

# **TEST REPORT**

**APPLICANT**: Shenzhen Jimi IOT Co., Ltd

**PRODUCT NAME**: GPS VEHICLE TERMINAL

**MODEL NAME**: JM-VG01U, VG01U

**BRAND NAME**: JIMI

FCC ID : 2AMLFJM-VG01U

STANDARD(S) : 47 CFR Part 22 Subpart H 47 CFR Part 24 Subpart E

**RECEIPT DATE** : 2020-08-18

**TEST DATE** : 2020-09-04 to 2020-09-10

**ISSUE DATE** : 2020-09-10

Edited by:

Zeng X**(**a**)**bying (Rappo/teur)(

Approved by:

Peng Huarui (Supervisor)





## **DIRECTORY**

| 1. 7 | Technical Information ······                                 | 3    |
|------|--------------------------------------------------------------|------|
| 1.1. | Applicant and Manufacturer Information                       | 3    |
| 1.2. | Equipment Under Test (EUT) Description ······                | 3    |
| 1.3. | Maximum ERP/EIRP and Emission Designator ·····               | 4    |
| 1.4. | Test Standards and Results ······                            | 5    |
| 1.5. | Environmental Conditions ······                              | 6    |
| 2. 4 | 47 CFR Part 2, Part 22H &24E Requirements······              | 7    |
| 2.1. | Conducted RF Output Power·····                               | 7    |
| 2.2. | Peak to Average Ratio ·····                                  | 9    |
| 2.3. | 99% Occupied Bandwidth · · · · · · · · · · · · · · · · · · · | ·12  |
| 2.4. | Frequency Stability ·····                                    | ·16  |
| 2.5. | Conducted Out of Band Emissions ······                       | ·18  |
| 2.6. | Band Edge ·····                                              | ·21  |
| 2.7. | Transmitter Radiated Power (EIRP/ERP) ······                 | ·23  |
| 2.8. | Radiated Out of Band Emissions ······                        | -26  |
| Ann  | ex A Test Uncertainty ······                                 | - 35 |
| Ann  | ex B Testing Laboratory Information ······                   | -36  |

| Change History                 |            |               |  |
|--------------------------------|------------|---------------|--|
| Version Date Reason for change |            |               |  |
| 1.0                            | 2020-09-10 | First edition |  |
|                                |            |               |  |



# 1. Technical Information

Note: Provide by applicant.

## 1.1. Applicant and Manufacturer Information

| Applicant:            | Shenzhen Jimi IOT Co., Ltd                                         |
|-----------------------|--------------------------------------------------------------------|
| Applicant Address:    | Floor 4th, Building C, Gaoxinqi Industrial Park, Liuxian 1st Road, |
|                       | District 67, Bao'an, ShenZhen, China                               |
| Manufacturer:         | Huizhou Jimi Zhizao Technology Co. Ltd                             |
| Manufactures Address. | No.12 Songyang Road, ZhongKai Development Zone, Huizhou,           |
| Manufacturer Address: | Guangdong, China                                                   |

## 1.2. Equipment Under Test (EUT) Description

| Product Name:              | GPS VEHICLE TER    | MINAL                                         |  |
|----------------------------|--------------------|-----------------------------------------------|--|
| Serial No.:                | (N/A, marked #1 by | test site)                                    |  |
| Hardware Version:          | NF6132-V2.0        | ,                                             |  |
| Software Version:          | NF6132 10 61DA1I   | R1_D23_R0_V02_WM_20200323_1739                |  |
| Modulation Type:           | GPRS Mode with GN  |                                               |  |
|                            | 0014.0501411       | Tx: 824MHz-849MHz                             |  |
|                            | GSM 850MHz         | Rx: 869MHz-894MHz                             |  |
| Operating Frequency Range: |                    | Tx: 1850MHz-1910MHz                           |  |
|                            | GSM 1900MHz        | Rx: 1930MHz-1990MHz                           |  |
| Antenna Type:              | Stents Antenna     |                                               |  |
| Automa Ocia                | GSM 850:           | -2.2dBi                                       |  |
| Antenna Gain:              | GSM1900:           | -1.4dBi                                       |  |
|                            | Battery            |                                               |  |
|                            | Brand Name:        | N/A                                           |  |
|                            | Model No.:         | 423040                                        |  |
| Accessory Information:     | Capacity:          | 450.00mAh                                     |  |
| Accessory information.     | Rated Voltage:     | 3.70V                                         |  |
|                            | Charge Limit:      | 4.20V                                         |  |
|                            | Manufacturer:      | Huizhou city of KM-Chi Technology Co.,<br>Ltd |  |



- **Note 1:** According to the certificate holder, they declared that the models JM-VG01U and VG01U have the same hardware and software, only differ in model name, all RF parameters are the same. The main measuring model is JM-VG01U, only the results for JM-VG01U were recorded in this report.
- **Note 2:** The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2\*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- **Note 3:** The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2\*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- **Note 4:** For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

## 1.3. Maximum ERP/EIRP and Emission Designator

| Test Mode     | Maximum ERP/EIRP (W) | Emission Designator |
|---------------|----------------------|---------------------|
| GSM850(GPRS)  | 0.625                | 244KGXW             |
| GSM1900(GPRS) | 0.624                | 237KGXW             |





## 1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

| No. | Identity                         | Document Title                                                                |
|-----|----------------------------------|-------------------------------------------------------------------------------|
| 1   | 47 CFR Part 2 (10-1-12 Edition)  | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations |
| 2   | 47 CFR Part 22 (10-1-12 Edition) | Public Mobile Services                                                        |
| 3   | 47 CFR Part 24 (10-1-12 Edition) | Personal Communications Services                                              |

Test detailed items/section required by FCC rules and results are as below:

| No. | Section                             | Description                           | Test Date          | Test Engineer | Result | Method<br>determination/<br>Remark |
|-----|-------------------------------------|---------------------------------------|--------------------|---------------|--------|------------------------------------|
| 1   | 2.1046                              | Conducted RF<br>Output Power          | Sep 07, 2020       | Zhou Xiaolong | PASS   | No deviation                       |
| 2   | 24.232(d)                           | Peak -Average<br>Ratio                | Sep 09, 2020       | Zhou Xiaolong | PASS   | No deviation                       |
| 3   | 2.1049                              | 99% Occupied<br>Bandwidth             | Sep 04, 2020       | Zhou Xiaolong | PASS   | No deviation                       |
| 4   | 2.1055,<br>22.355,<br>24.235,       | Frequency<br>Stability                | Sep 10, 2020       | Zhou Xiaolong | PASS   | No deviation                       |
| 5   | 2.1051,<br>22.917(a),<br>24.238(a), | Conducted Out of Band Emissions       | Sep 04&09,<br>2020 | Zhou Xiaolong | PASS   | No deviation                       |
| 6   | 2.1051,<br>22.917(a),<br>24.238(a), | Band Edge                             | Sep 09, 2020       | Zhou Xiaolong | PASS   | No deviation                       |
| 7   | 22.913(a),<br>24.232(c)             | Transmitter Radiated Power (EIPR/ERP) | Sep 07, 2020       | Gao Jianrou   | PASS   | No deviation                       |
| 8   | 2.1051,<br>22.917(a),<br>24.238(a)  | Radiated Out<br>of Band<br>Emissions  | Sep 10, 2020       | Gao Jianrou   | PASS   | No deviation                       |



KDB971168 D01 v03r01 and ANSI/TIA-603-E-2016.

**Note 2:** The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 23.5dB contains two parts that cable loss 13.5dB and Attenuator 10dB.

**Note 3:** Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

**Note 4:** When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.

#### 1.5. Environmental Conditions

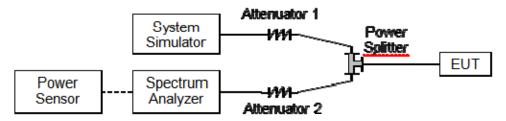
During the measurement, the environmental conditions were within the listed ranges:

| Temperature (°C):           | 15-35  |
|-----------------------------|--------|
| Relative Humidity (%):      | 30-60  |
| Atmospheric Pressure (kPa): | 86-106 |





## 2.47 CFR Part 2, Part 22H &24E Requirements


## 2.1. Conducted RF Output Power

#### 2.1.1.Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

#### 2.1.2.Test Description

Test Setup:



The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

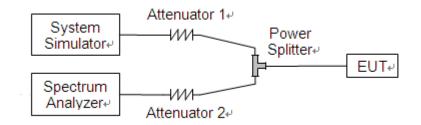


#### 2.1.3.Test Results

| GSM850          | 1     | )         |       |
|-----------------|-------|-----------|-------|
| Tx Channel      | 128   | 128 190 2 |       |
| Frequency (MHz) | 824.2 | 836.6     | 848.8 |
| GPRS 1 Tx slot  | 32.28 | 32.23     | 32.31 |
| GPRS 2 Tx slots | 31.42 | 31.51     | 31.54 |
| GPRS 3 Tx slots | 29.79 | 29.93     | 29.89 |
| GPRS 4 Tx slots | 28.72 | 28.76     | 28.78 |

| GSM1900         | Average Power (dBm) |         |        |
|-----------------|---------------------|---------|--------|
| Tx Channel      | 512                 | 512 661 |        |
| Frequency (MHz) | 1850.2              | 1880    | 1909.8 |
| GPRS 1 Tx slot  | 29.35               | 29.26   | 29.00  |
| GPRS 2 Tx slots | 28.82               | 28.74   | 28.46  |
| GPRS 3 Tx slots | 27.45               | 27.37   | 27.04  |
| GPRS 4 Tx slots | 26.59               | 26.52   | 26.20  |




## 2.2. Peak to Average Ratio

#### 2.2.1.Requirement

According to FCC 24.232(d), the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

#### 2.2.2.Test Description

#### Test Setup:



The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

#### 2.2.3.Test procedure

- 1 .For GSM/EDGE operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

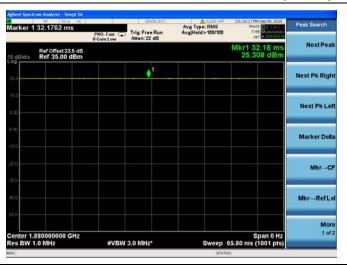
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average ratio.
- 2. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.





#### 2.2.4.Test Result

| GSM1900 |         |                    |                            |            |         |
|---------|---------|--------------------|----------------------------|------------|---------|
| Mode    | Channel | Frequency<br>(MHz) | Peak to Average ratio (dB) | Limit (dB) | Verdict |
|         | 512     | 1850.2             | 0.027                      |            | PASS    |
| GPRS    | 661     | 1880.0             | 0.037                      | 13         | PASS    |
|         | 810     | 1909.8             | 0.039                      |            | PASS    |




### GSM1900(GPRS), CH512, 1850.2MHz





#### GSM1900(GPRS), CH661, 1880.0MHz





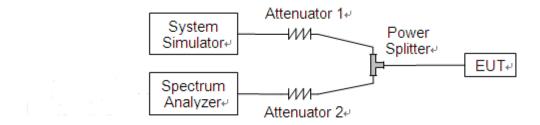
### GSM1900(GPRS), CH810, 1909.8MHz










## 2.3.99% Occupied Bandwidth

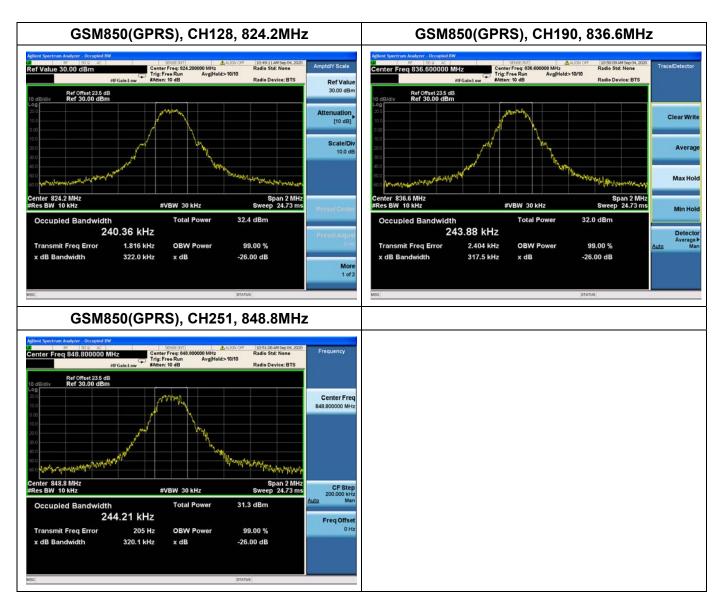
#### 2.3.1.Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

#### 2.3.2.Test Description

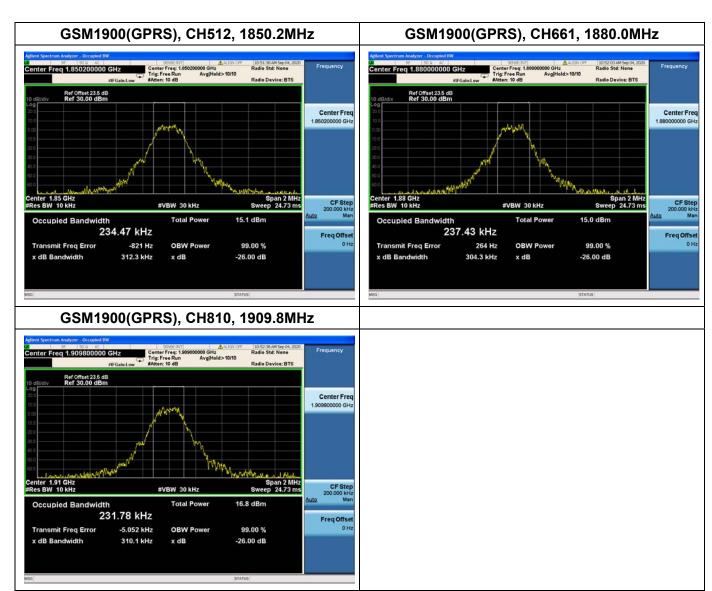
Test Setup:




The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.



#### 2.3.3.Test Result


|      | GSM850  |                    |                              |                         |  |  |
|------|---------|--------------------|------------------------------|-------------------------|--|--|
| Mode | Channel | Frequency<br>(MHz) | 99% Occupied Bandwidth (kHz) | 26dB Bandwidth<br>(kHz) |  |  |
|      | 128     | 824.2              | 240.36                       | 322.00                  |  |  |
| GPRS | 190     | 836.6              | 243.88                       | 317.50                  |  |  |
|      | 251     | 848.8              | 244.21                       | 320.10                  |  |  |
|      |         |                    | GSM1900                      |                         |  |  |
| Mada | Fred    |                    | 99% Occupied Bandwidth       | 26dB Bandwidth          |  |  |
| Mode | Channel | (MHz)              | (kHz)                        | (kHz)                   |  |  |
|      | 512     | 1850.2             | 234.47                       | 312.30                  |  |  |
| GPRS | 661     | 1880.0             | 237.43                       | 304.30                  |  |  |
|      | 810     | 1909.8             | 231.78                       | 310.10                  |  |  |







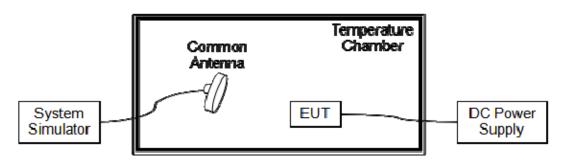








## 2.4. Frequency Stability


#### 2.4.1.Requirement

According to FCC section 22.355 and 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from-20°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

#### 2.4.2.Test Description

Test Setup:



The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,



#### 2.4.3.Test Result

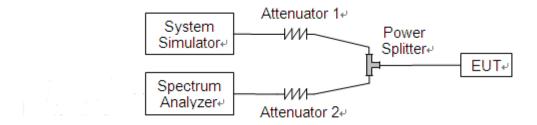
The nominal, highest and lowest extreme voltages are separately12.00VDC, 13.80VDC and 10.20VDC, which are specified by the applicant; the normal temperature here used is 20°C.

|             |                | GSM850(0  | GPRS), CH190, 836.6 | MHz             |        |
|-------------|----------------|-----------|---------------------|-----------------|--------|
|             |                | 1         | Limit =±2.5ppm      |                 |        |
| Voltage (%) | Power<br>(VDC) | Temp (°C) | Fre. Dev.<br>(Hz)   | Deviation (ppm) | Result |
| 100         | (120)          | +20(Ref)  | 21                  | -0.025          |        |
| 100         |                | -20       | 38                  | -0.045          |        |
| 100         | 12.00          | -10       | -72                 | 0.086           |        |
| 100         |                | 0         | 22                  | -0.026          |        |
| 100         |                | +10       | -41                 | 0.049           |        |
| 100         |                | +20       | 69                  | -0.082          | PASS   |
| 100         |                | +30       | 29                  | -0.035          |        |
| 100         |                | +40       | 46                  | -0.055          |        |
| 100         |                | +50       | 38                  | -0.045          |        |
| 115         | 13.80          | +20       | -29                 | 0.035           |        |
| 85          | 10.20          | +20       | -31                 | 0.037           |        |

|             |                | GSM1900(  | GPRS), CH661, 1880.  | 0MHz            |        |
|-------------|----------------|-----------|----------------------|-----------------|--------|
|             |                | Limit =\  | Within Authorized Ba | nd              |        |
| Voltage (%) | Power<br>(VDC) | Temp (°C) | Fre. Dev.<br>(Hz)    | Deviation (ppm) | Result |
| 100         |                | +20(Ref)  | 51                   | -0.027          |        |
| 100         |                | -20       | -23                  | 0.012           |        |
| 100         |                | -10       | 49                   | -0.026          |        |
| 100         |                | 0         | -22                  | 0.012           |        |
| 100         | 12.00          | +10       | -52                  | 0.028           |        |
| 100         |                | +20       | 45                   | -0.024          | PASS   |
| 100         |                | +30       | -68                  | 0.036           |        |
| 100         |                | +40       | 39                   | -0.021          |        |
| 100         |                | +50       | 29                   | -0.015          |        |
| 115         | 13.80          | +20       | 33                   | -0.018          |        |
| 85          | 10.20          | +20       | -52                  | 0.028           |        |



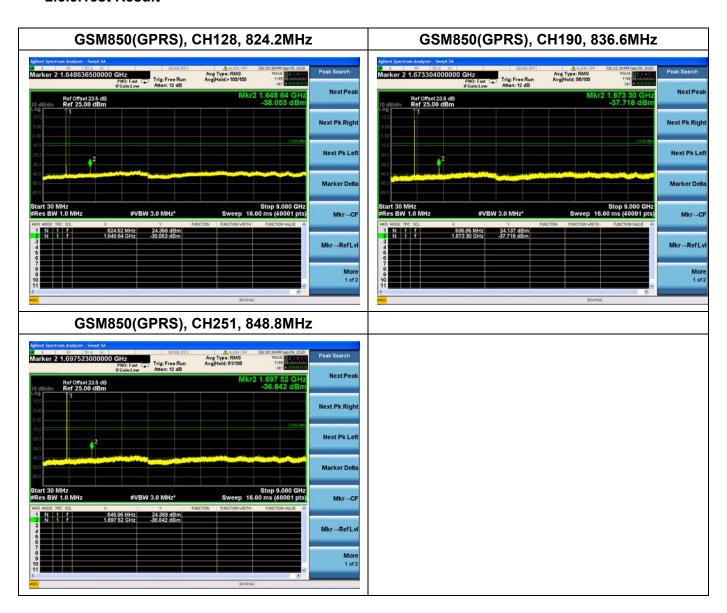



### 2.5. Conducted Out of Band Emissions

#### 2.5.1.Requirement

According to FCC section 22.917(a) and 24.238(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10\*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10<sup>th</sup> harmonic of the fundamental frequency.

#### 2.5.2.Test Description


Test Setup:



The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.



#### 2.5.3.Test Result







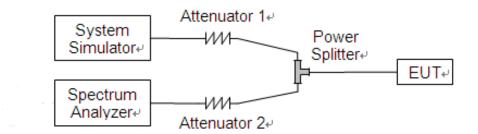
#### GSM1900(GPRS), CH512, 1850.2MHz GSM1900(GPRS), CH661, 1880.0MHz 8F 50 2 44 larker 2 17.065907750000 GHz PNO: Fast Trig: Free Run Atten: 10 dB F 50 9 AC arker 2 16.810291750000 GHz PN0: Fast Trig: Free Run PN0: Fast Act Trig: Free Run Atten: 10 dB Avg Type: RMS Avg[Hold>100/100 Avg Type: RMS Avg[Hold: 68/100 Next Peak NextPeal Ref Offset 23.5 dB Ref 23.50 dBm Ref Offset 23.5 dB Ref 23.50 dBm Next Pk Right Next Pk Right Next Pk Left Marker Delta Marker Delt Mkr--CF Mkr--CF 10.761 dBr -39.923 dBr Mkr→RefLv Mkr→RefLv GSM1900(GPRS), CH810, 1909.8MHz Avg Type: RMS Avg|Hold>100/100 PNO: Fast Trig: Free Run Atten: 10 dB Next Peak Ref Offset 23.5 dB Ref 23.50 dBm Next Pk Right Next Pk Left #VBW 3.0 MHz\* 1.909 7 GHz 16.997 0 GHz 12 246 dBm -39,511 dBm Mkr→RefLv



Tel: 86-755-36698555

Http://www.morlab.cn

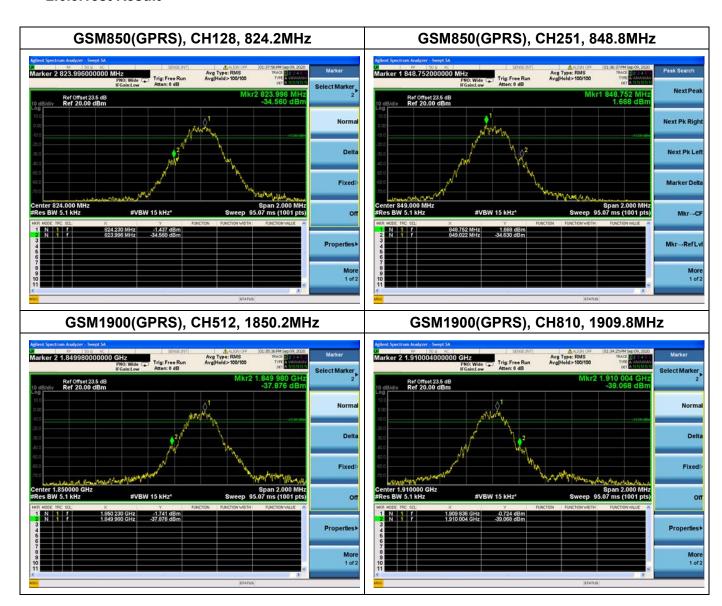



## 2.6. Band Edge

#### 2.6.1.Requirement

According to FCC section 22.917(b), 24.238(b) and 27.53(h) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

#### 2.6.2.Test Description


Test Setup:



The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.



#### 2.6.3.Test Result

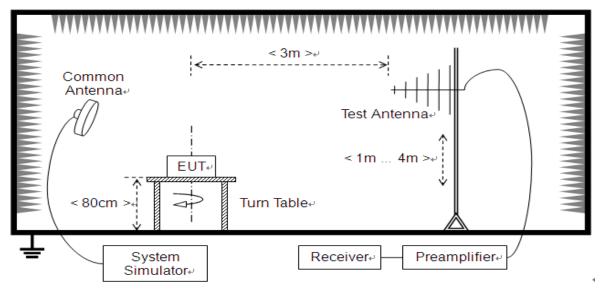






## 2.7. Transmitter Radiated Power (EIRP/ERP)

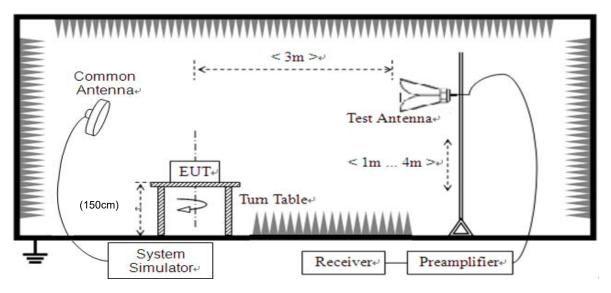
#### 2.7.1.Requirement


According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

#### 2.7.2.Test Description

Test Setup:


1) Below 1GHz







#### 2) Above 1GHz



The EUT is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

- Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.



#### 2.7.3.Test Result

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

A<sub>SUBST</sub> = P<sub>SUBST\_TX</sub> - P<sub>SUBST\_RX</sub> - L<sub>SUBST\_CABLES</sub> + G<sub>SUBST\_TX\_ANT</sub>

 $A_{TOT} = L_{CABLES} + A_{SUBST}$ 

Where A<sub>SUBST</sub> is the final substitution correction including receive antenna gain.

P<sub>SUBST TX</sub> is signal generator level,

P<sub>SUBST RX</sub> is receiver level,

L<sub>SUBST CABLES</sub> is cable losses including TX cable,

G<sub>SUBST TX ANT</sub> is substitution antenna gain.

A<sub>TOT</sub> is total correction factor including cable loss and substitution correction

During the test, the data of  $A_{TOT}$  was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of  $A_{TOT}$ .

|      |         |           |     | GSM850       |       |                  |   |         |
|------|---------|-----------|-----|--------------|-------|------------------|---|---------|
| Mode | Channal | Frequency | PCL | Measured ERP |       | Measured ERP Lim |   | Verdict |
| Wode | Channel | (MHz)     | PCL | dBm          | W     | dBm              | W | verdict |
|      | 128     | 824.20    | 5   | 27.93        | 0.621 |                  |   | PASS    |
| GPRS | 190     | 836.60    | 5   | 27.88        | 0.614 | 38.5             | 7 | PASS    |
|      | 251     | 848.80    | 5   | 27.96        | 0.625 |                  |   | PASS    |
|      |         |           |     | GSM1900      |       |                  |   |         |

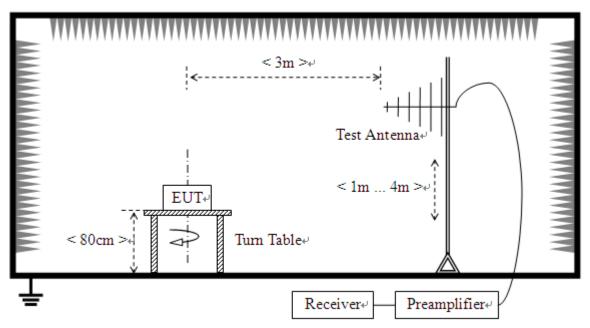
|      | 33      |           |     |                     |       |         |   |         |
|------|---------|-----------|-----|---------------------|-------|---------|---|---------|
| Mode | Channel | Frequency | PCL | Measured EIRP Limit |       | Vordiet |   |         |
| Wode | Channel | (MHz)     | PCL | dBm                 | W     | dBm     | W | Verdict |
|      | 512     | 1850.2    | 0   | 27.95               | 0.624 |         |   | PASS    |
| GPRS | 661     | 1880.0    | 0   | 27.86               | 0.611 | 33      | 2 | PASS    |
|      | 810     | 1909.8    | 0   | 27.60               | 0.575 |         |   | PASS    |

**Note 1:** For the GPRS mode, all the slots were tested and just the worst data were recorded in this report.

**Note 2:** Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.



### 2.8. Radiated Out of Band Emissions

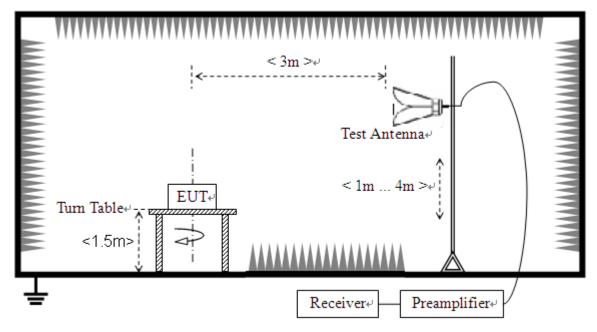

#### 2.8.1.Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10\*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency.

#### 2.8.2.Test Description

Test Setup:

1) Below1GHz






SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.



#### 2) Above 1GHz



The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

#### - Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) and a Horn one (used for above 3 GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.



#### 2.8.3.Test Result

REPORT No.: SZ20080218W01

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

The substitution corrections are obtained as described below:

A<sub>SUBST</sub> = P<sub>SUBST TX</sub> - P<sub>SUBST RX</sub> - L<sub>SUBST CABLES</sub> + G<sub>SUBST TX ANT</sub>

 $A_{TOT} = L_{CABLES} + A_{SUBST}$ 

Where A<sub>SUBST</sub> is the final substitution correction including receive antenna gain.

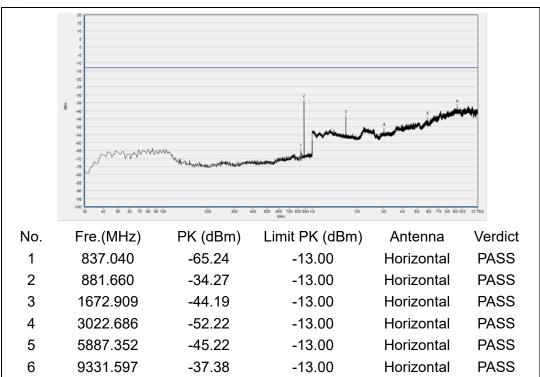
P<sub>SUBST TX</sub> is signal generator level,

P<sub>SUBST RX</sub> is receiver level,

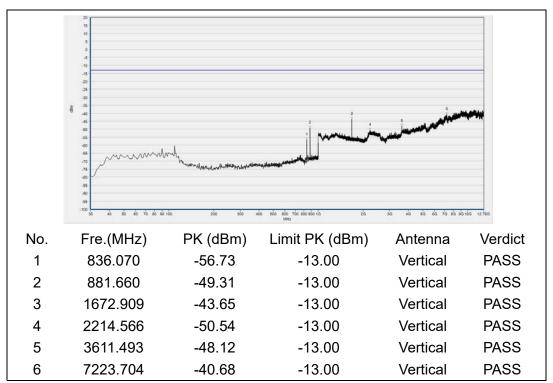
L<sub>SUBST CABLES</sub> is cable losses including TX cable,

G<sub>SUBST TX ANT</sub> is substitution antenna gain.

A<sub>TOT</sub> is total correction factor including cable loss and substitution correction


During the test, the data of  $A_{TOT}$  was added in the test spectrum analyze, so spectrum analyze reading is the final values which contain the data of  $A_{TOT}$ .

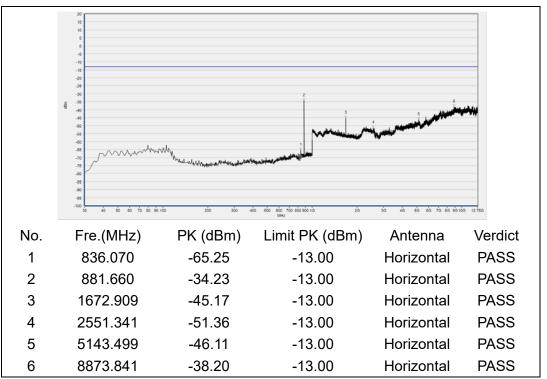
**Note1:** The power of the EUT transmitting frequency should be ignored.


**Note2:** All test mode and condition mentioned were considered and evaluated respectively by performing full test, only the worst data were recorded and reported.

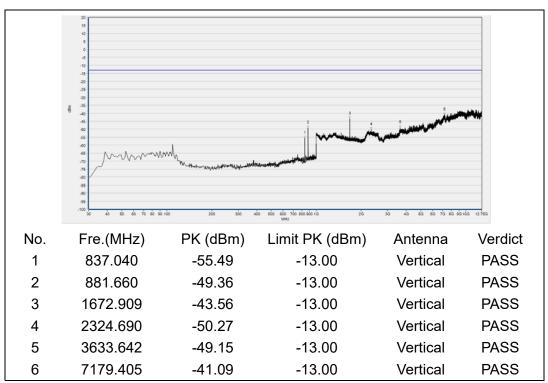
**Note3:** All spurious emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.






(GSM850(GPRS), CH128, Antenna Horizontal)

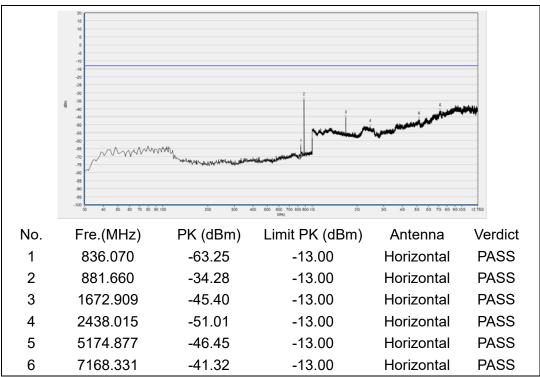



(GSM850(GPRS), CH128, Antenna Vertical)

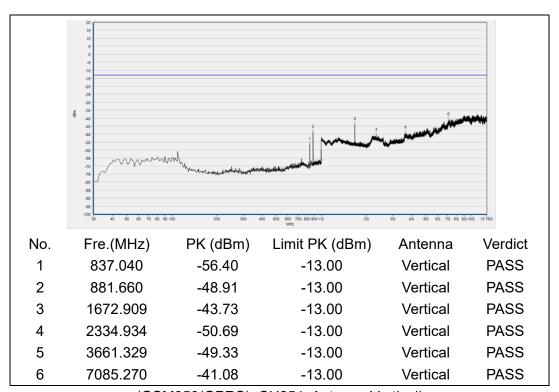







(GSM850(GPRS), CH190, Antenna Horizontal)

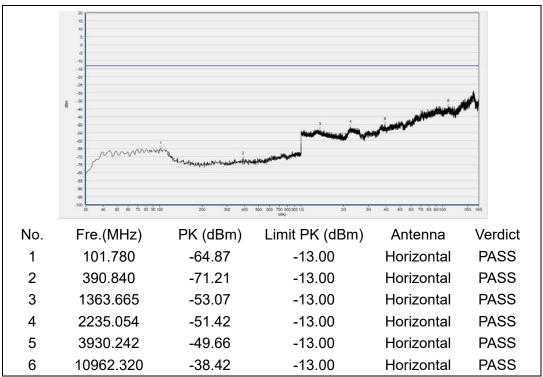



(GSM850(GPRS), CH190, Antenna Vertical)

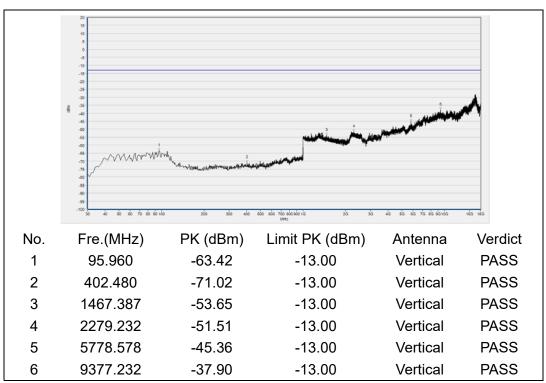







(GSM850(GPRS), CH251, Antenna Horizontal)

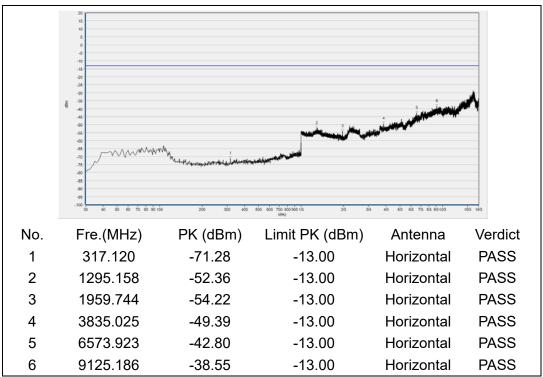



(GSM850(GPRS), CH251, Antenna Vertical)

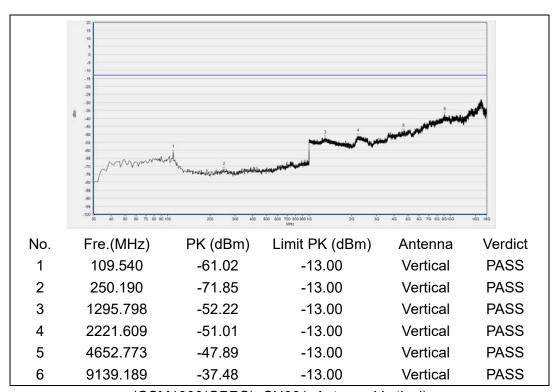







(GSM1900(GPRS), CH512, Antenna Horizontal)

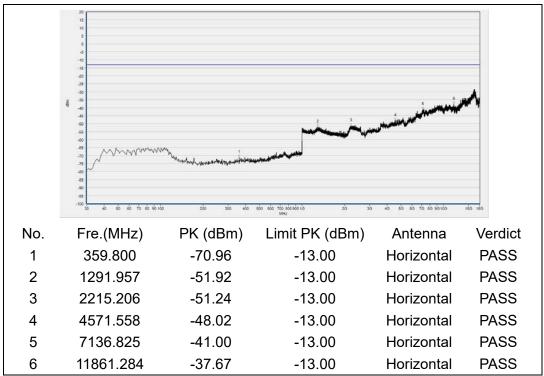



(GSM1900(GPRS), CH512, Antenna Vertical)

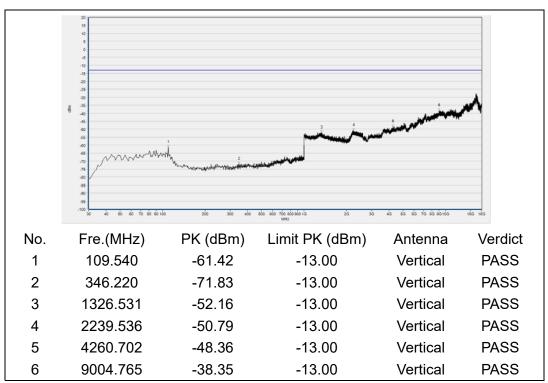







(GSM1900(GPRS), CH661, Antenna Horizontal)




(GSM1900(GPRS), CH661, Antenna Vertical)







(GSM1900(GPRS), CH810, Antenna Horizontal)



(GSM1900(GPRS), CH810, Antenna Vertical)





# **Annex A Test Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

| Test items                  | Uncertainty |
|-----------------------------|-------------|
| Output Power                | ±2.22dB     |
| Bandwidth                   | ±5%         |
| Conducted Spurious Emission | ±2.77 dB    |
| Radiated Emission           | ±2.95dB     |

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2





## **Annex B Testing Laboratory Information**

#### 1. Identification of the Responsible Testing Laboratory

| Laboratory Name:    | Shenzhen Morlab Communications Technology Co., Ltd.    |  |  |
|---------------------|--------------------------------------------------------|--|--|
| Laboratory Name.    | Morlab Laboratory                                      |  |  |
|                     | FL.3, Building A, FeiYang Science Park, No.8 LongChang |  |  |
| Laboratory Address: | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |  |  |
|                     | Province, P. R. China                                  |  |  |
| Telephone:          | +86 755 36698555                                       |  |  |
| Facsimile:          | +86 755 36698525                                       |  |  |

#### 2. Identification of the Responsible Testing Location

| Name:    | Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory |  |  |
|----------|-----------------------------------------------------------------------|--|--|
|          | FL.3, Building A, FeiYang Science Park, No.8 LongChang                |  |  |
| Address: | Road, Block 67, BaoAn District, ShenZhen, GuangDong                   |  |  |
|          | Province, P. R. China                                                 |  |  |

#### 3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.





### 4. Test Equipments Utilized

### **4.1 Conducted Test Equipments**

| <b>Equipment Name</b>     | Serial No. | Type      | Manufacturer                                   | Cal. Date  | Cal. Due   |
|---------------------------|------------|-----------|------------------------------------------------|------------|------------|
| Power Splitter            | NW521      | 1506A     | Weinschel                                      | 2020.04.15 | 2021.04.14 |
| Attenuator 1              | (N/A.)     | 20dB      | Resnet                                         | 2020.04.15 | 2021.04.14 |
| Attenuator 2 (N/A.) 3dB   |            | Resnet    | 2020.04.15                                     | 2021.04.14 |            |
| EXA Signal<br>Analzyer    | MY51511149 | N9020A    | Agilent                                        | 2020.07.27 | 2021.07.26 |
| Wireless synthesizer      | 620095016  | MT8820C   | Anritsu                                        | 2020.01.13 | 2021.01.12 |
| RF cable<br>(30MHz-26GHz) | CB01       | RF01      | Morlab                                         | 2020.01.13 | 2021.01.12 |
| Coaxial cable             | CB02       | RF02      | Morlab                                         | N/A        | N/A        |
| SMA connector             | CN01       | RF03      | HUBER-SUHNER                                   | N/A        | N/A        |
| Temperature<br>Chamber    | (N/A)      | HUT705P   | CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD | N/A        | N/A        |
| Computer                  | T430i      | Think Pad | Lenovo                                         | N/A        | N/A        |



#### **4.2 Radiated Test Equipments**

| Equipment<br>Name                          | Serial No.       | Туре             | Manufacturer      | Cal. Date  | Cal. Due   |
|--------------------------------------------|------------------|------------------|-------------------|------------|------------|
| System Simulator                           | 152038           | CMW500           | R&S               | 2020.01.13 | 2021.01.12 |
| Receiver                                   | MY54130016       | N9038A           | Agilent           | 2020.07.21 | 2021.07.20 |
| Test Antenna -<br>Bi-Log                   | 9163-519         | VULB 9163        | Schwarzbeck       | 2019.05.24 | 2022.05.23 |
| Test Antenna -<br>Horn                     | BBHA9170<br>#774 | BBHA 9170        | Schwarzbeck       | 2019.07.26 | 2022.07.25 |
| Test Antenna -<br>Horn                     | 01774            | BBHA 9120D       | Schwarzbeck       | 2019.07.26 | 2022.07.25 |
| Coaxial cable<br>(N male)<br>(30MHz-26GHz) | CB02             | EMC02            | Morlab            | N/A        | N/A        |
| Coaxial cable<br>(N male)<br>(30MHz-26GHz) | CB03             | EMC03            | Morlab            | N/A        | N/A        |
| 1-18GHz<br>pre-Amplifier                   | MA02             | TS-PR18          | Rohde&<br>Schwarz | 2020.07.28 | 2021.07.27 |
| 18-26.5GHz<br>pre-Amplifier                | MA03             | TS-PR18          | Rohde&<br>Schwarz | 2020.07.28 | 2021.07.27 |
| Notch Filter                               | N/A              | WRCG-GSM<br>850  | Wainwright        | 2020.07.28 | 2021.07.27 |
| Notch Filter                               | N/A              | WRCG-GSM<br>1900 | Wainwright        | 2020.07.28 | 2021.07.27 |
| Anechoic<br>Chamber                        | N/A              | 9m*6m*6m         | CRT               | 2020.01.06 | 2023.01.05 |

| END OF REPORT |
|---------------|
|---------------|