

Report No. ATT2017SZ08122679F - Page 1 of 41 -

FCC RADIO TEST REPORT FCC ID: 2AML6BB898

Product: Bluetooth earphone

Trade Name : KINGRAY

Model Name : BB898

Addition Model: KR166,KR600,KR658,KR385,KR875,BB959, BB960,BB959,BB565,EV6828,

Prepared for

KINGRAY ELECTRONICS Co., LTD

Building B, Ge Tailong Industrial Park , No.445, Bulong Rd , BanTian , LongGang , Shenzhen , China

Prepared by

Shenzhen Asia Test Technology Co.,Ltd. 7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ08122679F - Page 2 of 41 -

TEST RESULT CERTIFICATION

Manufacture's Name	. KINGRAY ELECTRONICS Co., LTD			
Address	Adress :Building B, Ge Tailong Industrial Park , No.445, Bulong Rd , BanTian , LongGang , Shenzhen , China			
Product description				
Product name	Bluetooth earphone			
Model and/or type reference	BB898, MG0478,BB897,BB890,BB491,BB497,BB498,KR166, • KR600,KR658,KR385,KR875,BB959,BB960,BB959,BB565,EV6828,			
Rating(s)	DC 3.7V			
Standards	FCC Part15.249			
Test procedure	ANSI C63.10-2013			

This device described above has been tested by ATT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ATT, this document may be altered or revised by ATT, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Jul. 02 2017 ~ Jul. 11 2017 Date of Issue...... Jul.11 2017 Test Result..... Pass

Reviewed by: Seal-Chen Approved by:

Report No. ATT2017SZ08122679F - Page 3 of 41 -

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	4
1.1 TEST FACILITY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	_
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	8
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
3. ANTENNA REQUIREMENT	11
3.1 STANDARD REQUIREMENT	11
3.2 EUT ANTENNA	11
3.3 CONDUCTED EMISSION MEASUREMENT	12
3.3.1 POWER LINE CONDUCTED EMISSION LIMITS	12
3.3.2 TEST PROCEDURE	13
3.3.3 DEVIATION FROM TEST STANDARD 3.3.4 TEST SETUP	13 13
3.2.5 TEST RESULT	13
3.4 RADIATED EMISSION MEASUREMENT	15
3.4.1 RADIATED EMISSION LIMITS	15
3.4.2 TEST PROCEDURE	16
3.4.3 DEVIATION FROM TEST STANDARD 3.4.4 TEST SETUP	16 17
3.4.5 TEST RESULTS (BELOW 30MHZ)	20
3.4.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	21
3.4.7 TEST RESULTS (ABOVE 1000 MHZ)	23
4 . BANDWIDTH TEST 4.1 TEST PROCEDURE	29 29
4.1 TEST PROCEDURE 4.2 DEVIATION FROM STANDARD	29 29
4.3 TEST SETUP	29
4.4 TEST RESULTS	30
5 . EUT TEST PHOTO APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	36

Report No. ATT2017SZ08122679F - Page 4 of 41 -

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Test	Test Requirement Standard Paragraph		Result
Field Strength of			PASS
Fundamental	section 15.249 (a)	Clause 6.6	
Field Strongth of	FCC PART 15 C	ANSI C63.10:	
Field Strength of Unwanted Emissions	section 15.249 (a)		PASS
Offwarted Effissions	section 15.249 (d)	Clause 6.4, 6.6 and 6.7	
Rond Edges	FCC PART 15 C	ANSI C63.10:	PASS
Band Edges	section 15.249 (d)	Clause 6.9.2	PASS
Occupied Rendwidth	FCC PART 15 C	ANSI C63.10:	PASS
Occupied Bandwidth	section 15.215(c)	Clause 6.9.1	PA00
Conducted Emissions	FCC PART 15 C	ANSI C63.10:	N/A
at Mains Terminals	section 15.207	Clause 6.2	N/A
	FCC PART 15 C	FCC PART 15 C	DASS
Antenna Requirement	section 15.203	section 15.203	PASS

Report No. ATT2017SZ08122679F - Page 5 of 41 -

1.1 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dongguan Yaxu (AiT) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1

The 3m Semi-Anechoic Chamber and 3m of Dongguan Yaxu (AiT) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 01, 2014.

.VCCI- Registration No: 2705

The 3m/10m Open Area Test Site, Shielding Room and 3m Chamber of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on Nov. 21, 2012. The Telecommunication Ports Conducted Disturbance Measurement of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on May. 13, 2013.

.TUV NORD

Dongguan Yaxu (AiT) Technology Limited has been assessed on Jun. 13, 2013 that it can carry out EMC tests by order and under supervision of TUV NORD.

.ITS- Registration No: TMPSHA031

Dongguan Yaxu (AiT) Technology Limited has been assessed and included in Intertek Shanghai TMP Program regarding Laboratory facilities and test equipment on Jul.22, 2012.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of ~k=2, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

Report No. ATT2017SZ08122679F - Page 6 of 41 -

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT Name:	Bluetooth earphone		
Model No.:	BB898		
Addition Model:	MG0478,BB897,BB890,BB491,BB497,BB498,KR166,KR600,KR658, KR385,KR875,BB959,BB960,BB959,BB565,EV6828,		
Model Differences:	All models are identical except model name and colors.		
Operation frequency:	2402 MHz to 2480 MHz		
Bluetooth Version	BT 4.2		
Number of channel:	79 channels		
Modulation Type and Antenna Type:	GFSK PCB antenna		
H/W No.:	V3.0		
S/W No.:	V4.2		
Antenna Gain:	0 dBi		
Brand Name:	KINGRAY		
Derivative model No.:	N/A		
Power Supply Range:	DC 3.7V by battery		
Power Cord:	N/A		
Signal Cable:	N/A		

Description of Channel:					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequen cy (MHz)
01	2402	39	2440	77	2478
02	2403	40	2441	78	2479
03	2404	41	2442	79	2480
04		42			
05		43			
06		44			

Report No. ATT2017SZ08122679F - Page 7 of 41 -

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH1
Mode 2	CH39
Mode 3	CH79
Mode 4	Link

For Conductted Emission			
Final Test Mode Description			
Mode 4	Link		

For Radiated Emission			
Final Test Mode	Description		
Mode 1	CH1		
Mode 2	CH39		
Mode 3	CH79		
Mode 4	Link		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels. The EUT use full-charge battery.

(2) Measurements are performed according to C63.10.

(3) The relevant RF Conducted Measurement is performed by a temporary antenna connector,

please refer to the Equipment List for the detail

(4) Test perform on all mode, only records worse cases in the test report.

(5) The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitter signals.

Example: Frequency used:2402 - 2480 MHz

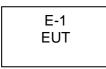
79 Channels (Ch 1 - Ch 79)

Hopping Sequence in Data Mode

55,48,26,33,52,35,50,65,54,67,15,08,64,49,66,53,22,25,63,04,41,05,24,43,73,07,75,28,56,37,60,39,58,69,16,40,21,44 23,42,13,17,46,02,51,03,11,29,77,47,62,27,71,10,68,32,57 12,59,72,30,76,31,18,74,61,14,70,36,06,09,45,19,20,34,38 78,00,01

Report No. ATT2017SZ08122679F - Page 8 of 41 -

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING


The Applicant provides communication tools software to control the EUT for staying in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	Test program: CW6611D_V4.2			
Frequency	2402 MHz 2440 MHz 2480 MHz			
Parameters	Default	Default	Default	

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Bluetooth earphone	N/A	BB898	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Report No. ATT2017SZ08122679F - Page 9 of 41 -

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

Report No. ATT2017SZ08122679F - Page 10 of 41 -

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data
1	Semi-anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016
2	Loop Antenna	TESEQ	HLA6120	35779	9kHz-30MHz	06/05/2017
3	Broadband antenna	R&S	VULB 9160	VULB91 60-516	30MHz-1500 MHz	10/25/2016
4	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GH z	06/05/2017
5	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	15GHz-26.5GH z	06/05/2017
6	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016
7	EMI Measuring Receiver	R&S	ESR	101660	9KHz-40GHz	10/25/2016
8	Multi-device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016
9	Amplifier	EM	EM-30180	060538	1GHz-18GH z	10/25/2016
10	Amplifier	Schwarzbeck	BBV 9719	BBV 9719-663	18GHz-26.5GH z	06/05/2017
11	Spectrum Analyzer	agilent	E4440B	US44300368	1GHz-26.5GH z	06/05/2017
12	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016
13	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016
14	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016
15	Radiated Cable 1#	FUJIKURA	5D-2W	01	30MHz-1GHz	10/25/2016
16	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz -25GHz	10/25/2016
17	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz-30MHz	10/25/2016

Report No. ATT2017SZ08122679F - Page 11 of 41 -

18	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	10/25/2016	
Note: The S	Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this						
SMA antenna connector is listed in the equipment list.							
The Cal.Interval was one year							

3. ANTENNA REQUIREMENT

3.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.2 EUT ANTENNA

The EUT antenna is PCB Antenna with 0dBi gain. It comply with the standard requirement.

Report No. ATT2017SZ08122679F - Page 12 of 41 -

3.3 CONDUCTED EMISSION MEASUREMENT

3.3.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	(dE	Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

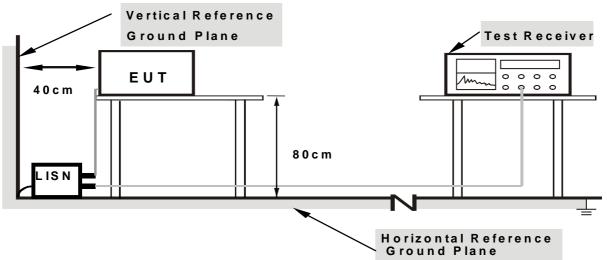
(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Report No. ATT2017SZ08122679F - Page 13 of 41 -


3.3.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Report No. ATT2017SZ08122679F - Page 14 of 41 -

3.2.5 TEST RESULT

EUT :	Bluetooth earphone	Model Name. :	BB898
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	N/A	Test Date :	N/A
Test Mode :	N/A	Phase :	N/A
Test Voltage :		·	•

NOTE: Bluetooth is not available during charging, so not need this test.

Report No. ATT2017SZ08122679F - Page 15 of 41 -

3.4 RADIATED EMISSION MEASUREMENT

3.4.1 Radiated Emission Limits (FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)					
0.009~0.490	2400/F(KHz)	300					
0.490~1.705	24000/F(KHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					

Note:

(1) The tighter limit applies at the band edges.

(2) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.249)

Frequency of Emission (MHz)	Field Strength of fundamental ((millivolts /meter)	Field Strength of Harmonics (microvolts/meter)
2400 - 2483.5	50	500

Notes:

(1) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Report No. ATT2017SZ08122679F - Page 16 of 41 -

3.4.2 TEST PROCEDURE

1)9 kHz to 30 MHz emissions:

For testing performed with the loop antenna, testing was performed in accordance to ANSI C63.10. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT, During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2)30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

3)1 GHz to 25 GHz emissions:

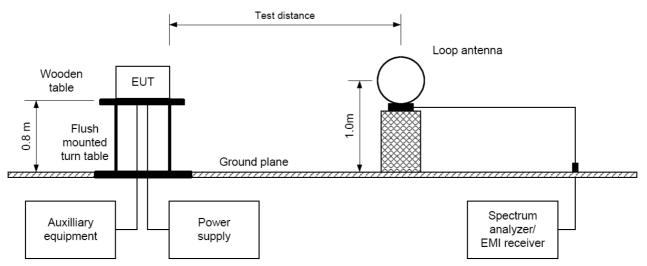
Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz. For testing performed with the horn antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scan between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

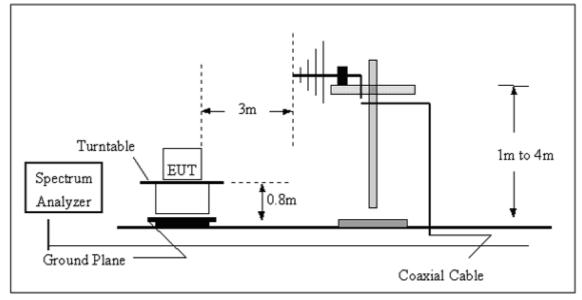
For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Both horizontal and vertical antenna polarities were testedand performed pretest to three orthogonal axis. The worst case emissions were reported.

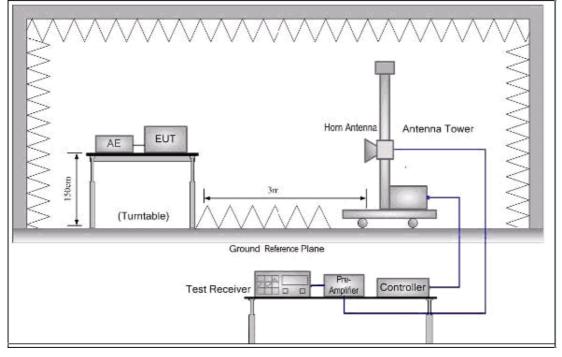
3.4.3 DEVIATION FROM TEST STANDARD


No deviation


Report No. ATT2017SZ08122679F - Page 17 of 41 -

3.4.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Report No. ATT2017SZ08122679F - Page 18 of 41 -

(C) Radiated Emission Test-Up Frequency Above 1GHz

Report No. ATT2017SZ08122679F - Page 19 of 41 -

Field Strength of Fundamental

Frequency (MHz)	Reading Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	amplifier factor (dB)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Detector type	Limits PK/AV (dBuV/m)	Margin (dB)
2400	50.16	25.21	6.51	35.24	46.64	Н	Peak	74	-27.36
2400	40.32	25.21	6.51	35.24	36.8	Н	AVG	54	-17.2
2402	90.24	25.87	6.56	35.1	87.57	Н	Peak	114	-26.43
2402	81.17	25.87	6.56	35.1	78.5	Н	AVG	94	-15.5
2440	89.54	25.93	6.64	35.37	86.74	Н	Peak	114	-27.26
2440	78.22	25.93	6.64	35.37	75.42	Н	AVG	94	-18.58
2480	89.47	26.05	6.7	35.42	86.8	Н	Peak	114	-27.2
2480	76.69	26.05	6.7	35.42	74.02	Н	AVG	94	-19.98
2483.5	50.33	26.13	6.88	35.15	48.19	Н	Peak	74	-25.81
2483.5	38.89	26.13	6.88	35.15	36.75	Н	AVG	54	-17.25
2400	49.79	25.21	6.51	35.24	46.27	V	Peak	74	-27.73
2400	37.15	25.21	6.51	35.24	33.63	V	AVG	54	-20.37
2402	89.87	25.87	6.56	35.1	87.2	V	Peak	114	-26.8
2402	70.25	25.87	6.56	35.1	67.58	V	AVG	94	-26.42
2440	92.22	25.93	6.64	35.37	89.42	V	Peak	114	-24.58
2440	81.19	25.93	6.64	35.37	78.39	V	AVG	94	-15.61
2480	88.67	26.05	6.7	35.42	86	V	Peak	114	-28
2480	79.51	26.05	6.7	35.42	76.84	V	AVG	94	-17.16
2483.5	50.36	26.13	6.88	35.15	48.22	V	Peak	74	-25.78
2483.5	37.85	26.13	6.88	35.15	35.71	V	AVG	54	-18.29

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Report No. ATT2017SZ08122679F - Page 20 of 41 -

3.4.5 TEST RESULTS (BELOW 30MHz)

EUT :	Bluetooth earphone	Model Name. :	BB898
Temperature :	20 ℃	Relative Humidtity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	тх	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

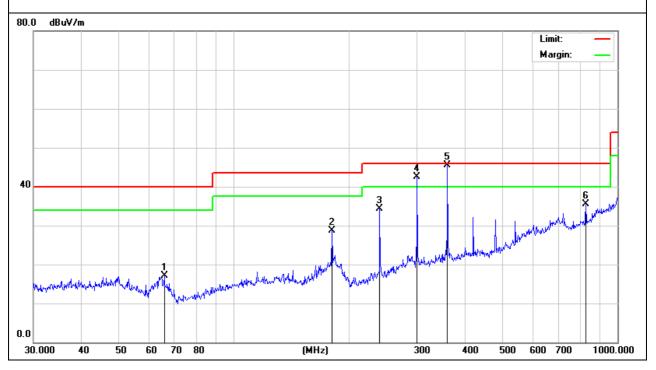
Report No. ATT2017SZ08122679F - Page 21 of 41 -

3.4.6 TEST RESULTS (BETWEEN 30 - 1000 MHZ)

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Vertical

No.	*	Freq. MHz 37.4164 109.4116 249.4250 300.3672 360.4476 801.7862	Reading Level dBuV 36.91 36.00 36.77 38.70 40.28 30.94	Correct Factor dB -16.70 -13.42 -13.63 -9.59 -7.59 3.30	Measure- ment dBuV/m 20.21 22.58 23.14 29.11 32.69 34.24	Limit dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00	Over dB -19.79 -20.92 -22.86 -16.89 -13.31 -11.76	Detector QP QP QP QP QP QP	Antenna Height cm	Table Degree degree	Comment
40 0.0 30.0	dBuv 		alunta Maren	+ Cable	Loss.	(MHz)		3 3 3 3 3 3 3 3 3 3 3			Limit: Margin:

Note:test perform on all mode,"BT 2402" mode is the worst mode and has been reported.



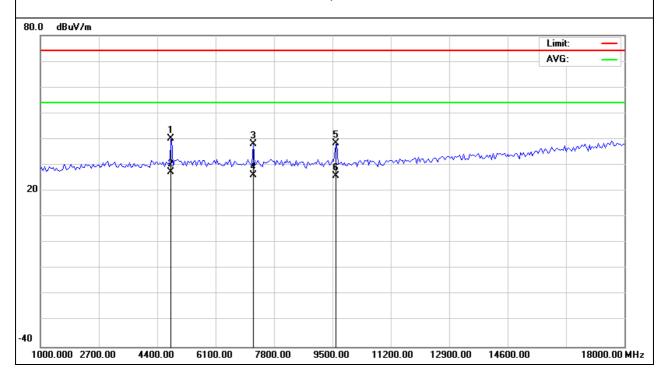
Report No. ATT2017SZ08122679F - Page 22 of 41 -

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		65.8031	34.71	-17.65	17.06	40.00	-22.94	QP			
2		180.0165	40.87	-12.21	28.66	43.50	-14.84	QP			
3		239.9874	48.34	-14.07	34.27	46.00	-11.73	QP			
4	!	300.3672	52.17	-9.59	42.58	46.00	-3.42	QP			
5	*	360.4476	53.10	-7.59	45.51	46.00	-0.49	QP	100	0	
6		827.4934	34.76	0.80	35.56	46.00	-10.44	QP			

Factor = Antenna Factor + Cable Loss.

Note:test perform on all mode,"BT 2402" mode is the worst mode and has been reported.

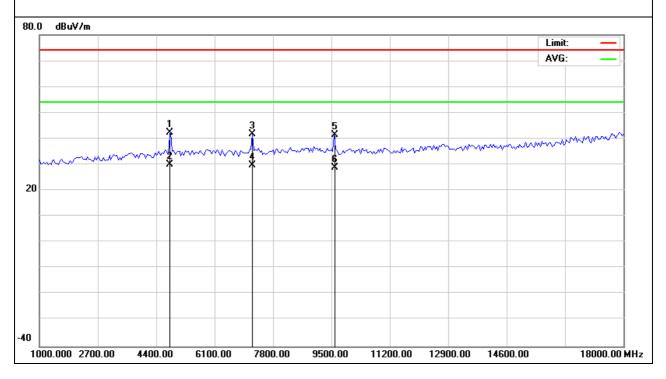

Report No. ATT2017SZ08122679F - Page 23 of 41 -

3.4.7 TEST RESULTS (ABOVE 1000 MHZ)

GFSK			
EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Horizontal

۷o.	Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	32.18	8.12	40.30	74.00	-33.70	QP			
2	*	4804.000	19.24	8.12	27.36	54.00	-26.64	AVG			
3		7206.000	26.61	11.59	38.20	74.00	-35.80	QP			
4		7206.000	14.54	11.59	26.13	54.00	-27.87	AVG			
5		9608.000	21.11	17.49	38.60	74.00	-35.40	QP			
6		9608.000	8.49	17.49	25.98	54.00	-28.02	AVG			

Remark:


Report No. ATT2017SZ08122679F - Page 24 of 41 -

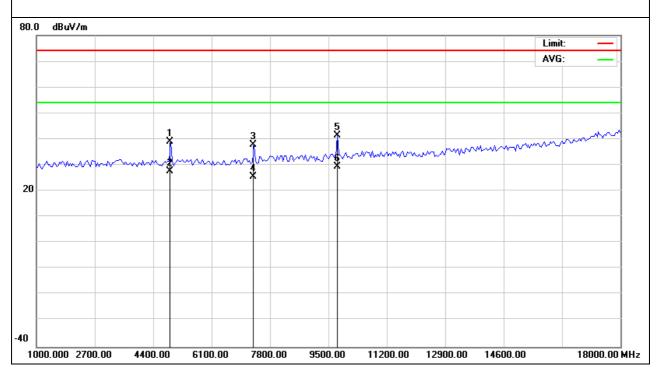
EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Vertical

۷o.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	34.38	8.12	42.50	74.00	-31.50	QP			
2	*	4804.000	22.03	8.12	30.15	54.00	-23.85	AVG			
3		7206.000	30.11	11.59	41.70	74.00	-32.30	QP			
4		7206.000	18.05	11.59	29.64	54.00	-24.36	AVG			
5		9608.000	24.11	17.49	41.60	74.00	-32.40	QP			
6		9608.000	11.27	17.49	28.76	54.00	-25.24	AVG			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

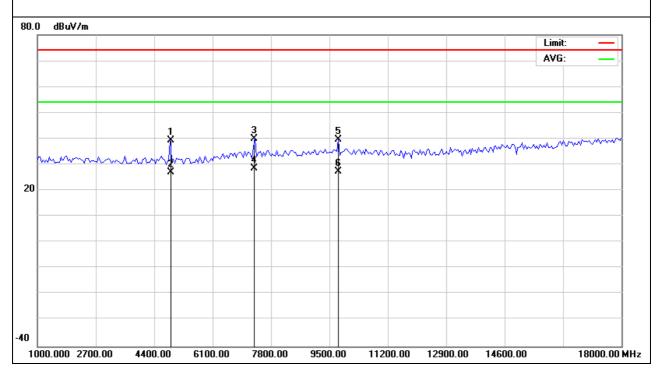


Report No. ATT2017SZ08122679F - Page 25 of 41 -

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH40	Polarization :	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4880.000	30.83	8.17	39.00	74.00	-35.00	QP			
2		4880.000	19.48	8.17	27.65	54.00	-26.35	AVG			
3		7320.000	25.80	12.10	37.90	74.00	-36.10	QP			
4		7320.000	13.36	12.10	25.46	54.00	-28.54	AVG			
5		9760.000	23.14	18.26	41.40	74.00	-32.60	QP			
6	*	9760.000	11.20	18.26	29.46	54.00	-24.54	AVG			

Remark:

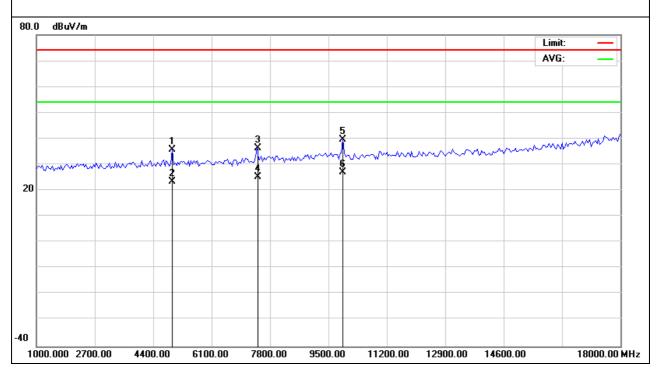


Report No. ATT2017SZ08122679F - Page 26 of 41 -

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH40	Polarization :	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	4880.000	31.23	8.17	39.40	74.00	-34.60	QP			
2	4	4880.000	18.96	8.17	27.13	54.00	-26.87	AVG			
3	7	7320.000	27.90	12.10	40.00	74.00	-34.00	QP			
4	*	7320.000	16.44	12.10	28.54	54.00	-25.46	AVG			
5	ç	9760.000	21.44	18.26	39.70	74.00	-34.30	QP			
6	ç	9760.000	8.95	18.26	27.21	54.00	-26.79	AVG			

Remark:



Report No. ATT2017SZ08122679F - Page 27 of 41 -

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH79	Polarization :	Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		4960.000	27.69	8.21	35.90	74.00	-38.10	QP			
2		4960.000	15.33	8.21	23.54	54.00	-30.46	AVG			
3		7440.000	23.85	12.65	36.50	74.00	-37.50	QP			
4		7440.000	12.51	12.65	25.16	54.00	-28.84	AVG			
5		9920.000	20.72	19.08	39.80	74.00	-34.20	QP			
6	*	9920.000	8.07	19.08	27.15	54.00	-26.85	AVG			

Remark:

Report No. ATT2017SZ08122679F - Page 28 of 41 -

EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH79	Polarization :	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		4960.000	25.79	8.21	34.00	74.00	-40.00	QP				
2	*	4960.000	13.95	8.21	22.16	54.00	-31.84	AVG				
3		7440.000	18.55	12.65	31.20	74.00	-42.80	QP				
4		7440.000	7.91	12.65	20.56	54.00	-33.44	AVG				
5		9920.000	14.42	19.08	33.50	74.00	-40.50	QP				
6		9920.000	2.38	19.08	21.46	54.00	-32.54	AVG				
ema	ark:											
lema acto ^{BO.0}	or =	Antenna	Factor +	Cable L	oss – Pre	e-amplit	fier.					
acto	or =	Antenna	Factor +	Cable L	oss – Pre	e-amplif	fier.				Limit:]
acto	or =	Antenna	Factor +	Cable L	oss – Pre	e-amplit	fier.				Limit: AVG:	
acto	or =	Antenna	Factor +	Cable L	oss – Pre	e-amplit	fier.					_
acto	or =	Antenna	Factor +	Cable L	oss – Pre	e-amplii	fier.					

20 -40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Report No. ATT2017SZ08122679F - Page 29 of 41 -

4. BANDWIDTH TEST

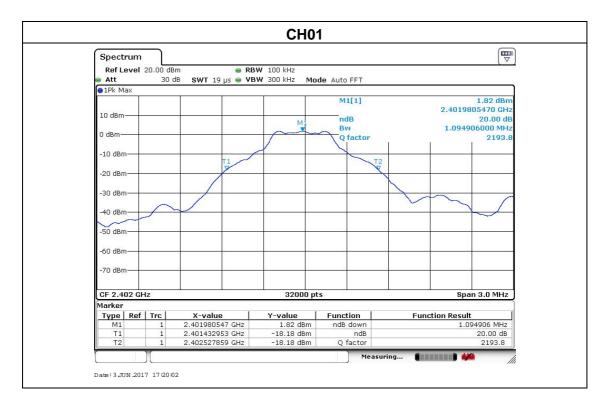
4.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW \geq RBW, Sweep time = Auto.

4.2 DEVIATION FROM STANDARD

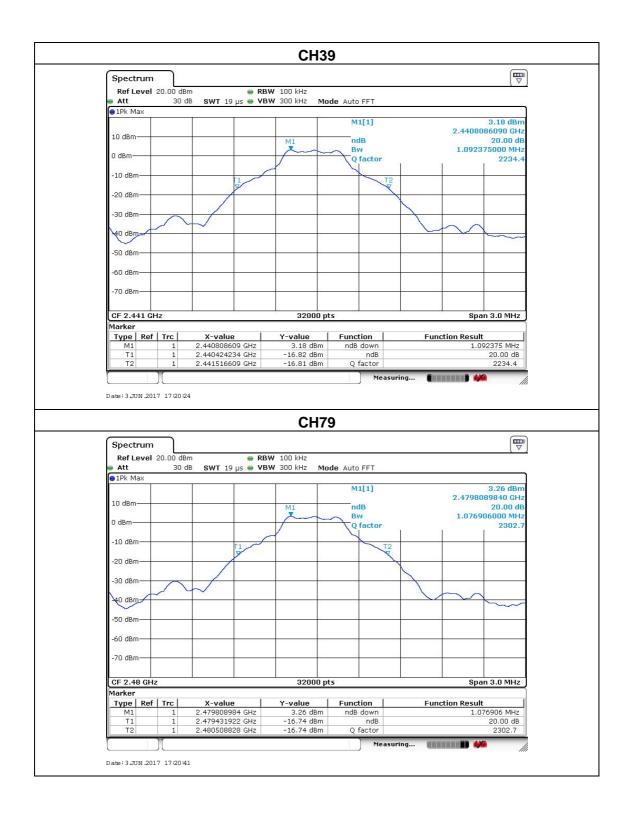
No deviation.

4.3 TEST SETUP



Report No. ATT2017SZ08122679F - Page 30 of 41 -

4.4 TEST RESULTS


EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH01 / CH40 /CH79		

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	1.0949	PASS
2441 MHz	1.0923	PASS
2480 MHz	1.0769	PASS

Report No. ATT2017SZ08122679F - Page 31 of 41 -

Report No. ATT2017SZ08122679F - Page 32 of 41 -

5. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

5.1 DEVIATION FROM STANDARD

No deviation.

5.2 TEST SETUP

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. ATT2017SZ08122679F - Page 33 of 41 -

5.4 TEST RESULTS

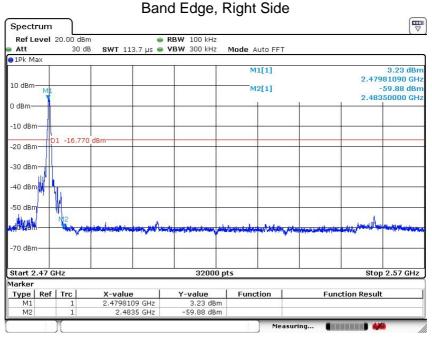
EUT :	Bluetooth earphone	Model Name :	BB898
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH01 / CH39 /CH79		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
2390	47.88	1.05	48.93	74	-25.07	peak	Vertical
2390	46.95	1.05	48	74	-26	peak	Horizontal
2483.5	50.33	1.29	51.62	74	-22.38	peak	Vertical
2483.5	46.68	1.29	47.97	74	-26.03	peak	Horizontal

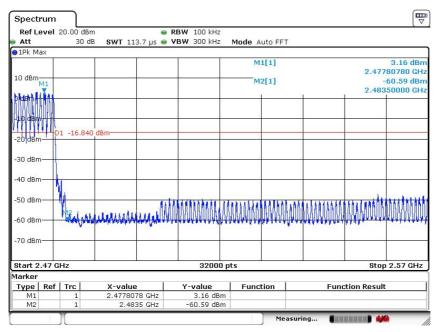
Note: When PK value is lower than the Average value limit, average not record.

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Report No. ATT2017SZ08122679F - Page 34 of 41 -

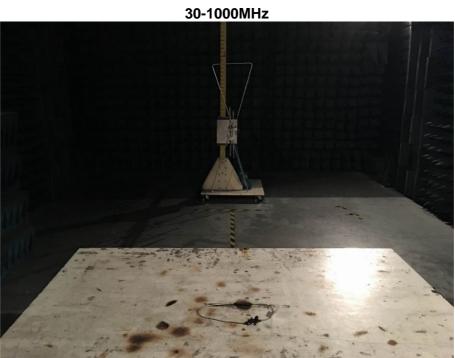

Att	el 20.00 dBn 30 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT			
1Pk Max	1	1	1	T	M	1[1]			1.81 dBr
10 dBm—									197660 GH
10 UDIN					M	2[1]		2.400	-47,15 dBr
0 dBm			-						
-10 dBm—					<u></u>				
-20 dBm—	D1 -18.190	dBm <u></u>			8 51 9				
-30 dBm—					· · ·				lin.
-40 dBm—								Ň	A W
-50 dBm—	-								
69/dBst	. Charte	and the second second	J. Junior	the Automatica and an			0.001.00	- 100 M	
and the second secon	manus automa	n anderen an			THE REAL PROPERTY IN	Maxes. A.	and and an and a second second	And	- AND
-70 dBm—									
Start 2.3	1 GHz			32000) pts		-	Stop	0 2.41 GHz
1arker									
Type R M1	ef Trc	2.40197		Y-value 1.81 dBr	Funct	tion	Fun	ction Result	
M2	1		2.4 GHz						
S24 52	2017 17:16:02			-47.15 dBr	m) Meas	uring 🚺		
Spectru		1		RBW 100 kHz	1		uring 🚺		6 (1 \(\not\)
Spectru Ref Lev	m el 20.00 dBn	1			Mode A	uto FFT	uring		
Spectru Ref Lev Att IPk Max	m el 20.00 dBn	1		RBW 100 kHz	Mode A		uring 🚺		3.35 dBr
Spectru Ref Lev Att	m el 20.00 dBn	1		RBW 100 kHz	Mode A	uto FFT	uring	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att IPk Max	m el 20.00 dBn	1		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH
Spectru Ref Lev Att 1Pk Max 10 dBm- 0 dBm-	m el 20.00 dBn	1		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 10 dBm 0 dBm 10 dBm	m el 20.00 dBn	3 SWT 1:		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH 597600 GH 500000 GH
Spectru Ref Lev Att 1Pk Max 10 dBm- 0 dBm-	m	3 SWT 1:		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 10 dBm 0 dBm 10 dBm	m	3 SWT 1:		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 10 dBm	m	3 SWT 1:		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm	m	3 SWT 1:		RBW 100 kHz	Mode A	uto FFT	uring ()	2.406	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm	m	3 SWT 1:	е 13.7 µs е	RBW 100 kHz VBW 300 kHz	Mode A	, uto FFT 1[1] 2[1]	uring ()	2.400	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev 1Pk 1Pk 1Pk 1Pk 0 dBm 0 0 dBm -10 -20 -20 -30 -40 -40 -50 -50	m	3 SWT 1:	е 13.7 µs е	RBW 100 kHz	Mode A	, uto FFT 1[1] 2[1]		2.400	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev Att 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm	m	3 SWT 1:	е 13.7 µs е	RBW 100 kHz VBW 300 kHz	Mode A	, uto FFT 1[1] 2[1]		2.400	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev 1Pk 1Pk 1Pk 1Pk 0 dBm 0 0 dBm -10 -20 -20 -30 -40 -40 -50 -50	m	3 SWT 1:	е 13.7 µs е	RBW 100 kHz VBW 300 kHz	Mode AI	, uto FFT 1[1] 2[1]		2.406 2.400	3.35 dBr 597660 GH -51.17 dBr
Spectru Ref Lev 110 dBm	m el 20.00 dBm 30 df D1 -16.650	3 SWT 1:	13.7 µs •	RBW 100 kHz VBW 300 kHz	Mode AI	uto FFT 1[1] 2[1]	with a free contractions of the contraction of the	2.406 2.400	3.35 dBr 597660 GH 51.17 dBr 000000 dH

Band Edge, Left Side


Date: 3 JUN .2017 17:17:33

Report No. ATT2017SZ08122679F - Page 35 of 41 -

Date: 3 JUN 2017 17:18:54



Date: 3 JUN .2017 17:18:12

Report No. ATT2017SZ08122679F - Page 36 of 41 -

6. EUT TEST PHOTO

Radiated Measurement Photos

Above 1GHz

Report No. ATT2017SZ08122679F - Page 37 of 41 -

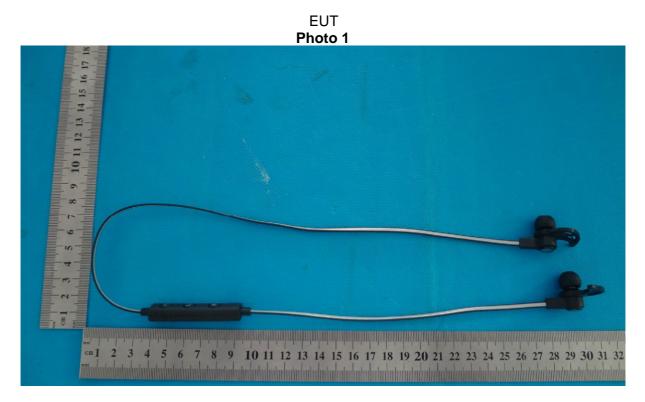
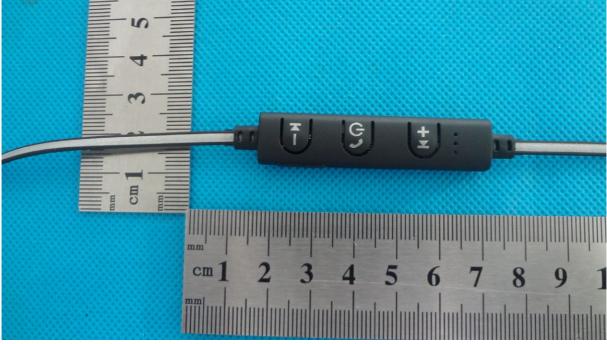
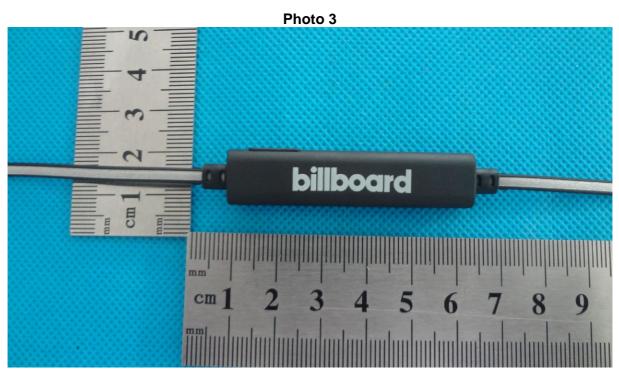




Photo 2

Report No. ATT2017SZ08122679F - Page 38 of 41 -

Photo 4

Report No. ATT2017SZ08122679F - Page 39 of 41 -

Photo 6

Report No. ATT2017SZ08122679F - Page 40 of 41 -

Report No. ATT2017SZ08122679F - Page 41 of 41 -

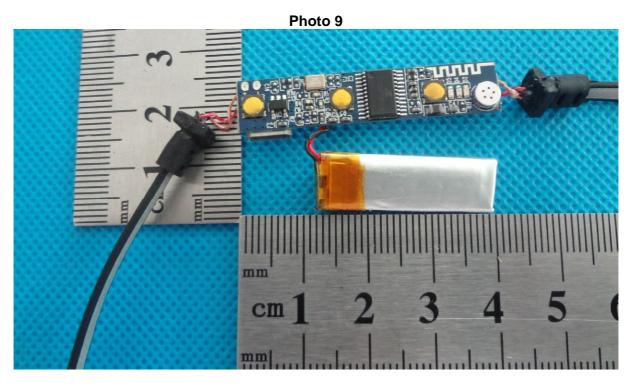
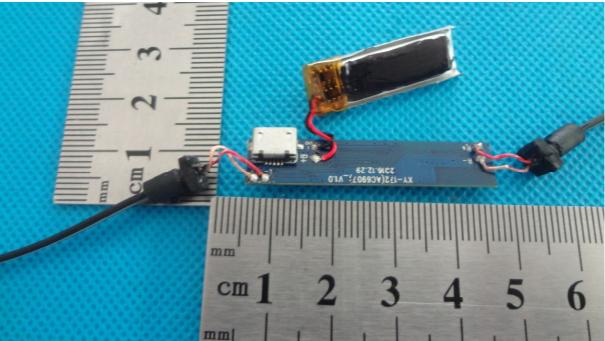



Photo 10

