

FCC TEST REPORT

Test report On Behalf of KINGRAY ELECTRONICS Co., LTD For Wireless earbuds Model No.: BB1824, MEN-887, MEN-888, KR302 FCC ID: 2AML6KR302

Prepared for : KINGRAY ELECTRONICS Co., LTD Building B, Ge Tailong Industrial Park,No.445 Bulong Rd,BanTian,LongGang, Shenzhen, Guangdong, China

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

Applicant's name	KINGRAY ELECTRONICS Co., LTD
Address	Building B, Ge Tailong Industrial Park,No.445 Bulong Rd,BanTian,LongGang, Shenzhen, Guangdong, China
Manufacture's Name	KINGRAY ELECTRONICS Co., LTD
Address	Building B, Ge Tailong Industrial Park,No.445 Bulong Rd,BanTian,LongGang, Shenzhen, Guangdong, China
Product description	
Trade Mark:	N/A
Product name:	Wireless earbuds
Model and/or type reference:	BB1824, MEN-887, MEN-888, KR302
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Jan. 08, 2019 ~. Jan. 17, 2019
Date of Issue	Jan. 18, 2019
Test Result	Pass

2

2

Testing Engineer

Gary Qian) (Gary Qian) Edan Mu (Eden Hu)

Technical Manager

Authorized Signatory:

Jason Zhou

(Jason Zhou)

Contents

<u>s u m n</u>	IARY	
	Description	
	nt Under Test	
	scription of the Equipment under Test (EUT)	
	ration mode	
	agram of Test Setup	
	Submittal(s) / Grant (s)	
Modifica	tions	
<u>TEST</u>	ENVIRONMENT	<u></u>
TEST FA	CILITY	
TEST FA Environr	CILITY nental conditions	
Environr	nental conditions	
Environr Summar		
Environr Summar Stateme	nental conditions y of measurement results	
Environr Summar Statemer Equipme	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test	
Environr Summar Statemer Equipme	nental conditions y of measurement results nt of the measurement uncertainty	<u></u>
Environr Summar Statemen Equipme <u>TEST</u> 4.1.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission	
Environr Summar Statemer Equipme <u>T E S T</u> 4.1. 4.2.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environr Summar Statemer Equipme <u>T E S T</u> 4.1. 4.2.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission	
Environr Summar Statemen Equipme TEST 4.1. 4.2. 4.3. 4.4.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environr Summar Statemer Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environr Summar Statemer Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environr Summar Statemer Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environr Summar Statemer Equipme	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	
Environr Summar Statemer Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
Environr Summar Statemer Equipme TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	nental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission	

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2.1. Product Description

Name of EUT:	Wireless earbuds
Trade Mark:	N/A
Model Number:	BB1824
List Model:	MEN-887, MEN-888, KR302
Power Rating:	DC 3.7V and DC 5V From Adapter
Adapter(Auxiliary test Provided by the laborator):	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A
FCC ID:	2AML6KR302
Operation frequency:	2402MHz-2480MHz
Modulation:	GFSK,8DPSK,π/4DQPSK
Antenna Type:	PCB antenna
Antenna gain:	0.0dBi

2.2. Equipment Under Test

Power supply system utilised

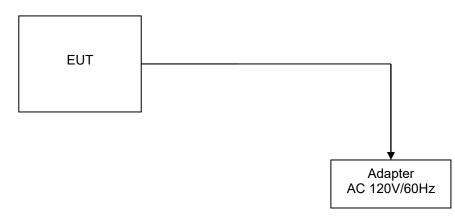
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.7V and DC 5V From Adapter

2.3. Short description of the Equipment under Test (EUT)

This is a Karaoke Microphone.

For more details, refer to the user's manual of the EUT.


2.4. EUT operation mode

The Applicant provides test software (FCCAssist) to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)		
00	2402	40	2442		
01	2403	41	2443		
02	2404	42	2444		
03	2405	43	2445		
04	2406	44	2446		
05	2407	45	2447		
06	2408	46	2448		
07	2409	47	2449		
08	2410	48	2450		
09	2411	49	2451		
10	2412	50	2452		
11	2413	51	2453		
12	2414	52	2454		
13	2415	53	2455		
14	2416	54	2456		
15	2417	55	2457		
16	2418	56	2458		
17	2419	57	2459		
18	2420	58	2460		
19	2421	59	2461		
20	2422	60	2462		
21	2423	61	2463		
22	2424	62	2464		
23	2425	63	2465		
24	2426	64	2466		
25	2427	65	2467		
26	2428	66	2468		
27	2429	67	2469		
28	2430	68	2470		
29	2431	69	2471		
30	2432	70	2472		
31	2433	71	2473		
32	2434	72	2474		
33	2435	73	2475		
34	2436	74	2476		
35	2437	75	2477		
36	2438	76	2478		
37	2439	77	2479		
38	2440	78	2480		
39	2441				

2.5. Block Diagram of Test Setup

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID:2AML6KR302 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK N/4DQPSK 8DPSK	🛛 Full	GFSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	Band edge compliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

3. We tested all test mode and recorded worst case in report

3.4. Statement of the measurement uncertainty

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

3.5. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	HKE-017	Dec. 27, 2018	1 Year
12.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
14.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 27, 2018	N/A
15.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 27, 2018	1 Year
16.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
17.	Signal generator	Agilent	N5182A	HKE-029	Dec. 27, 2018	1 Year
18.	Signal Generator	Agilent	83630A	HKE-028	Dec. 27, 2018	1 Year
19.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 27, 2018	3 Year
20.	RF Cable(below 1GHz)	HUBER+SUHNER	RG214	HKE-055	Dec. 27, 2018	1 Year
21.	RF Cable(above 1GHz) The Cal Interval was	HUBER+SUHNER	RG214	HKE-056	Dec. 27, 2018	1 Year

Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

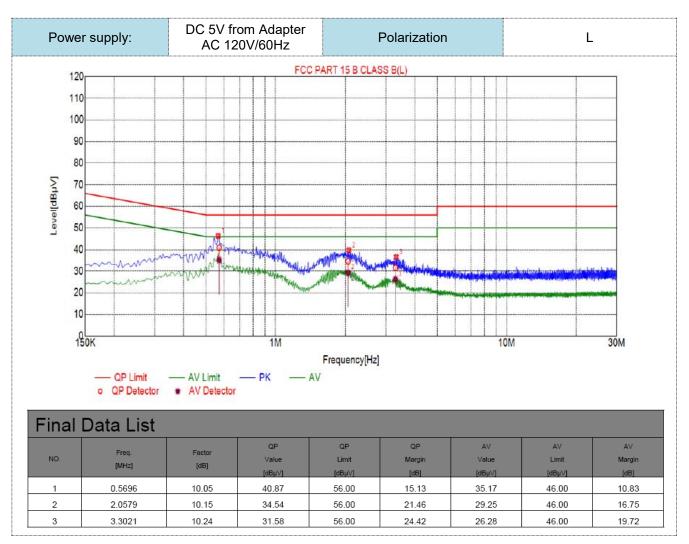
TEST CONFIGURATION

TEST PROCEDURE

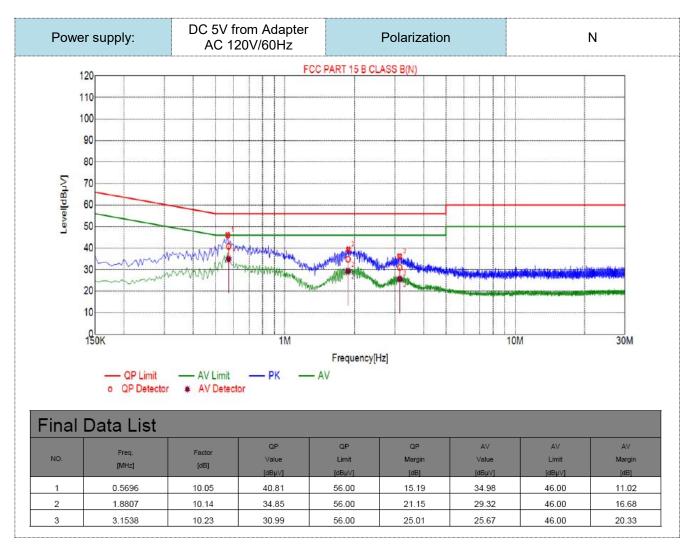
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

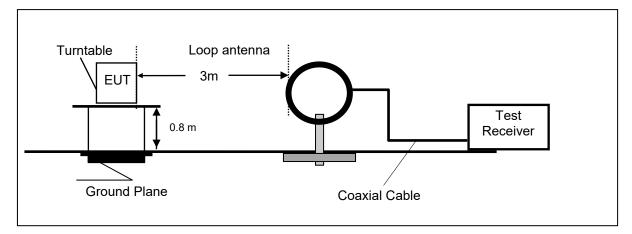
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

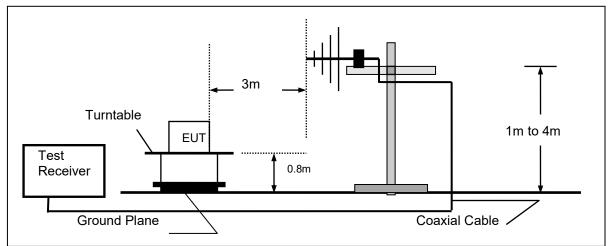

Frequency range (MHz)	Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

TEST RESULTS

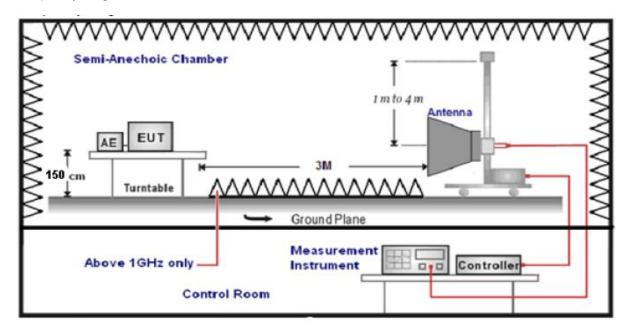

Remark:

- 1. All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.




4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

- 1. The EUT was placed on a turn table which is 12mm above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360 $^{\circ}$ C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

۰.					
	Test Frequency range	Test Receiver/Spectrum Setting	Detector		
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

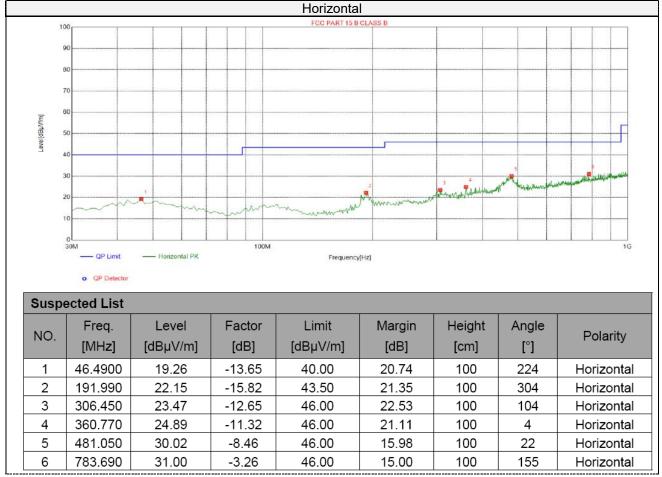
Transd=AF +CL-AG

RADIATION LIMIT

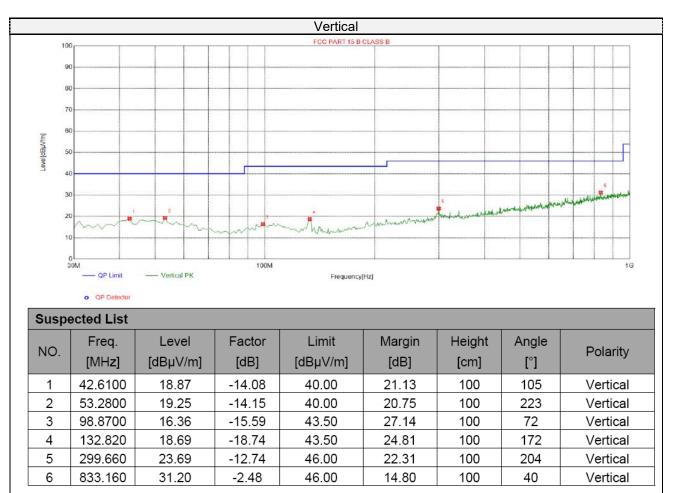
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500



Remark: For test below 1GHz all modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:


For 9 KHz-30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result			
0.44	47.56	94.74	47.18	QP	PASS			
1.69	50.98	63.05	12.07	QP	PASS			
15.63	57.48	69.54	12.06	QP	PASS			
25.47	43.69	69.54	25.85	QP	PASS			

For 30MHz-1GHz

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4804	63.89	-3.64	60.25	74	-13.75	peak	
4804	54.39	-3.64	50.75	54	-3.25	AVG	
7206	57.2	-0.95	56.25	74	-17.75	peak	
7206	48.13	-0.95	47.18	54	-6.82	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:

Matan				1	
Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
65.08	-3.64	61.44	74	-12.56	peak
55.13	-3.64	51.49	54	-2.51	AVG
58.28	-0.95	57.33	74	-16.67	peak
49.57	-0.95	48.62	54	-5.38	AVG
	(dBµV) 65.08 55.13 58.28 49.57 	Reading Factor (dBµV) (dB) 65.08 -3.64 55.13 -3.64 58.28 -0.95 49.57 -0.95	Reading Factor Emission Level (dBµV) (dB) (dBµV/m) 65.08 -3.64 61.44 55.13 -3.64 51.49 58.28 -0.95 57.33 49.57 -0.95 48.62	Reading Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 65.08 -3.64 61.44 74 55.13 -3.64 51.49 54 58.28 -0.95 57.33 74 49.57 -0.95 48.62 54	Reading Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 65.08 -3.64 61.44 74 -12.56 55.13 -3.64 51.49 54 -2.51 58.28 -0.95 57.33 74 -16.67 49.57 -0.95 48.62 54 -5.38

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
Trequency	weter Reading	T actor	LINISSION Level	LIIIIIIS	wargin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
4882	61.92	-3.51	58.41	74	-15.59	peak		
4002	01.92	-3.51	50.41	/4	-15.59	реак		
4882	52.87	-3.51	49.36	54	-4.64	AVG		
7326	56.3	-0.82	55.48	74	-18.52	peak		
7326	47.74	-0.82	46.92	54	-7.08	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical: Meter Frequency Reading Factor **Emission Level** Limits Margin Detector (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) Туре 4882 63.19 -3.51 59.68 74 -14.32 peak 4882 53.62 -3.51 50.11 54 -3.89 AVG 7326 -0.82 56.49 74 57.31 -17.51 peak -0.82 AVG 7326 48.05 47.23 54 -6.77 ---Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz) Horizontal:

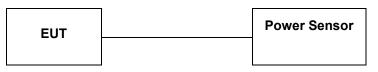
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4960	63.68	-3.43	60.25	74	-13.75	peak	
4960	54.85	-3.43	51.42	54	-2.58	AVG	
7440	55.98	-0.75	55.23	74	-18.77	peak	
7440	47.64	-0.75	46.89	54	-7.11	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:

/leter Reading (dBµV) 62.55 53.66	Factor (dB) -3.43	Emission Level (dBµV/m) 59.12	Limits (dBµV/m) 74	Margin (dB) -14.88	Detector Type peak
62.55	-3.43	59.12			Туре
			74	-14.88	peak
53.66	2.42				
33.00	-3.43	50.23	54	-3.77	AVG
54.87	-0.75	54.12	74	-19.88	peak
46.77	-0.75	46.02	54	-7.98	AVG
	54.87 46.77 	54.87 -0.75 46.77 -0.75	54.87 -0.75 54.12 46.77 -0.75 46.02	54.87 -0.75 54.12 74 46.77 -0.75 46.02 54	54.87 -0.75 54.12 74 -19.88 46.77 -0.75 46.02 54 -7.98

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:


(1) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS


Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result
	00	-0.125		
GFSK	39	-0.265	21	Pass
	78	-1.124		
	00	1.155		Pass
π/4DQPSK	39	0.945	21	
	78	0.547		
	00	0.884		
8DPSK	39	0.612	21	Pass
	78	0.354		

Note: 1.The test results including the cable lose.

4.4. 20dB Bandwidth

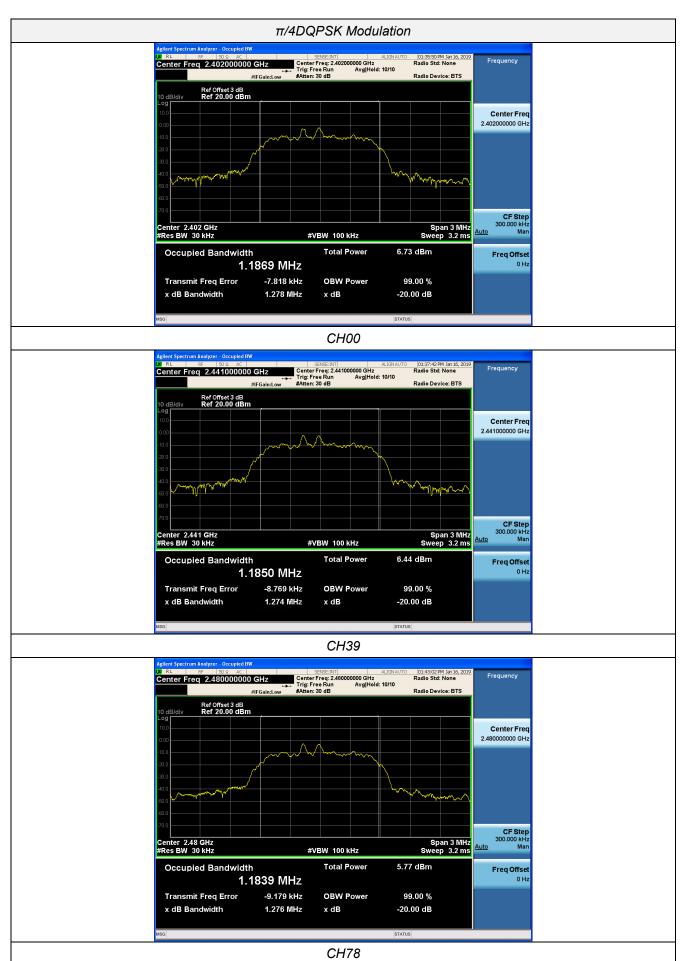
TEST CONFIGURATION

TEST PROCEDURE

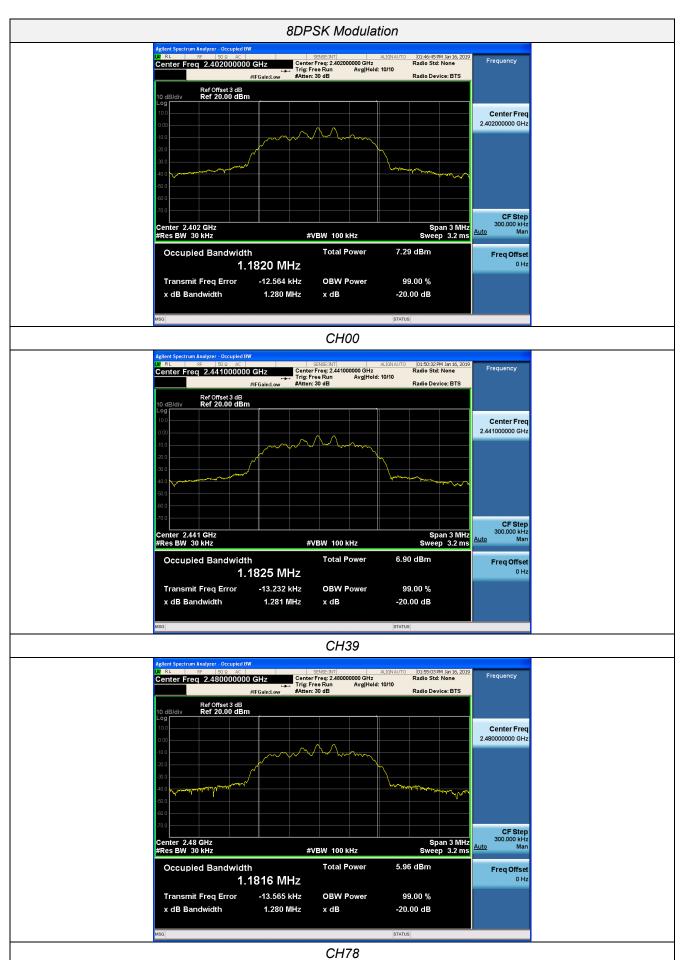
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.


TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	99% OBW (MHz)	Result
	CH00	0.9520	0.85330	
GFSK	CH39	0.9472	0.85029	
	CH78	0.9453	0.85176	
	CH00	1.278	1.1869	
π/4DQPSK	CH39	1.274	1.1850	Pass
	CH78	1.276	1.1839	
	CH00	1.280	1.1820	
8DPSK	CH39	1.281	1.1825	
	CH78	1.280	1.1816	



4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

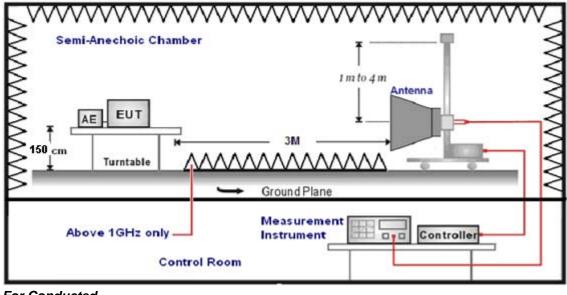
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

4.5.1 GFSK Test Mode

Modulation	Channel	Channel Separation (MHz)	20dB Bandwidth (MHz)	Limit(MHz) 2/3* 20dB BW	Result	
GFSK	CH38	1.005	0.9472	0.631	Pass	
	CH39					
π/4DQPSK	CH38	0.997	1.274	0.849	Pass	
II/4DQF SK	CH39	0.997			F 855	
8DPSK	CH38	1.003	1 221	0.854	Pass	
ODPOK	CH39	1.005	1.281		F a 5 5	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:

6.	Setting test receiver/spectrum as following table states:				
	Test Frequency range	Detector			
	1GHz-40GHz	Sweep time=Auto	Peak		
		Average Value: RBW=1MHz/VBW=10Hz,	FEak		
		Sweep time=Auto			
	•	·	•		

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

4.6.1 For Radiated Bandedge Measurement

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.25	-5.81	53.44	74	-20.56	peak
2390	50.44	-5.81	44.63	54	-9.37	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.29	-5.81	54.48	74	-19.52	peak
2390	51.85	-5.81	46.04	54	-7.96	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Operation Mode: GFSK TX High channel (2480MHz)

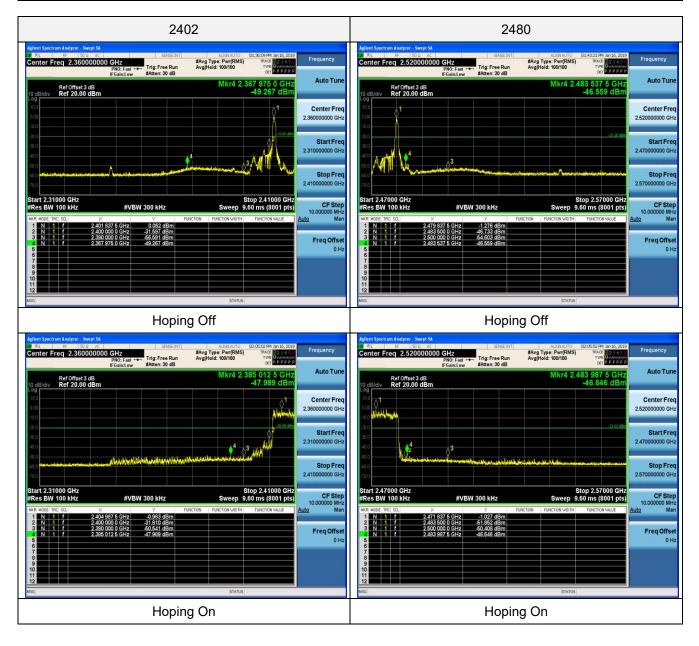
Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	59.33	-5.65	53.68	74	-20.32	peak
2483.5	50.96	-5.65	45.31	54	-8.69	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

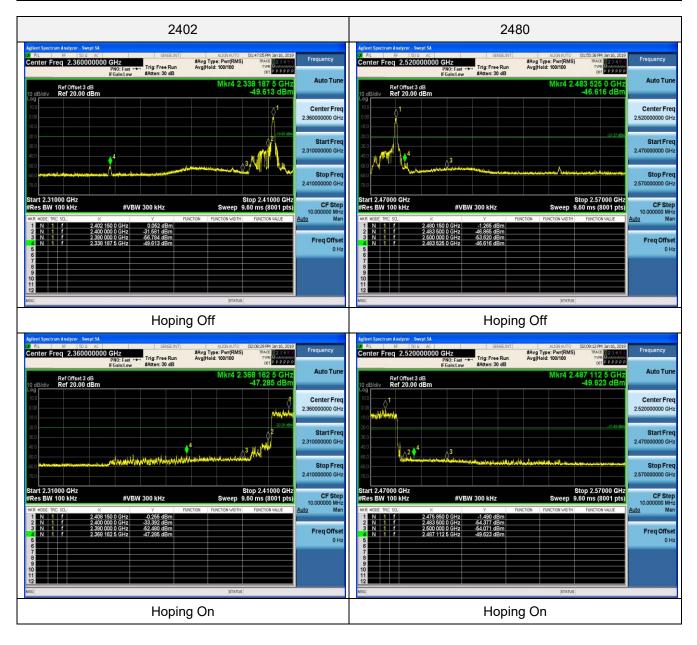
Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.48	-5.65	51.83	74	-22.17	peak
2483.5	49.31	-5.65	43.66	54	-10.34	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

4.6.2 For Conducted Bandedge Measurement


GFSK							
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict			
2400.00	-31.607	OFF	-20	PASS			
2400.00	-31.132	ON	-20	PASS			
2483.50	-45.437	OFF	-20	PASS			
2483.50	-47.754	ON	-20	PASS			

Page 30 of 50


π/4 DQPSK								
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict				
2400.00	-31.649	OFF	-20	PASS				
2400.00	-30.827	ON	-20	PASS				
2483.50	-45.457	OFF	-20	PASS				
2483.50	-50.825	ON	-20	PASS				

Page 31 of 50

8DPSK								
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict				
2400.00	-31.529	OFF	-20	PASS				
2400.00	-33.137	ON	-20	PASS				
2483.50	-45.600	OFF	-20	PASS				
2483.50	-52.887	ON	-20	PASS				

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

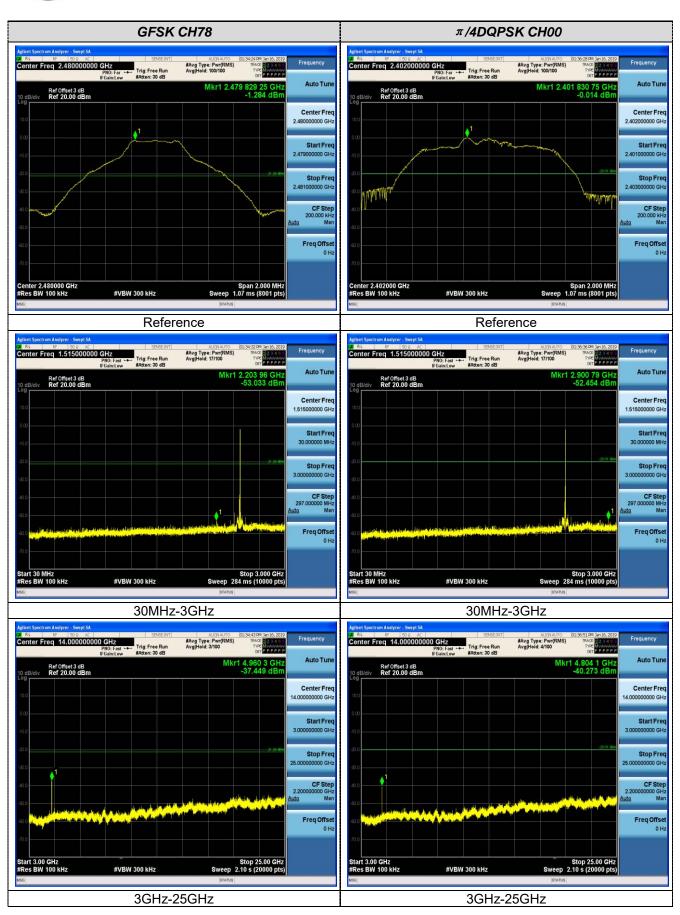
TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

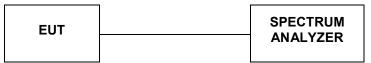

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.


TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.





4.8. Number of hopping frequency

TEST CONFIGURATION

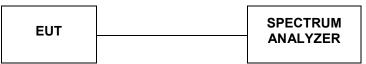
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4 DQPSK	79	≥15	Pass
8DPSK	79		



Antiner Government Andrease - Suisent & A	
Applent Spectrum Analyzer - Swept SA Applent Spectrum Analyzer - Swept SA Align Autor [0,1] Align Autor [0,1] Sector Figure Free Run Augle India to from Kowwwww Figure Free Run Augle India to from Kowww Figure Free Run Augle India to from Kowww Figure Free Run Augle India to from Koww Figure Free Run Augle India tof	Frequency
IFGain:Low #Atten: 30 dB 001 PPPP Ref Offset3 dB △Mkr1 78.010 MHz	Auto Tune
1000 1000 X 1000 X 10000 X 1000 X 100	Center Freq 2.441750000 GHz
	Start Freq 2.400000000 GHz
	Stop Freq 2.483500000 GHz
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 8.00 ms (8001 pts)	CF Step 8.350000 MHz
MKR, MODE TRUNCTION Y FUNCTION FUNCTION VALUE 1 Δ2 1 f (Δ) 78.010 MHz (Δ) -2.080 dB FUNCTION FUNCTION FUNCTION VALUE 2 F 1 f 2.402.046 GHz -0.211 dBm -0.211 dBm <t< td=""><td>Auto Man Freq Offset</td></t<>	Auto Man Freq Offset
	0 Hz
9 10 11 12	
GFSK Modulation	
Agilent Spectrum Analyzer - Swept SA SENSE://T ALIGN/AUTO D2:03:35 FM Jan 16, 201 DI RL RF 50.0 AC SENSE://T ALIGN/AUTO D2:03:35 FM Jan 16, 201	Frequency
Center Freq 2.441750000 GHz PR0: Fast IFGaint.ow #AvgTkiten: 30 dB #AvgTkiten: 30 dB #AvgTkiten: 30 dB	Frequency Auto Tune
10 dB/div Ref 20.00 dBm1.453 dE	Center Freq
0.000 1000 2000	2.441750000 GHz
	Start Freq 2.400000000 GHz
-E0.0 -70.0	Stop Freq 2.483500000 GHz
Start 2.40000 GHz #Res BW 100 kHz ¥VBW 300 kHz Stop 2.48350 GHz Sweep 8.00 ms (8001 pts) MKR MODE TRG SCL X Y FUNCTION FUNCTION WIDTH	CF Step 8.350000 MHz <u>Auto</u> Man
1 Δ2 1 f (Δ) 78,148 MHz (Δ) -1,453 dB 2 F 1 f 2,401 837 GHz -0,077 dBm -0,077 dBm 3 -	Freq Offset 0 Hz
π/4 DQPSK	
Agilient Spectrum Analyzer: Swept SA (20) RL RL SENSE:INT ALIGNAUTO D2:06:57 PM Jon 16, 201 Center Freq 2.441750000 GHz #Avg Type: Pwr(RMS) Trace 12.34 EF PR0: Fast Trig: Free Run Avg Hold: 100/100 TWE PWR(RMS) Efficient.com Avg Hold: 100/100 TWE PWR(RMS)	Frequency
PRO: Fast →→ Trig: Frée kun Avgirieid: 100/100 100 100 100 100 100 100 100 100	Auto Tune
	Center Freq 2.441750000 GHz
	Start Freq 2.40000000 GHz
	Stop Freq
700 Start 2.40000 GHz #Boc BW 100 kHz #0/BW 200 kHz Stop 2.48350 GHz	2.483500000 GHz CF Step
#Res BW 100 kHz #VBW 300 kHz Sweep 8.00 ms (8001 pts) MKR MODE TRC SCL X Y FUNCTION FUNCTION VIDUE 1 Δ2 1 f (Δ) 76 020 MHz (Δ) 0.742 dB 2 F 1 f 2.402 088 GHz 4.361 dBm FUNCTION	8.350000 MHz <u>Auto</u> Man
	Freq Offset 0 Hz
8DPSK Modulation	

4.9. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

<u>LIMIT</u>

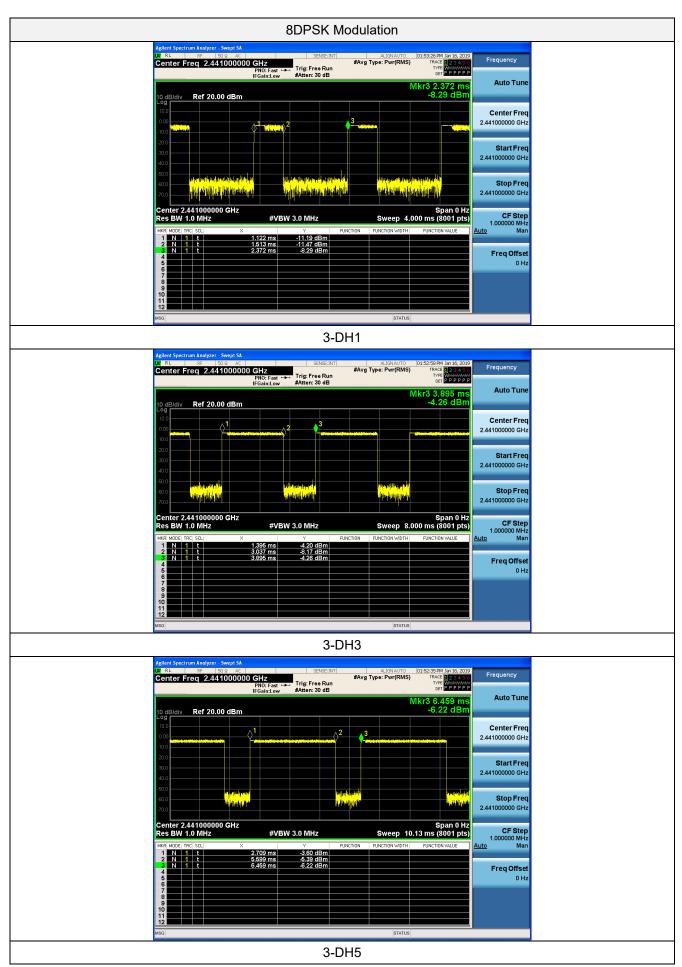
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
	DH1	0.391	0.125		
GFSK	DH3	1.636	0.262	0.40	Pass
	DH5	2.885	0.308		
	DH1	0.391	0.125		
π/4 DQPSK	DH3	1.642	0.263	0.40	Pass
	DH5	2.889	0.308		
	3-DH1	0.391	0.125		
8DSPSK	3-DH3	1.642	0.263	0.40	Pass
	3-DH5	2.890	0.308		

Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

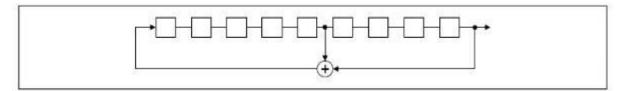


	And the second s	
		GFSK Modulation
Applot dotational frequency Applot dotational frequency Applot dotational frequency Prequency Control Find 2.441000000 0Hz Find frequency Marks 2.9 dbt Marks 2.9 dbt Auto Tuter Under the find dotational frequency Find frequency Marks 2.9 dbt Marks 2.9 dbt Auto Tuter Under the find dotational frequency Find frequency Find frequency Find frequency Find frequency Under the find dotational frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency <td>OP RL RF 100 10 gB/dtv Ref 20.01 10 gB/dtv gB/dtv 11 gB/dtv gB/dtv 12 gB/dtv gB/dtv 13 gB/dtv gB/dtv 14 gB/dtv gB/dtv 15<td>SEMPENT ALISPANTO DI32244MM Mon16, 2019 Frequency Trig: Free Run Mikr3 1.553 mm O dBm Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz 2.441000000 GHz 303 0 µE 9.59 dBm 10/35 dBm<</td></td>	OP RL RF 100 10 gB/dtv Ref 20.01 10 gB/dtv gB/dtv 11 gB/dtv gB/dtv 12 gB/dtv gB/dtv 13 gB/dtv gB/dtv 14 gB/dtv gB/dtv 15 <td>SEMPENT ALISPANTO DI32244MM Mon16, 2019 Frequency Trig: Free Run Mikr3 1.553 mm O dBm Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz 2.441000000 GHz 303 0 µE 9.59 dBm 10/35 dBm<</td>	SEMPENT ALISPANTO DI32244MM Mon16, 2019 Frequency Trig: Free Run Mikr3 1.553 mm O dBm Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz Start Freq 2.441000000 GHz 2.441000000 GHz 303 0 µE 9.59 dBm 10/35 dBm<
Applot dotational frequency Applot dotational frequency Applot dotational frequency Prequency Control Find 2.441000000 0Hz Find frequency Marks 2.9 dbt Marks 2.9 dbt Auto Tuter Under the find dotational frequency Find frequency Marks 2.9 dbt Marks 2.9 dbt Auto Tuter Under the find dotational frequency Find frequency Find frequency Find frequency Find frequency Under the find dotational frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency Find frequency Find frequency Find frequency Find frequency Under the find frequency <td></td> <td></td>		
Math Image <	01 RL BF 100 10 gB/div Ref 20.01 10 gB/div Ref 20.01 100 100 100 112 100	20 AC
	Bit RL RF EX Center Freq 2.441 10 dB/div Ref 20.01 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. Control Selection Autor Tune D000000 HZ Trig: Free Run Action: 30 dB Trig: Free Run Action: 30 dB Trig: Free Run Action: 30 dB 0 dBm -3.75 dBm -3.75 dBm 0 dBm -3.75 dBm -3.75 dBm 0 dBm -3.75 dBm Center Freq 2.441000000 GHz 0 dBm -3.75 dBm Center Freq 2.441000000 GHz 0 dBm -3.75 dBm Start Freq 2.441000000 GHz 0 dBm -3.75 dBm 1.000000 GHz 0 dBm -3.75 dBm Start Freq 2.441000000 GHz 0 dBm -3.75 dBm -3.75 dBm 0 dBm -3.75 dBm -3.75 dBm
LIHA	INSU	DH5

π/4DQPSK Modulation DY RL RF 50 & AC Center Freq 2.441000000 GHz IFGain:Low #Atten: 30 dB #Avg Type: Pwr(RMS) Frequency Auto Tun /lkr3 2.311 m -10.37 dB Ref 20.00 dBm IB/div Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz **Stop Freq** 2.441000000 GHz tehaten hite Miller brezelde ialaigen de la ligadaire والمار والاعادة أأأكر إكراري فأز وكالمأسأة والمطاعا Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 4.000 ms (8001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> 1.061 ms 1.452 ms 2.311 ms -8.60 dBm -9.49 dBm -10.37 dBm N 1 t N 1 t N 1 t **Freq Offset** 0 Hz 11 2-DH1 OW RL RF 1900 AC Center Freq 2.441000000 GHz PN0: Fast →→ IFGain:Low #Atten: 30 dB #Avg Type: Pwr(RMS) Frequency TRACE 1 2 3 4 5 0 TYPE WWWWWWW DET P P P P P Auto Tun (r3 3.671 m -5.57 dBi Ref 20.00 dBm Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz **Stop Freq** 2.441000000 GHz politikipik i ni ki di p Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 8.000 ms (8001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz Auto -5.52 dBm -6.50 dBm -5.57 dBm 2.813 n 3.671 n Freq Offset 0 Hz 2-DH3 ent Spectrum Analyzer - Swept SA OURL RF 50 Q AC Center Freq 2.441000000 GHz PNO: Fast →-IFGain:tow #Atten: 30 dB Frequency #Avg Type: Pwr(RMS) TRACE 1 2 3 4 5 0 TYPE WWWWWW DET P P P P P Auto Tune Mkr3 5.336 m -3.39 dBr Ref 20.00 dBm Center Freq ⇔<mark>2</mark> 2.441000000 GHz Start Freq 2.441000000 GHz **Stop Freq** 2.441000000 GHz et a fritta ألله سلل Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.13 ms (8001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> -3.60 dBm -5.34 dBm -3.39 dBm N 1 t N 1 t N 1 t 4.475 ms 5.336 ms Freq Offset 0 Hz 10 11 12 2-DH5

4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0246	62 64 78 1	73 75 77
		1
		111

Each frequency used equally one the average by each transmitter.

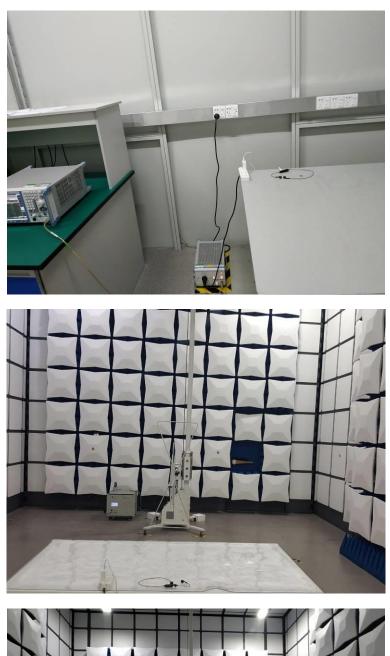
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

Standard Applicable

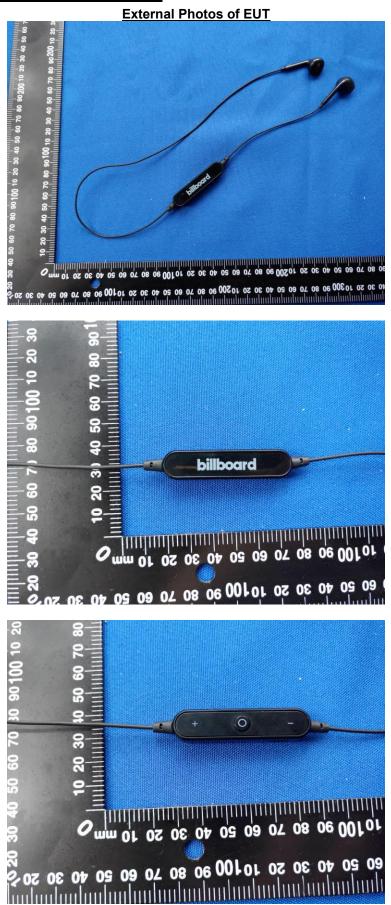
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The directional gains of antenna used for transmitting is 0.00 dBi.


5. Test Setup Photos of the EUT

6. PHOTOS OF THE EUT

Internal Photos of EUT

