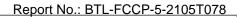


FCC Radio Test Report

FCC ID: 2AMHM-P2-6E-WIFI

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-5-2105T078 Communication Module LBEE5HY1MW BOSCH Robert Bosch Engineering and Business Solutions Private Limited No.123, Industrial Layout, Hosur Road, Koramangala, Bangalore - 560 095
Radio Function	: Bluetooth LE 4.2
FCC Rule Part(s) Measurement Procedure(s)	: FCC Part15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2021/5/19 : 2021/5/19 ~ 2021/9/24 : 2021/10/6

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.


Prepared by Supervisor Jerry ١a **ac-MRA** Approved by Peter Chen, Vice Manager

BTL Inc.

 No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

 Tel: +886-2-2657-3299
 Fax: +886-2-2657-3331
 Web: www.newbtl.com

ng Labo 0659

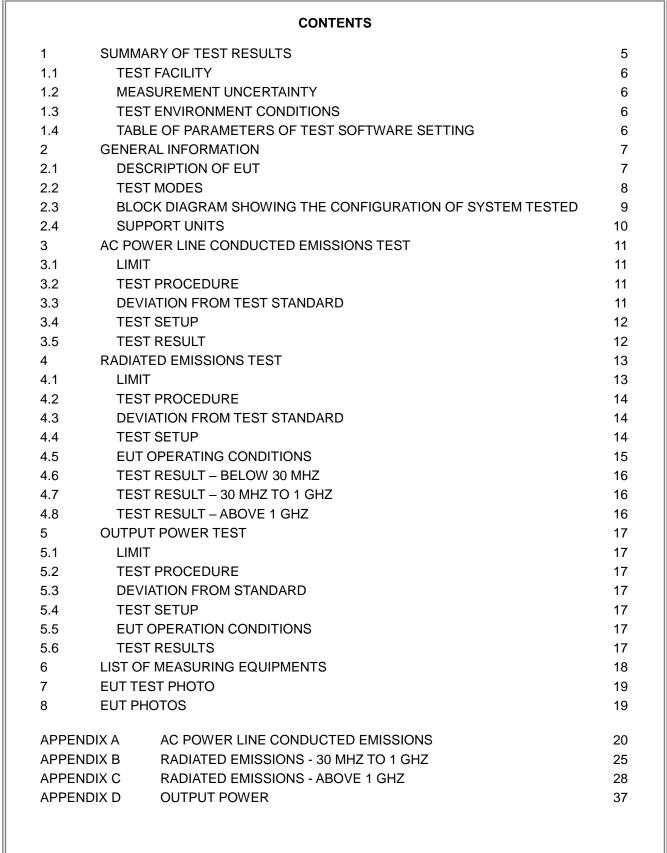
Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.


BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-5-2105T078	R00	Original Report.	2021/10/6

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

	FCC Part 15, Subpart C (15.247)						
Standard(s) Section	Judgement	Remark					
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass				
15.247(b)(3)	Output Power	APPENDIX D	Pass				

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: VPYLBEE5HY1MW) to be incorporated to the host device (Model number: AD00 A2 0044 6YE, Product name: Phantom EDGE). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68	3-1, Ln. 169, Sec.	2, Da	atong Rd., Xizhi [Dist.,	New Taipei City 2	221, T	aiwan	
The te	st sites and facili	ties a	re covered under	FCC	RN: 674415 and	d DN:	TW0659.	
\boxtimes	C05		CB08		CB11	\boxtimes	CB15	CB16
\boxtimes	SR05							

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Measurement Frequency Range	U,(dB)
0.03 GHz ~ 0.2 GHz	4.17
0.2 GHz ~ 1 GHz	4.72
1 GHz ~ 6 GHz	5.21
6 GHz ~ 18 GHz	5.51
18 GHz ~ 26 GHz	3.69
26 GHz ~ 40 GHz	4.23
	Range 0.03 GHz ~ 0.2 GHz 0.2 GHz ~ 1 GHz 1 GHz ~ 6 GHz 6 GHz ~ 18 GHz 18 GHz ~ 26 GHz

C. Conducted test :

Test Item	U,(dB)
Output Power	0.3669

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 59 %	AC 120V	William Wei
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Hunter Chiang
Output Power	25.4 °C, 52 %	AC 120V	Tim Lian

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	Tera Term V.4.101					
Modulation Mode	2402 MHz 2440 MHz 2480 MHz Data Rate					
BLE 4.2	0F	0F	0F	1 Mbps		

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Communication Module
Model Name	LBEE5HY1MW
Brand Name	BOSCH
Model Difference	N/A
Power Supply Rating	DC 3.3V from host equipment
Host device information	
Equipment	Phantom EDGE
Model Name	AD00 A2 0044 6YE
Brand Name	BOSCH
Power Source	AC Mains.
Power Rating	I/P: 90 – 280 V AC , <10W , 50/60Hz
Products Covered	N/A
WIFI+BT Module	LBEE5HY1MW
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Maximum Output Power	1 Mbps: 6.26 dBm (0.0042 W)
Test Model	AD00 A2 0044 6YE
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

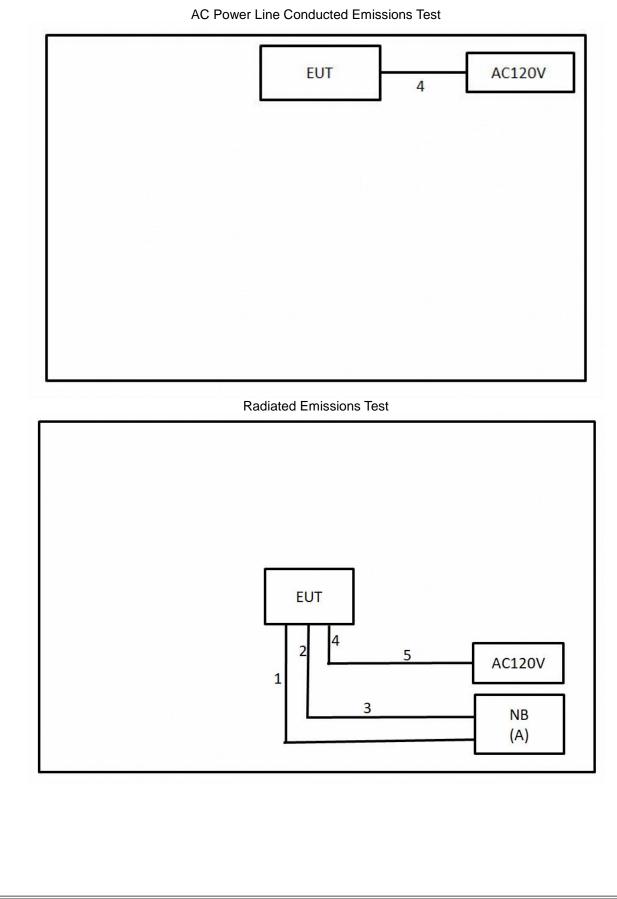
Antenna	Manufacture	Model No.	Туре	Connector	Gain (dBi)	Note
1	<u>圣丹纳</u> SAINTENNA	SAA31139A	Dipole	SMA-J	2.35	

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Output Power	1 Mbps	00/19/39	-

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.


(2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
A	NB	HP	TPN-I119	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	3m	RJ45 Cable	Supplied by test requester
2	N/A	N/A	1.5m	RS232 to RS232	Supplied by test requester
3	N/A	N/A	1.1m	RS232 to USB	Supplied by test requester
4	N/A	N/A	1m	Power Cord	Supplied by test requester
5	N/A	N/A	1.7m	Power Cord	Furnished by test lab.

AC POWER LINE CONDUCTED EMISSIONS TEST 3

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

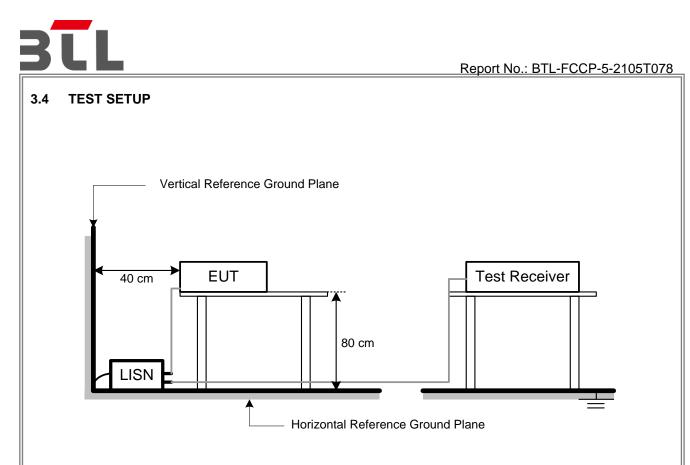
Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

TEST PROCEDURE 3.2

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).


- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- Excess I/O cables that are not connected to a peripheral shall be bundled in the center. C. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

DEVIATION FROM TEST STANDARD 33

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
(11172)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

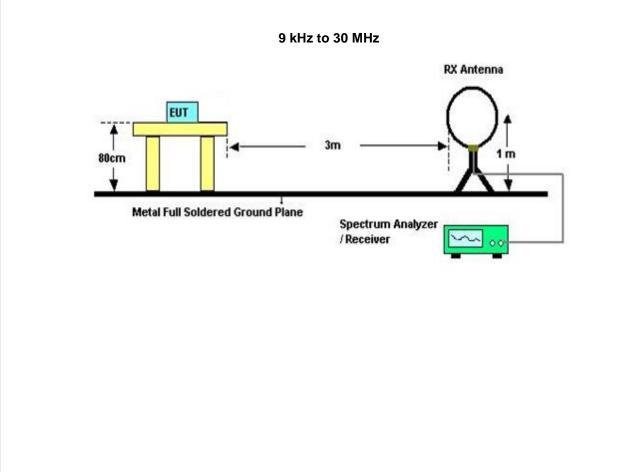
Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Ш	21.22

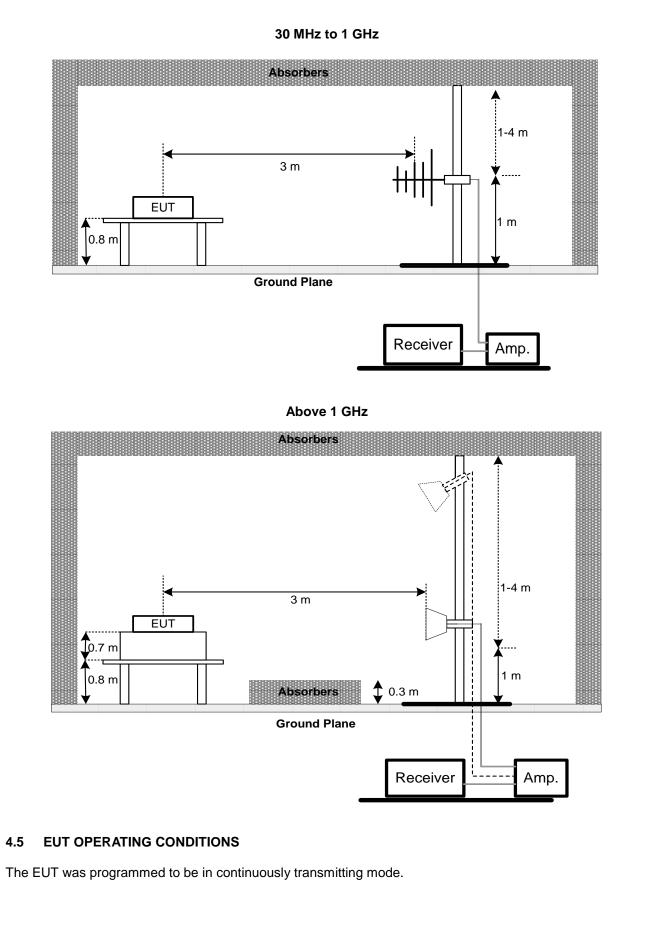
Measurement Value		Limit Value		Margin Level
21.22	I	54	Ι	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 OUTPUT POWER TEST

5.1 LIMIT

	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT Power Meter	
-----------------	--

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 L	IST OF MEAS	URING EQUIPI	MENTS			
		AC Pow	er Line Conducted	d Emissions		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
			Radiated Emissio	ons		

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26
8	Signal Analyzer	Agilent	N9010A	MY52220990	2021/8/18	2022/8/17
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25

"N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. Remark:

7 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2105T078-FCCP-2 (APPENDIX-TEST PHOTOS).

8 EUT PHOTOS

Please refer to document Appendix No.: EP-2105T078-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

st Mo	de	Normal						Tested Date	2021/9/13
	equency	-						Phase	Line
80.0									
70									
60									
50									
40			3 × 4						11 12 9 X
30	1 X		4 ×	5				3	9 × ¥0 ×
20	2 X			X ¥				×	
10									
0.0									
0.	150	C).5		(MHz)		5		30.000
No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2265	18.91	9.72	28.63	62.58	-33.95	QP		
2	0.2265	8.73	9.72	18.45	52.58	-34.13	AVG		
3	0.6224	25.95	9.73	35.68	56.00	-20.32	QP		
4 *	0.6224	20.75	9.73	30.48	46.00	-15.52	AVG		
5	0.9487	11.89	9.74	21.63	56.00	-34.37	QP		
6	0.9487	8.52	9.74	18.26	46.00	-27.74	AVG		
7	6.7650	13.78	10.03	23.81	60.00	-36.19	QP		
8	6.7650	9.48	10.03	19.51	50.00	-30.49	AVG		
	16.3837	20.63	10.19	30.82	60.00	-29.18	QP		
9			40.40	27.37	50.00	-22.63	AVG		
9 10	16.3837	17.18	10.19	27.07	00.00				
	16.3837 25.5637	17.18 28.37	10.19	38.61	60.00	-21.39	QP		

REMARKS:

Test Mode Normal Tested Date Test Frequency - Phase	2021/9/13 Neutral
	Neutral
70 60 60 60 50 60 40 3	
60 50 40 3	
50 40 3	
40	
3	
	11 ¥2 ×
30 × × × 5	
10 X	
0.0	
0.150 0.5 (MHz) 5	30.000
Reading Correct Measure- No. Mk. Freq. Level Factor ment Limit Over	
MHz dBuV dB dBuV dB Detector Comment 1 0.1838 21.76 9.73 31.49 64.31 -32.82 QP	
1 0.1838 21.76 9.73 31.49 64.31 -32.82 QP 2 0.1838 12.27 9.73 22.00 54.31 -32.31 AVG	
3 0.6225 25.19 9.74 34.93 56.00 -21.07 QP	
4 * 0.6225 21.03 9.74 30.77 46.00 -15.23 AVG	
5 0.9487 11.32 9.75 21.07 56.00 -34.93 QP	
6 0.9487 6.68 9.75 16.43 46.00 -29.57 AVG	
6 0.9487 6.68 9.75 16.43 46.00 -29.57 AVG 7 3.5138 6.17 9.86 16.03 56.00 -39.97 QP	
7 3.5138 6.17 9.86 16.03 56.00 -39.97 QP	
7 3.5138 6.17 9.86 16.03 56.00 -39.97 QP 8 3.5138 2.33 9.86 12.19 46.00 -33.81 AVG	
7 3.5138 6.17 9.86 16.03 56.00 -39.97 QP 8 3.5138 2.33 9.86 12.19 46.00 -33.81 AVG 9 6.7988 8.87 10.05 18.92 60.00 -41.08 QP	

REMARKS:

								_		
est Mo		Idle						_	ested Date	2021/9/13
est Fre	equency	-						Ρ	hase	Line
80.0	dBuV									
70										
60										
50										
40			3 X							11 12 ×
30			4 ×					7		9 × ¥0 ×
20		2				5 X 6 X		¥		
10										
0.0										
0.	150	l	0.5		(MHz)		5			30.000
No. MI		Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detecto	or	Comment	
1	0.2647	19.13	9.73	28.86	61.28	-32.42	QP			
2	0.2647	10.13 26.75	9.73 9.73	19.86	51.28 56.00	-31.42	AVG QP			
3 4 *	0.6225	20.75	9.73	36.48 31.14	46.00	-19.52	AVG			
5	3.4125	9.39	9.75	19.24	40.00 56.00	-14.00	QP			
6	3.4125	4.70	9.85	19.24	46.00	-31.45	AVG			
7	6.4703	12.49	10.02	22.51	60.00	-37.49	QP			
	6.4703	9.10	10.02	19.12	50.00	-30.88	AVG			
0	0.4700			30.55	60.00	-29.45	QP			
8	16,3838	20.36	10.18			20.10				
9	16.3838 16.3838	20.36	10.19			-22.78	AVG			
	16.3838 16.3838 25.4738	20.36 17.03 28.21	10.19	27.22	50.00 60.00	-22.78 -21.55	AVG QP			

REMARKS:

est Mode		Idle						Tested Date	2021/9/13
est Freq	uency	-						Phase	Neutral
80.0	dBu¥								
70									
60									
50									
40			3 X X						11 12 X
30	1 X 2		×						
20	×			5 X 6 X		7 ¥8 ×		9 Yo	
10								×	
0.0	0		.5		(MHz)		5		30.000
0.15				Magazira	(MN2)		5		30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
4	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1950	19.34 11.52	9.72 9.72	29.06 21.24	63.82 53.82	-34.76 -32.58	QP AVG		
3	0.6225	25.38	9.72	35.12	56.00	-32.56	QP		
4 *	0.6225	23.58	9.74	32.33	46.00	-13.67	AVG		
5	0.9330	9.78	9.75	19.53	56.00	-36.47	 		
6	0.9330	4.63	9.75	14.38	46.00	-31.62	AVG		
7	3.4890	7.68	9.86	17.54	56.00	-38.46	QP		
8	3.4890	3.32	9.86	13.18	46.00	-32.82	AVG		
9	7.1925	6.75	10.07	16.82	60.00	-43.18	QP		
10	7.1925	2.52	10.07	12.59	50.00	-37.41	AVG		
11	25.4085	27.28	10.42	37.70	60.00	-22.30	QP		
12	25.4085	23.14	10.42	33.56	50.00	-16.44	AVG		

REMARKS:

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

-	Test Mo	de		BLE 4	.2(1 N	lbps)			٦	Fest Dat	e			202	1/7/5	
Tes	st Frequ	ency			02MH	Z			P	olarizati	on				rtical	
	Temp				23°C					Hum.				5	7%	
80.0 dB	uV/m															_
70																
60																
50																
40			2 X						3 X	4 X		5 X			6 X	
30																
20																
10																
0.0																
30.000	127.00	224.0	0	321.00	418.	00	515.	00	612.	.00 7	09.00	80	6.00		1000.0	о мн
No.	Mk.	Freq.		Reading Level		orrect actor		easure- ment		Limit		Over				
		MHz		dBuV	(dB	d	3uV/m	(dBuV/m		dB	Det	ector	Comn	nent
1	*	89.202	2	57.59	-1	4.65	2	2.94		43.50		-0.56	(QΡ		
2	!	254.522	26	50.45	-6	9.10	2	1.35		46.00		-4.65	(QΡ		
3	!	600.004	13	42.82	-().46	2	2.36		46.00		-3.64	(QΡ		
4	!	649.991	16	42.17		.10	2	2.27		46.00		-3.73	(QΡ		
5		749.998	36	36.96	1	.86	3	38.82		46.00		-7.18	р	eak		
6		949.980)3	31.21	4	.98	3	36.19		46.00		-9.81	D	eak		

REMARKS:

-	Test Mo	de	В	LE 4.2	(1 Mbps)			Te	st Dat	е		202	21/7/5	
Tes	st Frequ	ency			2MHz			Pola	arizati	on			izontal	
	Temp			23	S°C			ŀ	Hum.			5	7%	
80.0 dB	uV/m													_
70														
60														
50								3						
40 —			2 X					×	4 ×		5 X		6	
30														
20														
10														
0.0														
30.000	127.00	224.00	321.	00	418.00	515.0)0 6	612.00	7	09.00	806	.00	1000.00	МН
No.	Mk.	Freq.		ding vel	Correct Factor		asure- nent	· L	_imit	Ó	ver			
		MHz	dB	ωV	dB	dE	BuV/m	dE	3uV/m	d	В	Detector	Comm	ent
1	*	88.9436	57	.61	-14.60	Z	3.01	4	3.50	-0	.49	QP		
2	!	253.0676	6 51	.02	-9.14	Z	1.88	4	6.00	-4	.12	QP		
3	!	600.0043	3 44	.94	-0.46	Z	4.48	4	6.00	-1	.52	QP		
4	!	649.9916	6 40	.10	0.10	Z	0.20	4	6.00	-5	.80	QP		
5		758.7610) 36	.79	1.96	3	8.75	4	6.00	-7	.25	peak		
6		949.9803	3 34	.71	4.98	3	9.69	4	6.00	-6	.31	peak		

REMARKS:

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mo	do	BI	E 4.2	2(1 N	(hne)			-	Fest Date	<u>^</u>		201	21/6/1	
7	Test Frequ				2MH					olarizatio				izontal	
	Temp				3°C					Hum.	-			6%	
130.0	dBu¥/m														
120															
110							4	l							1
100 -															
90															
80															
70															-
60					1									5 X	
	and the second stands	mound	materia was	Maranta	AM	applabelie	Maril	martin	-	ward to reader	-	umput	harrow how the dates	Approximate Approximat	<u>x</u>
50					2 X									6	1
40					~									×	
30 -															
20															
10.0															
2302	.000 2322.0	D 2342.00	2362	.00	2382	2.00	2402	2.00	2422	2.00 24	442.00	246	52.00	2502.00	MHz
No.	Mk.	Freq.	Rea Lev			orrect actor		easure ment	-	Limit	С	ver			
		MHz	dB			dB	d	BuV/m	(dBuV/m	(dB	Detector	Comme	ent
1		2378.233	27.	94	30).52	į	58.46		74.00	-1	5.54	peak		
2		2378.233	5 14.	34	30).52	4	14.86		54.00	-9	9.14	AVG		
3	Х	2402.000).57		03.02		74.00		9.02	peak	NoLim	
4	*	2402.000).57		02.51		54.00		3.51	AVG	NoLim	nit
5		2497.760).77		52.22		74.00		1.78	peak		
6		2497.760	12.	71	30).77	4	43.48		54.00	-1	0.52	AVG		

REMARKS:

	Test Mo Test Frequ			2(1 Mbps) 80MHz		Test Date Polarization	n		1/6/1 zontal	
	Temp			3°C		Hum.		56%		
130.0	dBuV/m		2			TIMIT.			070	
Г										
120 -										
10 -										
00 -										
90 -										
30 -										
70										
50 -	1			1		5 ***		handelingenderstreet		
io 🗖	and the second states	Any Marine Markings	Market and Antoin States	handerstander	white here was a set	1 WH When Allende	den and the second of the second	her of her have been been been been been been been be	and have a supplicity of	
40	2					6				
30	x					×				
20 -										
10.0										
2380	0.000 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	0.00	2580.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2388.240	26.50	30.54	57.04	74.00	-16.96	peak		
2		2388.240	4.54	30.54	35.08	54.00	-18.92	AVG		
3	Х	2480.000	69.64	30.73	100.37	74.00	26.37	peak	NoLimit	
4	*	2480.000	69.08	30.73	99.81	54.00	45.81	AVG	NoLimit	
5		2502.733	29.91	30.78	60.69	74.00	-13.31	peak		
6		2502.733	7.06	30.78	37.84	54.00	-16.16	AVG		

REMARKS:

Test Mode Test Frequency				Bl		2(1 Mb 2MHz	ps)				Test D Polariz)			1/6/1 rtical	
100	Tem					3°C				-	Hun		<u> </u>		56%		
130.0 dB	uV/m	۲									1101					070	
																	٦
120																	-
110																	
																	1
100																	-
90																	
BO																	
70																	
60																	
50																	1
50		1 X															-
40 																	
		2 X															
30		~															
20																	
10.0																	
1000.00	0 3550.	00 610	0.00	8650	.00	11200.	00	1375	i0.00	16	300.00	188	50.00	2140	00.00	26500.00	D MH:
No.	Mk.	Fre	q.	Rea	ding	Corr	ect	Me	easur	e-	Lim	it	Ove	er			
				Le	vel	Fac			ment								
		MH		dB		dE			3uV/r		dBuV		dE		Detector	Comme	ent
1		4804.		53.		-8.8			15.02		74.0		-28.		peak		
2	*	4804.	000	42.	.06	-8.8	36	3	33.20		54.0	0	-20.	80	AVG		

REMARKS:

Test Mode Test Frequency					2(1 Mbps)		Test Date			1/6/1
le					02MHz 23°C		Polarizatio	on		zontal
130.0 d	Temp BuV/m	5			23.0		Hum.		C	6%
130.0 0	547711									
120										
110										
100										
90										
80										
70										
60										
00										
50		1								
40		1 X								
		2 X								
30										
20										
10.0										
1000.0	00 3550.0	DO 6100	.00	8650.00	11200.00	13750.00	16300.00 18	3850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq		Reading		Measure	- Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m		dB	Detector	Comment
1	*	4804.0		52.11	-8.86	43.25	74.00	-30.75	peak	
2	*	4804.0	00	42.16	-8.86	33.30	54.00	-20.70	AVG	

REMARKS:

Та	Test M	lode quency		BL		2(1 MI 0MHz				[Test D Polariza					1/6/1 rtical	
Te	Tem					3°C	<u> </u>				Hun				56%		
130.0 d	BuV/m	ip			2	50					Tiun	1.			5	0 70	
120																	
110																	1
100																	-
90																	
80																	1
70																	
60			_														-
50		-															
		1 X															
40		2 X															
30		••															-
20																	
10.0																	
	00 3550.	.00 610	00.00	8650	.00	11200).00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.0	 0 MHz
No.	Mk.	Fre	q.	Rea Lev			rect ctor		easur ment		Limi	t	Ove	ər			
		MF	z	dB			B		BuV/r		dBuV	/m	dE	3	Detector	Comm	ent
1		4880.		54.			74		15.57		74.0		-28.		peak		
2	*	4880.	000	43.	79	-8.	74	3	35.05		54.0	0	-18.	95	AVG		

REMARKS:

	Test M				В	_E 4.2						Test D					21/6/1	
Ie	st Frec		су				0MH 3°C	Z			ŀ	Polariza			_		zontal 6%	
1300 d	Temp 30.0 dBuV/m					2	30					Hum	1.			C	0%	
130.0 0	, 4 7 111																	
120																		
10																		1
100																		-
90																		
во —																		
70																		
60																		
50																		
40		1																
		2	2 <															
30																		
20																		-
10.0																		
1000.00)0 3550	.00	6100	.00	8650).00	1120	0.00	1375	i0.00	16	300.00	188	50.00	2140)0.00	26500.0	O MH:
No.	Mk.		Freq	•		ding vel		rrect ctor		easur ment		Limi	t	Ove	ər			
			MHz	_		uV		B		BuV/r		dBuV	/m	dE	3	Detector	Comm	ent
1		48	880.0	00	53	.45	-8	.74	2	14.71		74.0	0	-29.	29	peak		
2	*	48	880.0	00	43	.63	-8	.74	3	34.89		54.0	0	-19.	11	AVG		

REMARKS:

	Test M	ode Juency		BL		2(1 MI 0MHz					Test D Polariz		•			1/6/1 rtical	
Ie	Tem					3°C	-			<u> </u>	Hun		<u> </u>			6%	
130.0 dl	∃uV/m	ip			2	50					TIM				0	070	
																	٦
120																	-
10																	
																	1
00																	-
90																	
BO																	1
70 -																	1
50																	
																	4
50		1 X															1
40 		2 2															
30		x															
20																	1
10.0																	
)0 3550		0.00	8650.		11200		1375			300.00		50.00		00.00	26500.00	D MH
No.	Mk.	Free	q.	Read Lev		Cor Fac			easur ment		Lim	it	Ove	ər			
		MH	z	dBu	μV	d	В	dl	BuV/ı	n	dBuV	/m	dE	3	Detector	Comme	ent
1		4960.	000	52.	59	-8.	60	4	43.99)	74.0	0	-30.	01	peak		
2	*	4960.	000	42.	30	-8.	60	3	33.70)	54.0	0	-20.	30	AVG		

REMARKS:

Та	Test M				2(1 Mbps)		Test Date			1/6/1
TE	est Frec Tem				30MHz 23°C		Polarizatio Hum.	DN		zontal 6%
130.0 d	BuV/m	ιp		2	30		num.		5	070
100.0 1				ĺ					1	
120										
110										
100										
90										
80										
70										
60										
50		1								
40		1 X								
30		2 X								
20										
10.0										
	00 3550			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	2	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.0	000	53.72	-8.60	45.12	74.00	-28.88	peak	
2	*	4960.0	000	41.79	-8.60	33.19	54.00	-20.81	AVG	

REMARKS:

APPENDIX D OUTPUT POWER

Test Mode :	BLE 4.2 (1Mb)	т	ested Date 2	2021/9/9		
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result	
2402	6.26	0.0042	30.00	1.0000	Pass	
2440	5.68	0.0037	30.00	1.0000	Pass	
2480	5.73	0.0037	30.00	1.0000	Pass	

End of Test Report