Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f ²)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/		f/1500	30					
1500-100,000	/		1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

- $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);
- P = power input to the antenna (in appropriate units, e.g., mW);
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
Wi-Fi	2412-2462	3.00	2.00	20.00	100.00	20	0.0397	1.00
	2422-2452	3.00	2.00	18.00	63.10	20	0.0250	1.00
BLE	2402-2480	3.00	2.00	1.00	1.26	20	0.0005	1.00
BT3.0	2402-2480	3.00	2.00	1.00	1.26	20	0.0005	1.00

Conclusion: The EUT meets exemption requirement- RF exposure evaluation greater than 20cm distance specified in § 2.1091. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by§ 2.1093.