MHz) 16300.00 18	8850.00 21	400.00 239	50.00 26500

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	39.63	8.21	47.84	74.00	-26.16	peak
2	13087.000	37.64	9.81	47.45	74.00	-26.55	peak
3 *	14566.000	37.15	10.79	47.94	74.00	-26.06	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	~	Relative Humi	dity:	49%	
Test Voltage:	DC 3.3V	THE P		200		ALC: N
Ant. Pol.	Vertical		BU	5	000	-
Test Mode:	TX G Mode	2412MHz Ant.	1-SISO		6	JUB L
90.0 dBu∀/m		1				
80						
70				(RF) FC	C PART 15C (P	EAK)
60				(05) 50	C PART 15C (A	(6)
50		where the stream of the stream	3 The man in the second	How Mary Mary	Morris Mary	WHANK TO PE
40		White an an analysis	We want the second s		- ~ W	<i>w</i>
30 Handren Marine Constant	*****					
20						
10						
-10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10945.000	39.27	8.20	47.47	74.00	-26.53	peak
2	12041.500	37.49	9.28	46.77	74.00	-27.23	peak
3 *	13903.000	36.83	11.01	47.84	74.00	-26.16	peak

 Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the bisheart fundamental fundamental fundamental highest fundamental frequency.

Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Fen	perature:	23.5℃		Relative Hun	nidity:	49%	
ſes	t Voltage:	DC 3.3V	181	UPD -	25		29
Ant	. Pol.	Horizontal		119	G	NUD	
es	t Mode:	TX G Mode 2	437MHz Ant	.1-SISO		100	
90.0	dBu¥/m						
80							
70					(RF) FCC	PART 15C (PEAK)	
60					(RF) FCC	PART 15C (AVG)	_
50		الموجود ب	and the stranger and an	3 Jamin Market	manda	and have a second	hithuthip
40 30 20	wand	under where we have a start of the					
10							_
0 -10							
	00.000 3550.00	6100.00 8650.00	11200.00 (MHz	:) 16300.00 188	350.00 2140	0.00 23950.00	2650

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10894.000	39.00	8.20	47.20	74.00	-26.80	peak
2	12067.000	38.17	9.32	47.49	74.00	-26.51	peak
3 *	14413.000	36.74	10.94	47.68	74.00	-26.32	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

ſem	perature:	23.5℃		\sim	Relativ	ve Humi	dity:	49%	
ſest	t Voltage:	DC 3.3V	Call'	33		au	2 Contraction	-	600
۹nt.	Pol.	Vertical	CP-		269		<u> </u>	197	
ſest	t Mode:	TX G Mo	de 2437	MHz An	t.1-SISC) (16	E	20197
90.0 Г	dBuV/m								
80							(BE) EC	PART 15C (F	PEAK
70							(III) I C		
50							(RF) FC	C PART 15C (4	VG)
50			1 March	down.hom My	AVA THE MENT	when the work of	and approximation	man	Wind Work Mary Mary
io -		and a second state of the	day Jarr		¥	₽ø.			
20									
0									
10									
-10 10	00.000 3550.00	6100.00 865	0.00 112	200.00 (MF	lz) 16:	300.00 18	850.00 21	400.00 239	50.00 265

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10970.500	39.37	8.18	47.55	74.00	-26.45	peak
2 *	13240.000	37.86	9.80	47.66	74.00	-26.34	peak
3	14387.500	36.40	10.91	47.31	74.00	-26.69	peak

 Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the bisheart fundamental fundamental highest fundamental frequency.

Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃		Relative Hu	midity:	49%	
Fest Voltage:	DC 3.3V	RY C	110	12 Por	2	666
Ant. Pol.	Horizontal		11		UPP	
est Mode:	TX G Mode 2	462MHz Ant.	1-SISO		(an B
90.0 dBuV/m						
30						
				(RF) FCC	PART 15C (P	PEAK)
/0						
50				(BE) ECC	PART 15C (A	VGI
50		1 2	3			
10	when we are a start of the second start of the	with man and the Martin	and the second second	44	man when her	and the second second second
10 Lui 10 June 10 10	and the well whether and the state of the st		All Contraction			
30 Martin Martin						
20						
0						
)						
10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10843.000	40.20	7.96	48.16	74.00	-25.84	peak
2 *	13138.000	38.56	9.83	48.39	74.00	-25.61	peak
3	14948.500	36.02	11.37	47.39	74.00	-26.61	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise,

No other signals were detected.

5. No report for the emission which below the prescribed limit.

Cemperature:	23.5 ℃		Relative Humidity	y: 49%
est Voltage:	DC 3.3V	1132	- AUS	
Ant. Pol.	Vertical		BX I	0000
est Mode:	TX G Mod	e 2462MHz Ant	1-SISO	and b
)0.0 dBuV/m				
0				
0			(RF	F) FCC PART 15C (PEAK)
			BI	F) FCC PART 15C (AVG)
;0	1	- And a		Miner Martin Martin
10	al when the second second			
20				
0				
10				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	8446.000	47.29	-2.12	45.17	74.00	-28.83	peak
2 *	10894.000	40.03	8.20	48.23	74.00	-25.77	peak
3	14387.500	36.91	10.91	47.82	74.00	-26.18	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise,

No other signals were detected. 5. No report for the emission which below the prescribed limit.

Гem	perature:	23.5℃		Relativ	e Humidity:	49%
Test	t Voltage:	DC 3.3V	anby		TUPP	
Ant.	Pol.	Horizontal		Cirno.	61	000
Fest	t Mode:	TX n(HT20) Mode 2412	2MHz Ant.1-	+2-MIMO	con's
90.0	dBu¥/m					
80					(05) 500	
70						PART 15C (PEAK)
60						PART 15C (AVG)
50			Mary Mary Mary	2 3 My Marking W	al and a start and a start and the	water ter per philipping
40 30 20	normal restored and and	and the standard and				
10						
0						
-10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10919.500	38.66	8.21	46.87	74.00	-27.13	peak
2	13265.500	37.49	9.80	47.29	74.00	-26.71	peak
3 *	14387.500	36.67	10.91	47.58	74.00	-26.42	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$) 3. Margin (dB) = Peak/AVG ($dB\mu V/m$)-Limit PK/AVG($dB\mu V/m$)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise,

No other signals were detected.

5. No report for the emission which below the prescribed limit.

emperature:	23.5℃	Relative Humidity:	49%
est Voltage:	DC 3.3V		
Ant. Pol.	Vertical	CORD OF	000
est Mode:	TX n(HT20) Mode	2412MHz Ant.1+2-MIMO	and's
0.0 dBu¥/m			
0			PART 15C (PEAK)
0			PART ISC (FEAK)
0		(RF) FCC	PART 15C (AVG)
	a submit a dealer and a stand and a series	monthan when when the	when have have a series of the
1. martin 1.	and a share the second s	·····	
0			
0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10996.000	39.54	8.18	47.72	74.00	-26.28	peak
2	13495.000	37.76	10.11	47.87	74.00	-26.13	peak
3 *	13928.500	37.79	10.85	48.64	74.00	-25.36	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Lever (dBµV) 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No ensert for the mission below the preparity of timit.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	Relative I	Humidity:	49%
Fest Voltage:	DC 3.3V			
Ant. Pol.	Horizontal			000
est Mode:	TX n(HT20) Mo	ode 2437MHz Ant.1+2	2-MIMO	ani'
90.0 dBu∀/m				
30				
70			(RF) FCC	PART 15C (PEAK)
50			(BF) FC(PART 15C (AVG)
i0	and the second sec	1 American Angeler and	warman water the	manthearman
10 30 20	and Alexandra and a second and a			
0				
10				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10970.500	39.42	8.18	47.60	74.00	-26.40	peak
2	13214.500	37.77	9.80	47.57	74.00	-26.43	peak
3	14872.000	35.71	11.14	46.85	74.00	-27.15	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise,

No other signals were detected.

5. No report for the emission which below the prescribed limit.

Cemperature:	23.5℃		Relative Humidity:	49%
Fest Voltage:	DC 3.3V	NBL I	TUP-	20
Ant. Pol.	Vertical		AL C	000
est Mode:	TX n(HT20)	Mode 2437M	Hz Ant.1+2-MIMO	603
0.0 dBu¥/m				
0			(BE) E(CC PART 15C (PEAK)
0				
0			(RF) FC	CC PART 15C (AVG)
0		M. Hommen March	- pourter and	Mayor Mr. A. waling and
o human brown marker	Marad Mark Marker Start Start	n transform	W	
0				
10 1000.000 3550.00	6100.00 8650.00	11200.00 (MHz)	16300.00 18850.00 2	1400.00 23950.00 2650

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10766.500	39.34	7.50	46.84	74.00	-27.16	peak
2 *	13265.500	37.35	9.80	47.15	74.00	-26.85	peak
3	14923.000	35.66	11.36	47.02	74.00	-26.98	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5 ℃	Relative Humidity:	49%
Test Voltage:	DC 3.3V	NU TOUR	
Ant. Pol.	Horizontal	(B)	6000
Test Mode:	TX n(HT20) Mod	le 2462MHz Ant.1+2-MIMO	ani'
90.0 dBuV/m			
80			
70		(8	F) FCC PART 15C (PEAK)
~~			
60		(P	F) FCC PART 15C (AVG)
50		1 2 3	who was the property who
40	And and the second and the	and the second s	a new grant
30 mm Mary ma	and an and an and an and a stand and a		
20			
10			
0			
-10			
1000.000 3550.00	6100.00 8650.00 1	1200.00 (MHz) 16300.00 18850.00	21400.00 23950.00 2650

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	39.62	8.21	47.83	74.00	-26.17	peak
2	13469.500	37.81	10.13	47.94	74.00	-26.06	peak
3 *	14846.500	37.54	10.93	48.47	74.00	-25.53	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	49%
Test Voltage:	DC 3.3V		A 19
Ant. Pol.	Vertical	anni lan	100
Fest Mode:	TX n(HT20) Mod	e 2462MHz Ant.1+2-MIMO	anis
90.0 dBuV/m			
80		(RF) FCC	PART 15C (PEAK)
70			
60		(RF) FCC	PART 15C (AVG)
40		the production	man Marian and Marian a
30 www.www.www.hb	and and the second and the second		
10			
0			
-10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11506.000	39.06	8.97	48.03	74.00	-25.97	peak
2	13954.000	37.32	10.70	48.02	74.00	-25.98	peak
3	14999.500	36.03	11.37	47.40	74.00	-26.60	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5 ℃	Relative Humidity:	49%
Fest Voltage:	DC 3.3V	TUP	
Ant. Pol.	Horizontal	IN LIN	100
Fest Mode:	TX n(HT40) Mode 2422	MHz Ant.1+2-MIMO	in mil
90.0 dBuV/m			
80			PART 15C (PEAK)
70			PART TOU (PEAK)
60		(BF) FCC	PART 15C (AVG)
50		when when when when	and Annana
40 30	and a second and a second and a second s		
20			
10			
10			
1000.000 3550.00	6100.00 8650.00 11200.00 (MHz) 16300.00 18850.00 214	00.00 23950.00 2650

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10843.000	40.79	7.96	48.75	74.00	-25.25	peak
2	13240.000	38.34	9.80	48.14	74.00	-25.86	peak
3	14897.500	36.87	11.35	48.22	74.00	-25.78	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Гетр	erature:	23.5℃			Relativ	ve Humid	lity:	49%	
Fest \	Voltage:	DC 3.3V		35		2017	-	~	N.Y.
Ant. F	Pol.	Vertical	C.S.S.		119		Gil	1677	
lest l	Mode:	TX n(HT	40) Moo	le 2422M	Hz Ant.1	+2-MIMO	C-	6	an B
0.0	dBu¥/m								
io							(86) 600	PART 15C (F	PEAKI
o 🗖							(11)100		
io —							(RF) FCC	PART 15C (A	WG)
0			1 harder har har har har har har har har har ha	and the hold of the second sec	3 Martin	with	rand	march	monorthead
	andurramov	in providing the second	l h de service		- Vour				
0									
10									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10894.000	40.01	8.20	48.21	74.00	-25.79	peak
2	13240.000	37.63	9.80	47.43	74.00	-26.57	peak
3	14515.000	36.23	10.69	46.92	74.00	-27.08	peak

 Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the bisheart fundamental fundamental fundamental highest fundamental frequency.

Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	Relative Hum	idity: 49%
Test Voltage:	DC 3.3V		2 A LU
Ant. Pol.	Horizontal	A RIL	anus -
Test Mode:	TX n(HT40) Mo	de 2437MHz Ant.1+2-MI	MO
90.0 dBuV/m			
80			
70			(RF) FCC PART 15C (PEAK)
60			(RF) FCC PART 15C (AVG)
50			many work way and a work where we are
40	the shares and would be	and the second	a way confi
30 Herman Marken and State	A Marin Back and the and the and the state of the state o		
20			
10			
0			
-10			
1000.000 3550.00	6100.00 8650.00 11	200.00 (MHz) 16300.00 18	850.00 21400.00 23950.00 26500

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10970.500	39.44	8.18	47.62	74.00	-26.38	peak
2	13418.500	37.24	10.17	47.41	74.00	-26.59	peak
3	14540.500	36.49	10.74	47.23	74.00	-26.77	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Temperature:	23.5℃	Relative Humidity: 49%
Fest Voltage:	DC 3.3V	
Ant. Pol.	Vertical	THE TOPS
est Mode:	TX n(HT40) Mode 24	137MHz Ant.1+2-MIMO
90.0 dBu¥/m		
80		
0		(RF) FCC PART 15C (PEAK)
\$0		(RF) FCC PART 15C (AVG)
0	we shawyth and a start with	was we want was a service and the service and
0 mm		
0		
10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10945.000	38.94	8.20	47.14	74.00	-26.86	peak
2 *	12322.000	38.40	8.93	47.33	74.00	-26.67	peak
3	14591.500	36.04	10.85	46.89	74.00	-27.11	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Cemperature:	23.5 ℃	Relative	e Humidity:	49%
Fest Voltage:	DC 3.3V	133	aur	100
Ant. Pol.	Horizontal	- THE		1000
est Mode:	TX n(HT40) Mo	ode 2452MHz Ant.1	+2-MIMO	an B
90.0 dBuV/m				
30				
			(RF) I	FCC PART 15C (PEAK)
0				
0			(BE)	FCC PART 15C (AVG)
io		1 2 3	part and month by most and	10
0	the water of the Stander	warman enter within here	And the second s	and the manufactures of the second se
0 how may have	and be party of the second second and	14		
week the way of the				
0				
0				
10				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10792.000	39.83	7.69	47.52	74.00	-26.48	peak
2	13418.500	37.47	10.17	47.64	74.00	-26.36	peak
3 *	14387.500	36.90	10.91	47.81	74.00	-26.19	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

23.5℃	Relative Humidity:	49%
DC 3.3V	A TUP	~ 19
Vertical		000
TX n(HT40) Mode 245	2MHz Ant.1+2-MIMO	ant's
	(RF) FC	C PART 15C (PEAK)
		C PART 15C (AVG)
1 and and and and the sources	2 martin	mine the two was a series
	DC 3.3V Vertical TX n(HT40) Mode 245	DC 3.3V Vertical TX n(HT40) Mode 2452MHz Ant.1+2-MIMO (RF) FC

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10843.000	39.95	7.96	47.91	74.00	-26.09	peak
2	13214.500	37.73	9.80	47.53	74.00	-26.47	peak
3	14566.000	37.01	10.79	47.80	74.00	-26.20	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the

highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

Attachment C-- Restricted Bands Requirement Test Data

Temperature:	23.5℃		Relative Humidity:	47%
Test Voltage:	DC 3.3V		- av	
Ant. Pol.	Horizontal	0	aut	a
Test Mode:	TX b Mode 24	12MHz Ant.1-	SISO	20
Remark:	Only worse cas	se is reported	J.	
120.0 dBu∀/m				
110				
100				
90				
80			2.4G Restricte	ed Band-(Peak)
70				
60			1 × 3 2.48 Restricte	ed Band-(AVG)
50			<u>z</u> ×	V
40		$\rightarrow \sim \sim$	~ M	
30				
20.0				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2385.700	52.28	4.78	57.06	74.00	-16.94	peak
2 *	2385.700	45.12	4.78	49.90	54.00	-4.10	AVG
3	2390.000	48.33	4.80	53.13	74.00	-20.87	peak
4	2390.000	37.78	4.80	42.58	54.00	-11.42	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Tem	perature:	23.5 ℃		Re	elative Humidity	y: 47%	
Test	t Voltage:	DC 3.3	1		and by	-	All of
Ant.	Pol.	Vertical	119	100		anus	
Test	t Mode:	TX b M	ode 2412N	1Hz Ant.1-SI	SO		A BU
Rem	nark:	Only wo	orse case i	s reported.	AU		
120.0	dBuV/m						
110							
100 -							
90 -							
B0 -					2.4G R	estricted Band-(Pe	ak)
70 -							+
eo -					2 X 1 3 2.46 B	estricted Band-(AV	/6)
50					1 3 2.46 R		pe
40 🗖			\sim		× v.	U	
30 -							
20.0	24.500 2334.50	2344.50 23	54.50 2364.	50 (MHz)	2384.50 2394.50	2404.50 24	14.50 2424.5

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	*	2385.700	47.64	4.78	52.42	54.00	-1.58	AVG
2	2	2386.600	54.17	4.78	58.95	74.00	-15.05	peak
3	3	2390.000	48.19	4.80	52.99	74.00	-21.01	peak
4	4	2390.000	40.15	4.80	44.95	54.00	-9.05	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

emperature:	23.5℃	Relative Humidity: 47%							
est Voltage:	DC 3.3V								
nt. Pol.	Horizontal								
est Mode:	TX b Mode 2462MH	TX b Mode 2462MHz Ant.1-SISO							
emark:	Only worse case is r	reported.							
20.0 dBuV/m									
10									
		2.46 Restricted Band-(Peak)							
0		2.4G Restricted Band-(AVG)							
0									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	48.55	5.15	53.70	74.00	-20.30	peak
2	2483.500	39.95	5.15	45.10	54.00	-8.90	AVG
3 *	2487.100	42.85	5.16	48.01	54.00	-5.99	AVG
4	2487.600	50.41	5.16	55.57	74.00	-18.43	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Cemperature:	23.5℃	Relative Humidity: 47%	
Fest Voltage:	DC 3.3V	TUP T	
Ant. Pol.	Vertical	THE MOULT	-
est Mode:	TX b Mode 2462MHz An	it.1-SISO	
Remark:	Only worse case is repo	rted.	
20.0 dBu¥/m			_
		2.46 Restricted Band-[Peak]	
	1 3 2 4	2.4G Restricted Band-(AVG)	pe
2449.000 2459.00	2469.00 2479.00 2489.00 (M	IHz] 2509.00 2519.00 2529.00 2539.00 2	2549

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	47.39	5.15	52.54	74.00	-21.46	peak
2	2483.500	36.99	5.15	42.14	54.00	-11.86	AVG
3	2487.600	48.67	5.16	53.83	74.00	-20.17	peak
4 *	2488.100	39.46	5.16	44.62	54.00	-9.38	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Tem	nperature:	23.5 ℃			Relative H	lumidity:	47%	
Fest	t Voltage:	DC 3.3\	1			MOP .		AND -
Ant.	. Pol.	Horizon	tal			6	132	
ſest	t Mode:	TX g Mo	ode 2412	MHz Ant.1	-SISO		4	S.L
Ren	nark:	Only wo	rse case	is reported	/// L			
20.0) dBuV/m							
110								
00								
0						- man		
0						2.46 Restric	ted Band-(Peak)	
'o								
0					ł.	2.46 Bestric	ted Band-(AVG)	
50					3			pe
40								
30								
20.0								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	54.89	4.80	59.69	74.00	-14.31	peak
2 *	2390.000	43.16	4.80	47.96	54.00	-6.04	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.5℃	Relative Humidity:47%							
Test Voltage:	DC 3.3V								
Ant. Pol.	Vertical	THE MOUL							
Test Mode:	TX g Mode 2412	MHz Ant.1-SISO							
Remark:	Only worse case	Dnly worse case is reported.							
120.0 dBuV/m									
110									
100									
0									
		2.4G Restricted Band-(Peak)							
0									
60		2.4G Restricted Band-(AVG)							
50		provide the second seco							
10									
20.0									
2331.000 2341.00	2351.00 2361.00 237	1.00 (MHz) 2391.00 2401.00 2411.00 2421.00 2431.							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	55.51	4.80	60.31	74.00	-13.69	peak
2 *	2390.000	45.32	4.80	50.12	54.00	-3.88	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

emperature:	23.5℃	Relative Humidity:47%
est Voltage:	DC 3.3V	EUD A
nt. Pol.	Horizontal	any any
est Mode:	TX g Mode 2462MHz	z Ant.1-SISO
emark:	Only worse case is re	eported.
20.0 dBu∀/m		
10		
DO		
		2.4G Restricted Band-(Peak)
0	1	
	land and a second secon	2.4G Restricted Band-(AVG)
0	2	
0		Provide and the second se
0		
0.0 2449.000 2459.00		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	56.27	5.15	61.42	74.00	-12.58	peak
2 *	2483.500	43.75	5.15	48.90	54.00	-5.10	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

empe	erature:	23.5 ℃	Pa	Relativ	e Humidity:	47%	5	
est V	oltage:	DC 3.3	V	6	1000		è	
Ant. P	ol.	Vertical		Contraction of the second	m			
Fest M	lode:	TX g M	ode 2462MHz	Ant.1-SISO			3	
Remai	r k:	Only wo	Only worse case is reported.					
120.0 d	BuV/m						_	
10								
100								
90								
80	m	m						
70					2.4G Restricted	d Band-(Peak)	_	
60			*		2.4G Restricted	d Band-(AVG)	_	
~~~			man 2 Xmm				-	
50				• • • • • • • • • • • • • • • • • • •				
50 <b></b>								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	50.79	5.15	55.94	74.00	-18.06	peak
2 *	2483.500	39.49	5.15	44.64	54.00	-9.36	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



<b>Femperatur</b>	e:	<b>23.5℃</b>			F	Relative	Humidity	<b>y:</b> 4	7%	
Fest Voltage	e:	DC 3.3	3V	RL			0.00		2 1	10
Ant. Pol.		Horizo	ntal		n ni		6	ant's	12	-
Fest Mode:		TX n(ŀ	HT20) N	lode 241	2MHz A	nt.1+2-	MIMO		-	
Remark:		Only v	nly worse case is reported.							
120.0 dBuV/m										
110										
00										
							$\int$			
70						-	2.46 Res	tricted Bar	id-(Peak)	
						1×			<u> </u>	~~p
0					-	3	2.46 Res	tricted Bar	id-(AVG)	[
0										
80										
20.0 2331.000 234		2351.00	2361.00	2371.00	(MHz)	2391.00	2401.00	2411.00	2421.00	2431

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	56.79	4.80	61.59	74.00	-12.41	peak
2 *	2390.000	46.63	4.80	51.43	54.00	-2.57	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



ſem	perature:	<b>23.5℃</b>			Re	lative H	umidity:	47%			
ſest	Voltage:	DC 3.3	V	<u>al</u>		10	100	~	ARD.		
۸nt.	Pol.	Vertical	Vertical								
est	Mode:	TX n(H	TX n(HT20) Mode 2412MHz Ant.1+2-MIMO								
Rem	nark:	Only wo	Only worse case is reported.								
20.0	dBu¥/m										
10											
00 -											
0  -								many			
0  -							2.46 Restric	ted Band-(Peak)			
0						-					
0  -						*	2.46 Bestric	لed Band-(AVG)	www.pe		
io					and and and						
io  -		^									
- 0											
20.0	31.000 2341.00	2351.00 23	361.00 2			2391.00					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	54.74	4.80	59.54	74.00	-14.46	peak
2 *	2390.000	46.62	4.80	51.42	54.00	-2.58	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



<b>Femperature</b>	: 23.5℃	Re	elative Humidity:	47%						
Fest Voltage:	DC 3.3V	TRU -	aus	2 19						
Ant. Pol.	Horizontal	Iorizontal								
Test Mode:	TX n(HT20) I	TX n(HT20) Mode 2462MHz Ant.1+2-MIMO								
Remark:	Only worse o	Only worse case is reported.								
120.0 dBuV/m										
110										
100										
90										
80										
			2.4G Restricte	d Band-(Peak)						
70	1									
60	time		2.4G Restricte	d Band-(AVG)						
50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second s								
40										
30										
20.0										

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	56.63	5.15	61.78	74.00	-12.22	peak
2 *	2483.500	44.69	5.15	49.84	54.00	-4.16	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



emp	perature:	<b>23.5</b> ℃	2	Relativ	e Humidity:	47%	-
ſest	Voltage:	DC 3.3V	1		MUSP		Y.A
Ant.	Pol.	Vertical	U.S.	1 and	6	MUL	
Test	Mode:	TX n(HT	T20) Mode 24	62MHz Ant.1-	+2-MIMO	60	3
Rem	ark:	Only wo	orse case is re	ported.		20	1
120.0	dBu¥/m						
110							
100 -							
90 -		m					
80 -	-{	$\rightarrow$			2.4G Restric	cted Band-(Peak)	
70 -							
60	+-		*		2.46 Restric	cted Band-(AVG)	
50			2				
40 -					<u> </u>		P
30 -							
20.0	9.000 2459.00	2469.00 247	79.00 2489.00	(MHz) 2509.0	00 2519.00 25	529.00 2539.00	2549

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	51.74	5.15	56.89	74.00	-17.11	peak
2 *	2483.500	40.46	5.15	45.61	54.00	-8.39	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



Temp	erature:	<b>23.5</b> ℃			Rela	tive H	umidity:	47%	
lest V	oltage:	DC 3.3	V	669		GI	100		AR A
Ant. P	ol.	Horizor	Horizontal						
Test N	lode:	TX n(H	T40) M	ode 2422	MHz Ant	.1+2-N	IIMO	C	B
Rema	rk:	Only w	orse ca	se is repo	orted.	NU			
120.0	lBu¥/m								
110									
100									
90								m	my
80							2.4G Restrict	ted Band-(Peak)	
70									-+
60						×	2 45 Bestric	ed Band-(AVG)	him
50					- Anna Maria		~		
40				man					
30 -									
20.0									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	57.10	4.80	61.90	74.00	-12.10	peak
2 *	2390.000	46.94	4.80	51.74	54.00	-2.26	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



Temperature:	<b>23.5℃</b>	Relative Humidity:	47%
Test Voltage:	DC 3.3V	ALL ALLA	
Ant. Pol.	Vertical		my -
Test Mode:	TX n(HT40) Mc	de 2422MHz Ant.1+2-MIMO	ang!
Remark:	Only worse cas	e is reported.	200
120.0 dBuV/m			
110			
100			
90			mym
BO		2.46 Restr	icted Band-(Peak)
70		1	
50		2 au 246 Restr	icted Band-(AVG)
50		3 y2.46 Restri	
40			
30			
2297.250 2312.25	2327.25 2342.25 2	57.25 (MHz) 2387.25 2402.25 2	2417.25 2432.25 2447.2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	55.72	4.80	60.52	74.00	-13.48	peak
2 *	2390.000	46.64	4.80	51.44	54.00	-2.56	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)



en	nperature:	<b>23.5</b> °C		Relative Humidity	<i>r</i> : 47%			
ſes	t Voltage:	DC 3.	3V					
Ant	. Pol.	Horizo	orizontal					
Tes	t Mode:	TX n(l	HT40) Mode	2452MHz Ant.1+2-MIMO				
Rer	nark:	Only v	worse case is	s reported.	100			
120.0	) dBu¥/m							
110								
100								
90		Annen	~					
80			+	2.4G Re	stricted Band-(Peak)			
70								
60			1 ×	2.46 Be	stricted Band-(AVG)			
50	~		m 2	V ^{ah} ukumu				
40					······································			
30								
20.0								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	56.06	5.15	61.21	74.00	-12.79	peak
2 *	2483.500	46.92	5.15	52.07	54.00	-1.93	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)





ſemp	perature:	<b>23.5</b> ℃		Re	lative Humidity:	47%	-
Test	Voltage:	DC 3.3V	CAR)				N.A
Ant.	Pol.	Vertical	C.	-		MUL	
Test	Mode:	TX n(HT	40) Mode 2	2452MHz A	nt.1+2-MIMO		
Rem	ark:	Only wor	rse case is	reported.	000	A V	
120.0	dBuV/m						
110							
100							
90 -							
80 -	V	- marine -			2.4G Restri	icted Band-(Peak)	_
70 -							
60 -		_	×		2.4G Restri	cted Band-(AVG)	
50			man 2				
40						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P
30 -							
20.0	7.000 2442.00	2457.00 247	2.00 2487.00	D (MHz)	2517.00 2532.00 2	547.00 2562.00	2577

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	51.63	5.15	56.78	74.00	-17.22	peak
2 *	2483.500	42.47	5.15	47.62	54.00	-6.38	AVG

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

-----END OF THE REPORT-----