	FCC TEST REPORT					
	FOR					
SHENZHEN	ZHENGFANGXING TECHNOLOGY CO., LTD					
	Audio Transmitter Box					
	TEST Model No.:BWA18AV007					
Ad	ditional Model NO.:HP Remote-6IN1					
Prepared for Address	 SHENZHEN ZHENGFANGXING TECHNOLOGY CO., LTD 2ND FL,BLDG B,YICHENG INDUSTRIAL PARK XIXIANG TOWN,BAOAN DISTRICT SHENZHEN GUANGDONG CHINA 					
Prepared by Address Tel Fax Web	 Shenzhen LCS Compliance Testing Laboratory Ltd 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com 					
Mail	: webmaster@LCS-cert.com					
Date of receipt of test sample	: April 01, 2018					
Number of tested samples Sample number Date of Test Date of Report	 1 Prototype April 01, 2018 ~ April 12, 2018 April 12, 2018 					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 29

	FCC TEST REPORT FCC CFR 47 PART 15 C(15.249)
Report Reference No	· ·
Date of Issue	
	: Shenzhen LCS Compliance Testing Laboratory Ltd.
	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure	: Full application of Harmonised standards
	Partial application of Harmonised standards
	Other standard testing method □
Applicant's Name	: SHENZHEN ZHENGFANGXING TECHNOLOGY CO., LTD
Address	: 2ND FL,BLDG B,YICHENG INDUSTRIAL PARK XIXIANG TOWN,BAOAN DISTRICT SHENZHEN GUANGDONG CHINA
Test Specification	
Standard	: FCC CFR 47 PART 15 C(15.249): 2015 / ANSI C63.10: 2013
Test Report Form No	: LCSEMC-1.0
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	: Dated 2011-03
This publication may be reprod Shenzhen LCS Compliance Tes the material. Shenzhen LCS Co	sting Laboratory Ltd. All rights reserved. uced in whole or in part for non-commercial purposes as long as the sting Laboratory Ltd. is acknowledged as copyright owner and source of mpliance Testing Laboratory Ltd. takes no responsibility for and will no sulting from the reader's interpretation of the reproduced material due to
Test Item Description	: Audio Transmitter Box
Trade Mark	: BLACKWEB
Test Model	: BWA18AV007
Ratings	: DC 5.0V by adapter
	: Positive

Peter Xsar

Dick Su

Gravino Lia

Peter Xiao / File administrators

Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 29

FCC -- TEST REPORT

Test Report No. : LCS	April 12, 2018 Date of issue	
Test Model	: BWA18AV007	
EUT	: Audio Transmitter Box	
Applicant	[:] SHENZHEN ZHENGFANG	SXING TECHNOLOGY CO., LTD
Address		ENG INDUSTRIAL PARK XIXIANG CT SHENZHEN GUANGDONG
Telephone	: /	
Fax	: /	
Manufacturer	SHENZHEN ZHENGFANG	SXING TECHNOLOGY CO., LTD
Address		ENG INDUSTRIAL PARK XIXIANG CT SHENZHEN GUANGDONG
Telephone	: /	
Fax	: /	
Factory	: SHENZHEN ZHENGFANG	SXING TECHNOLOGY CO., LTD
Address		ENG INDUSTRIAL PARK XIXIANG CT SHENZHEN GUANGDONG
Telephone	: /	
Fax	: /	

Test Result

Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 29

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AMLD18AV007

Report No.: LCS180321039AEA

Revision History

Revision	Issue Date	Revisions	Revised By
000	April 12, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 29 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMLD18AV007

Report No.: LCS180321039AEA

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. Description of Device (EUT)	6
1.2. Support Equipment List	
1.3. External I/O	
1.4. Description of Test Facility	
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description Of Test Modes	
2. TEST METHODOLOGY	9
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	9
3. CONNECTION DIAGRAM OF TEST SYSTEM	10
3.1. Justification	10
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	11
5. SUMMARY OF TEST EQUIPMENT	12
6. ANTENNA REQUIREMENT	13
6.1. Standard Applicable	
6.2. Antenna Connected Construction	
7. RADIATED EMISSION MEASUREMENT	
7.1. Standard Applicable	
7.2. Instruments Setting	
7.3. Test Procedure	
7.4. Block Diagram of Test Setup	
7.5. Test Results	
7.6. Results for Radiated Emissions (Above 1GHz)	
7.7. Results for Band edge Testing (Radiated)	23
8. 20 DB BANDWIDTH MEASUREMENT	25
8.1. Standard Applicable	25
8.2. Block Diagram of Test Setup	
8.3. Test Procedure	
8.4. Test Results	
9.AC POWER LINE CONDUCTED EMISSIONS	27
9.1 Standard Applicable	27
9.2 Block Diagram of Test Setup	
9.3 Test Results	
10. TEST SETUP PHOTOGRAPHS	29
11. EXTERIOR PHOTOGRAPHS OF THE EUT	29
12. INTERIOR PHOTOGRAPHS OF THE EUT	29

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 29

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	Audio Transmitter Box
Test Model	:	BWA18AV007
List Model No. Model Declaration	:	HP Remote-6IN1 PCB board, structure and internal of these model(s) are the same, So no additional models were tested
Power Supply	:	DC 5.0 V by adapter
Hardware Version	:	V1.0
Software Version	:	20180326_V1
2.4G	:	
Frequency Range	:	2403MHz~2478MHz
Channel Number	:	26 channels
Modulation Type	:	GFSK
Antenna Description	:	PCB antenna,0dBi(max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN				
ZHENGFANGXING	Adapter	PGBD0500030W1UL		VOC
TECHNOLOGY	Adapter	FGBD0300030WT0L		VUC
CO.,LTD				

1.3. External I/O

I/O Port Description	Quantity	Cable
USB Port	1	N/A
STEREO IN Port	1	N/A
AUX OUT Port	2	N/A
OPTICAL Port	2	N/A

1.4. Description of Test Facility

FCC Registration Number. is 254912. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001 NVLAP Registration Code is 600167-0

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 29

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	4.00dB	(1)
Conduction		150kHz~30MHz	1.63dB	(1)
Uncertainty				
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 29

1.7. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit and was set to transmit at 100% duty cycle. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (MHz)	
	2403	
GFSK	2439	
	2478	
For Conduct	ed Emission	
Test Mode	TX Mode	
For Radiate	ed Emission	
Test Mode	TX Mode	

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX-2403MHz.

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX-2403MHz.

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Channel	Frequency Range (MHz)	Frequency Range Channel	
1	2403	14	2442
2	2406	15	2445
3	2409	16	2448
4	2412	17	2451
5	2415	18	2454
6	2418	19	2457
7	2421	20	2460
8	2424	21	2463
9	2427	22	2466
10	2430	23	2469
11	2433	24	2472
12	2436	25	2475
13	2439	26	2478

Channel List & Frequency:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 29

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting.

EUT will transmit continuously when powered on, Through shorten two pins on the PCB to select different channels.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	Power Line Conducted Emissions	Compliant	
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant	
§15.205	Band Edges Measurement	Compliant	
§15.249, §15.215	20 dB Bandwidth	Compliant	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 29

5. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2017-06-17	2018-06-16
5	E-SERIES AVG POWER SENSOR	Agilent	E9301H	MY41495234	2017-06-17	2018-06-16
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-18	2018-11-17
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
8	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
11	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
12	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-17	2018-06-16
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-18	2018-11-17
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
16	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
17	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-06-10	2018-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
20	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
21	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
22	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2017-06-17	2018-06-16
23	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 29

6. ANTENNA REQUIREMENT

6.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 29 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMLD18AV007 Report No.: LCS180321039AEA

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

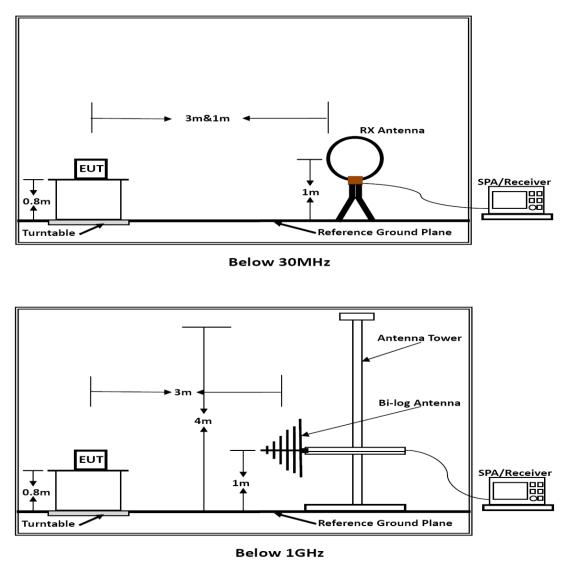
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

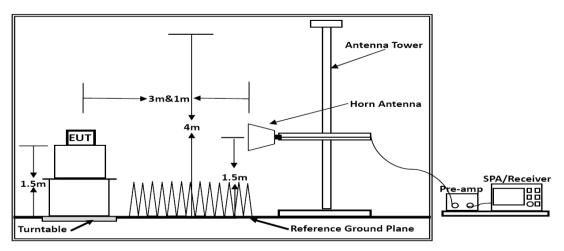
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 1 meter.

--- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

7.4. Block Diagram of Test Setup

Above 1GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 29

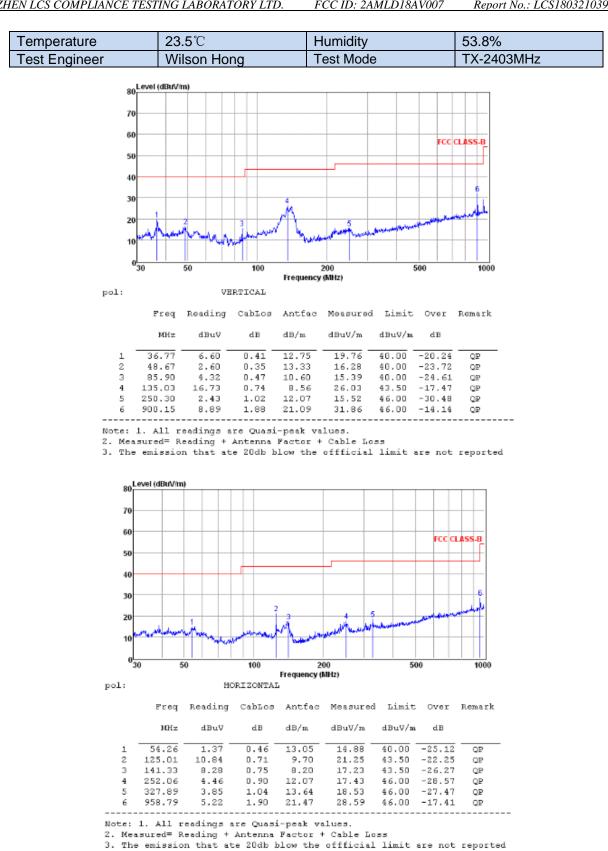
7.5. Test Results

Results of Radiated Emissions (9kHz~30MHz)

Frequency	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

Results of Radiated Emissions (30MHz~1000MHz)

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMLD18AV007

Report No.: LCS180321039AEA

Note: Pre-scan all modes and recorded the worst case results in this report (TX-2403MHz).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 29

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2A

FCC ID: 2AMLD18AV007

Report No.: LCS180321039AEA

7.6. Results for Radiated Emissions (Above 1GHz)

Field Strength Of Fundamental (TX-2403MHz)									
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)						
2403.00	Н	82.43	75.44	114	94	Pass			
2403.00	V	87.01	77.85	114	94	Pass			

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4806.00	48.15	33.06	35.04	3.94	50.11	74.00	-23.89	Peak	Horizontal
4806.00	31.32	33.06	35.04	3.94	33.28	54.00	-20.72	Average	Horizontal
4806.00	49.73	33.06	35.04	3.94	51.69	74.00	-22.31	Peak	Vertical
4806.00	33.43	33.06	35.04	3.94	35.39	54.00	-18.61	Average	Vertical

Field Strength Of Fundamental (TX-2439MHz)								
Frequency (MHz) Pol. Measure Result (PK, dBuV/m) Measure Result (AVG, dBuV/m) Peak Limit (dBuV/m) AVG Limit (dBuV/m) Result (dBuV/m)								
2439.00	Н	81.36	70.42	114	94	Pass		
2439.00	V	87.65	75.66	114	94	Pass		

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4878.00	48.90	33.16	35.15	3.96	50.87	74.00	-23.13	Peak	Horizontal
4878.00	32.82	33.16	35.15	3.96	34.79	54.00	-19.21	Average	Horizontal
4878.00	50.37	33.16	35.15	3.96	52.34	74.00	-21.66	Peak	Vertical
4878.00	34.49	33.16	35.15	3.96	36.46	54.00	-17.54	Average	Vertical

Field Strength Of Fundamental (TX-2478MHz)									
Frequency (MHz) Pol. Measure Result (PK, dBuV/m) Measure Result (AVG, dBuV/m) Peak Limit (dBuV/m) AVG Limit (dBuV/m) Res						Result			
2478.00	Н	80.14	74.58	114	94	Pass			
2478.00	V	85.47	77.68	114	94	Pass			

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4956.00	49.86	33.26	35.14	3.98	51.96	74.00	-22.04	Peak	Horizontal
4956.00	33.20	33.26	35.14	3.98	35.30	54.00	-18.70	Average	Horizontal
4956.00	50.93	33.26	35.14	3.98	53.03	74.00	-20.97	Peak	Vertical
4956.00	34.03	33.26	35.14	3.98	36.13	54.00	-17.87	Average	Vertical

Notes: Only record the worst case.

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 29

Report No.: LCS180321039AEA

7.7. Results for Band edge Testing (Radiated)

Temperature	23.5 ℃	Humidity	53.8%
Test Engineer	Wilson Hong		

GFSK-Low channel										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-49.540	2.0	0.0	47.660	Peak	74.00	PASS			
2310.000	-61.933	2.0	0.0	35.267	AV	54.00	PASS			
2390.000	-43.315	2.0	0.0	53.885	Peak	74.00	PASS			
2390.000	-61.022	2.0	0.0	36.178	AV	54.00	PASS			
	GFSK-High channel									
2483.500	-28.986	2.0	0.0	68.214	Peak	74.00	PASS			
2483.500	-60.440	2.0	0.0	36.760	AV	54.00	PASS			
2500.000	-47.396	2.0	0.0	49.804	Peak	74.00	PASS			
2500.000	-61.595	2.0	0.0	35.605	AV	54.00	PASS			

1. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

Where:

 $E = electric field strength in dB\mu V/m$,

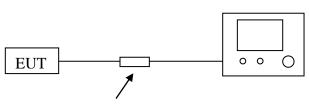
EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

2. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMLD18AV007

Report No.: LCS180321039AEA


Band-edge measurements for radiated emissions							
GFSK							
Keysight Spectrum Analyzer - Sungt SA Series E-INT ALIGN AUTO (86:27:58 PH Apr16, 2018 BW RBW 1.0 MHZ PNO: Fast Trig: Free Run Avgithidt>>100/100 Trixe[1:2:3:4:5.6 BW IFGelini.com Free Run Avgithidt>>100/100 Trixe[PH NINNNW Res BW	If Kryight Spectrum Redyser-Swept SA SENSE:101 ALION AUTO (96:29:35 PM Ar10, 2018) Marker 1 2,403135000000 GHz Trig: Free Run IPGini.cow Avg Type: Log-Pwr Atten: 30 dB Trig: Free Run Atten: 30 dB Avg Type: NN NN N	.rch					
1.0 MHr 3 2.390 000 GHz 10 dBldiv Ref 20.00 dBm - 43.315 dBm Mar 10 g - 43.315 dBm - 43.315 dB	Ref Offset 0.5 dB Mkr1 2.403 135 GHz 10 dB/div Ref 20.00 dBm -13.149 dBm	tPeak					
Log 10.0 000 100 100 100 100 100 10	Log Next Pk 100 1 100 1 100 1	Right					
2000 300 400 2 400 2	300 Next P	k Left					
500	600 Marker	Delta					
Start 2.31000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (100 Tpts) [Gaussian,3 dB] (Gaussian,3 dB]	Start 2.31000 GHz Stop 2.41500 GHz Res BW 1.0 MHz #VBW 10 Hz Sweep 8.187 s (1001 pts) MM Rode Ext SL x y Function Punction water	tr→CF					
1 N f 2402 595 CHz 1644 48m 2 N f 2310 000 CHz 49.540 48m 3 N f 2390 000 CHz 49.540 48m 4 CH2 1000 CHz 49.540 48m 5 CH2 1000 CHz 43.315 dBm	1 N f 2-403 155 GHz -13.140 gBm 2 N f 2-310 000 GHz -41.83 40 gBm 3 N f 2-310 000 GHz -41.83 40 Bm 4 f 2-390 000 GHz -41.022 dBm 6 Mkr→R	tefLvl					
		More 1 of 2					
	wsg to status						
2403 MHz – Peak	2403 MHz – Average	6 ×					
Image: New State Sense Int ALION AUTO 06/374/59 Mar(10, 2016) TraceID tetector Video BW 3.0 MHz PNO: Fast Trig: Free Run Avg Type: Log-Pwr TMCE[12 34 5 6 TraceID tetector	Marker 1 2.477980000000 GHz SENSE:NT AUG NUTO 083/103 PH/4016, 2018 Peak Seal Marker 1 2.477980000000 GHz Free Run Avg1[Hold: 8100 Trig: Free Run Avg1[Hold: 8100 Trig: Pree Run Avg1[Hold: 8100						
IFGeint.dw Atten: 30 dB Cell Finance Select Trace 10 dB/div Ref Offset 0.5 dB Mkr1 2.477.98 GHz 1 10 dB/div Ref 20.00 dBm -0.243 dBm 1		tPeak					
Log 10.0 1	Log	Right					
200 300 400	000 Next P	k Left					
400	800 800 700 800 800 800 800 800 800 800	r Delta					
Start 2.47000 GHz Stop 2.50000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Win Hoot Field Stult x y Filection Filection Hours with the study withe study with the study with the study with the study		tr→CF					
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Min Hold	Start 2.47000 GHz Stop 2.50000 GHz #Res BW 1.0 MHz #VBW 10 Hz Sweep 2.339 s (1001 pts) Mk more Model Ticl scu. x y Function Fun	_					
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Min Hold Immediate x Y Function Function work Function work 1 N f 2.477 98 GHz -0243 GBm Function work Function work 3 N f 2.483 56 GHz -28 96 GBm View Blank View Blank	#Res BW 1.0 MHz #VBW 10 Hz Sweep 2.339 s (1001 pts) Mk Immed Mode Tic; lic:// x x r Function Functio	_					
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Min Hold Imm Mode Tricliscul X Y Function Function water 1 N f 2477 93 CH2 Y Function water Function water 2 N f 2477 93 CH2 782 State 3 N f 2473 93 CH2 782 State	#Res BW 1.0 MHz #VBW 10 Hz Sweep 2.339 s (1001 pts) Mk Imm Nobit Ticl Sci. X Y Parchon Parchon Parchon Nobit Mrchon Nobit Parchon Nobit	RefLvI More					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 29

8. 20 DB BANDWIDTH MEASUREMENT

- 8.1. Standard Applicable According to §15.215
- 8.2. Block Diagram of Test Setup

Spectrum Analyzer

DC Filter

8.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 3MHz

RBW = 100KHz

VBW = 300KHz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

8.4. Test Results

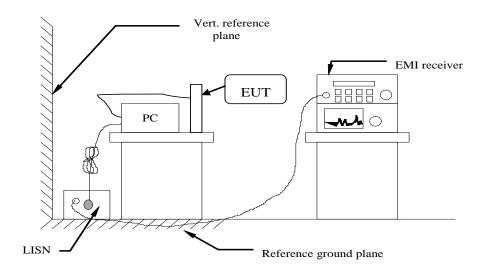
Temperature	23.5 ℃	Humidity	53.8%
Test Engineer	Wilson Hong		

Test Result Of 20dB Bandwidth Measurement							
Test Frequency	20dB Bandwidth	Limit					
(MHz)	(MHz)	(MHz)					
2403	5.397	Non-Specified					
2439	5.350	Non-Specified					
2478	4.371	Non-Specified					

			Tes	st plot				
Keysight Spectrum Analyzer - Occupied BW	SENSE:INT ALIGN A	AUTO 08:41:57 PM Apr 10, 2018		Keysight Spectrum Analyzer - Occupied BW		SENSE:INT	ALIGN AUTO 08:42:31 PM Apr 10, 2018	- 6 💌
Center Freq 2.403000000 GH	Z Center Freq: 2.403000000 GHz Trig: Free Run Avg Hold:>10/10	Radio Std: None	Frequency	Center Freq 2.439000000	Center	Freq: 2.439000000 GHz Free Run Avg Hold	Radio Std: None	Frequency
#FG	Gain:Low #Atten: 30 dB	Radio Device: BTS			#FGain:Low #Atten	: 30 dB	Radio Device: BTS	
10 dB/div Ref 20.00 dBm				10 dB/div Ref 20.00 dBm				
10 dB/div Ref 20.00 dBm			Center Freq	Log 10.0				Center Freq
0.00			2.403000000 GHz	0.00				2.439000000 GHz
-10.0	a marine and a second	~~~		-10.0	har			
-20.0		- Maria		-20.0				
-40.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		munn		-40.0				
-50.0				-50.0				
-70.0				-70.0				
Center 2.403 GHz		Span 10 MHz		Center 2.439 GHz			Span 10 MHz	
#Res BW 100 kHz	#VBW 300 kHz	Sweep 1 ms	CF Step 1.000000 MHz	#Res BW 100 kHz	#1	VBW 300 kHz	Sweep 1 ms	CF Step 1.000000 MHz
Occupied Bandwidth		10.7 dBm	<u>Auto</u> Man	Occupied Bandwidth		Total Power	9.88 dBm	<u>Auto</u> Man
5.12	65 MHz		Freq Offset	5.1	173 MHz			Freq Offset
Transmit Freq Error	276.29 kHz OBW Power	99.00 %	0 Hz	Transmit Freq Error	-150.64 kHz	OBW Power	99.00 %	0 Hz
x dB Bandwidth	5.397 MHz x dB	-20.00 dB		x dB Bandwidth	5.350 MHz	x dB	-20.00 dB	
MSG	ú.	STATUS		MSG			STATUS	
	Low channel				Mic	dle chanr	nel	
Keysight Spectrum Analyzer - Occupied BW RF 50 Ω AC	SENSE:INT ALIGN A	AUTO 08:41:37 PM Apr 10, 2018						
x dB -20.00 dB	Center Freq: 2.478000000 GHz Trig: Free Run Avg Hold:>10/10	Radio Std: None	Meas Setup					
//////////////////////////////////////	Gain:Low #Atten: 30 dB	Radio Device: BTS	Avg/Hold Num 10					
10 dB/div Ref 20.00 dBm			<u>On</u> Off					
10.0			Avg Mode					
0.00	m		Exp Repeat					
-10.0								
-30.0								
-40.0								
-60.0			OBWPower					
-70.0			99.00 %					
Center 2.478 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 10 MHz Sweep 1 ms						
Occupied Bandwidth	Total Power	8.88 dBm						
5.62	83 MHz		x dB					
Transmit Freq Error -	419.23 kHz OBW Power	99.00 %	-20.00 dB					
x dB Bandwidth	4.371 MHz x dB	-20.00 dB						
			More 1 of 2					
MSG	r de la companya de la	STATUS						
	High channel							

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 29

9.AC POWER LINE CONDUCTED EMISSIONS

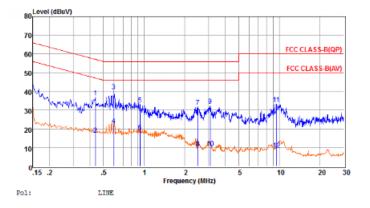

9.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

* Decreasing linearly with the logarithm of the frequency

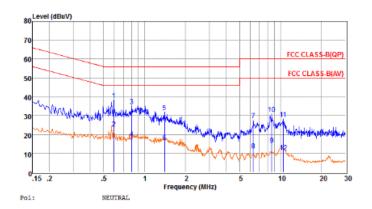
9.2 Block Diagram of Test Setup



9.3 Test Results

PASS

The test data please refer to following page.


SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMLD18AV007 Report No.: LCS180321039AEA AC Conducted Emission of charge from Adapter mode @ AC 120V/60Hz (worst case)

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.44	17.19	9.62	0.04	10.00	36.85	57.11	-20.26	QP
2	0.44	-2.79	9.62	0.04	10.00	16.87	47.11	-30.24	Average
3	0.60	20.58	9.63	0.04	10.00	40.25	56.00	-15.75	QP
4	0.60	2.46	9.63	0.04	10.00	22.13	46.00	-23.87	Average
5	0.93	13.23	9.63	0.05	10.00	32.91	56.00	-23.09	QP
6	0.93	-1.39	9.63	0.05	10.00	18.29	46.00	-27.71	Average
7	2.50	12.20	9.64	0.05	10.00	31.89	56.00	-24.11	QP
8	2.50	-10.00	9.64	0.05	10.00	9.69	46.00	-36.31	Average
9	3.07	12.71	9.64	0.06	10.00	32.41	56.00	-23.59	QP
10	3.07	-9.84	9.64	0.06	10.00	9.86	46.00	-36.14	Average
11	9.50	13.48	9.69	0.08	10.00	33.25	60.00	-26.75	QP
12	9.50	-10.97	9.69	0.08	10.00	8.80	50.00	-41.20	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.59	18.76	9.63	0.04	10.00	38.43	56.00	-17.57	QP
2	0.59	3.41	9.63	0.04	10.00	23.08	46.00	-22.92	Average
3	0.80	15.53	9.63	0.04	10.00	35.20	56.00	-20.80	QP
4	0.80	-1.91	9.63	0.04	10.00	17.76	46.00	-28.24	Average
5	1.40	12.26	9.63	0.05	10.00	31.94	56.00	-24.06	QP
6	1.40	-3.70	9,63	0.05	10.00	15.98	46.00	-30.02	Average
7	6.29	7.80	9.68	0.07	10.00	27.55	60.00	-32.45	QP
8	6.29	-8.11	9.68	0.07	10.00	11.64	50.00	-38.36	Average
9	8.59	-5.24	9.71	0.08	10.00	14.55	50.00	-35.45	Average
10	8.59	11.15	9.71	0.08	10.00	30.94	60.00	-29.06	QP
11	10.45	8.55	9.72	0.08	10.00	28.35	60.00	-31.65	QP .
12	10.45	-9.20	9.72	0.08	10.00	10.60	50.00	-39.40	Average

Remarks: 1. Measured - Reading + LISNFac + Cable Loss + Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 29

10. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

11. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

12. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------