

FCC Radio Test Report

FCC ID: 2AMHM-P2-6E-WIFI

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-4-2105T078 Communication Module LBEE5HY1MW BOSCH Robert Bosch Engineering and Business Solutions Private Limited No.123, Industrial Layout, Hosur Road, Koramangala, Bangalore - 560 095
Radio Function	: Bluetooth EDR
FCC Rule Part(s) Measurement Procedure(s)	: FCC Part15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2021/5/19 : 2021/5/19 ~ 2021/9/24 : 2021/10/6

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Supervisor Jerry ١a **ac-MRA** hilah Peter Chen, Vice Manager

Prepared by

Approved by

BTL Inc.

 No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

 Tel: +886-2-2657-3299
 Fax: +886-2-2657-3331
 Web: www.newbtl.com

Testing Laboratory

0659

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

1 SUMMARY OF TEST RESULTS 5 1.1 **TEST FACILITY** 6 1.2 MEASUREMENT UNCERTAINTY 6 1.3 TEST ENVIRONMENT CONDITIONS 6 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 6 2 **GENERAL INFORMATION** 7 2.1 DESCRIPTION OF EUT 7 2.2 **TEST MODES** 9 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 10 2.4 SUPPORT UNITS 11 3 AC POWER LINE CONDUCTED EMISSIONS TEST 12 3.1 LIMIT 12 3.2 TEST PROCEDURE 12 **DEVIATION FROM TEST STANDARD** 3.3 12 TEST SETUP 13 3.4 3.5 TEST RESULT 13 RADIATED EMISSIONS TEST 14 4 4.1 14 LIMIT 4.2 **TEST PROCEDURE** 15 4.3 **DEVIATION FROM TEST STANDARD** 15 4.4 TEST SETUP 16 EUT OPERATING CONDITIONS 4.5 17 4.6 **TEST RESULT – BELOW 30 MHZ** 17 TEST RESULT - 30 MHZ TO 1 GHZ 4.7 17 **TEST RESULT – ABOVE 1 GHZ** 4.8 17 OUTPUT POWER TEST 5 18 LIMIT 5.1 18 5.2 **TEST PROCEDURE** 18 **DEVIATION FROM STANDARD** 5.3 18 5.4 TEST SETUP 18 5.5 EUT OPERATION CONDITIONS 18 TEST RESULTS 5.6 18 LIST OF MEASURING EQUIPMENTS 6 19 7 EUT TEST PHOTO 20 EUT PHOTOS 8 20 APPENDIX A AC POWER LINE CONDUCTED EMISSIONS 21 APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ 26 APPENDIX C **RADIATED EMISSIONS - ABOVE 1 GHZ** 29 APPENDIX D OUTPUT POWER 46

CONTENTS

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-4-2105T078	R00	Original Report.	2021/10/6

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section	Description	Test Result	Judgement	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass			
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass			
15.247 (b)(1)	Output Power	APPENDIX D	Pass			

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: VPYLBEE5HY1MW) to be incorporated to the host device (Model number: AD00 A2 0044 6YE, Product name: Phantom EDGE). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

\boxtimes	C05	CB08	CB11	\boxtimes	CB15	CB16
\boxtimes	SR05					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23
	20 01 2 10 40 01 12	7.20

C. Conducted test :

Test Item	U,(dB)
Output Power	0.3659

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 59 %	AC 120V	William Wei
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Hunter Chiang
Output Power	23.6 °C, 51 %	AC 120V	Paul Shen

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	Tera Term V.4.101					
Modulation Mode	2402 MHz	2402 MHz 2441 MHz 2480 MHz Data Rate				
π/4-DQPSK	0F	0F	0F	2 Mbps		
8DPSK	0F	0F	0F	3 Mbps		

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Communication Module
Model Name	LBEE5HY1MW
Brand Name	BOSCH
Model Difference	N/A
Power Supply Rating	DC 3.3V from host equipment
Host device information	
Equipment	Phantom EDGE
Model Name	AD00 A2 0044 6YE
Brand Name	BOSCH
Power Source	AC Mains.
Power Rating	I/P: 90 – 280 V AC , <10W , 50/60Hz
Products Covered	N/A
WIFI+BT Module	LBEE5HY1MW
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Maximum Output Power	2 Mbps: 4.55 dBm (0.0029 W)
	3 Mbps: 4.59 dBm (0.0029 W)
Test Model	AD00 A2 0044 6YE
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

BIL

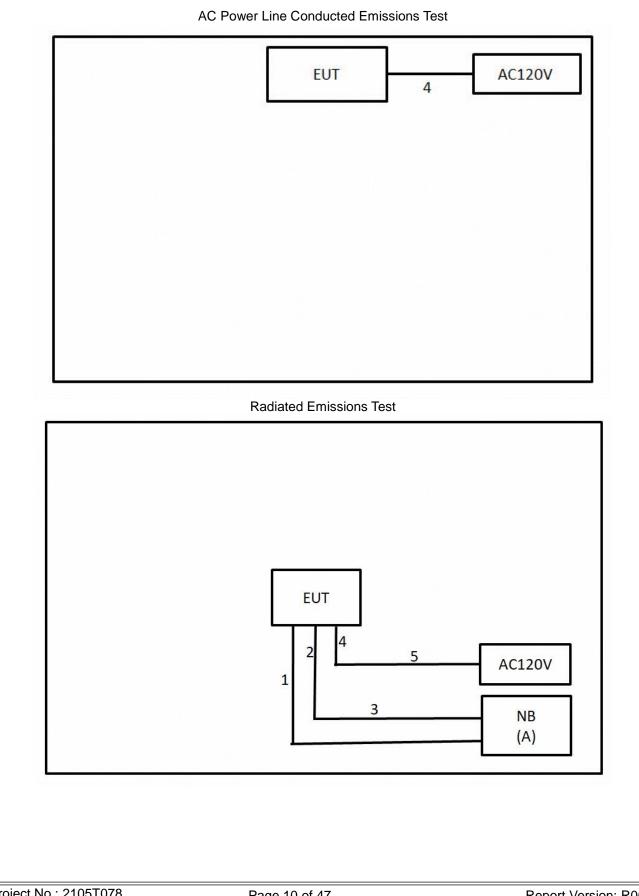
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model No.	Туре	Connector	Gain (dBi)	Note
1	圣丹纳 SAIN IENNA	SAA31139A	Dipole	SMA-J	2.35	

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	00	-
Transmitter Radiated Emissions	2/3 Mbps	00/78	Bandedge
(above 1GHz)	2/3 Mbps	00/39/78	Harmonic
Output Power	2/3 Mbps	00/39/78	-


NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
A	NB	HP	TPN-I119	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	3m	RJ45 Cable	Supplied by test requester
2	N/A	N/A	1.5m	RS232 to RS232	Supplied by test requester
3	N/A	N/A	1.1m	RS232 to USB	Supplied by test requester
4	N/A	N/A	1m	Power Cord	Supplied by test requester
5	N/A	N/A	1.7m	Power Cord	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

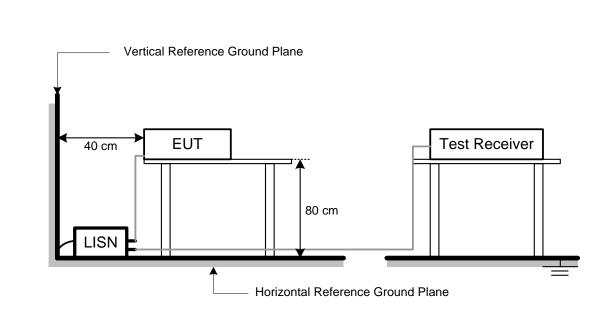
3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).

All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
(11172)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

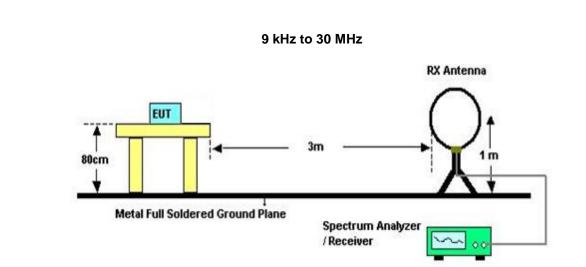
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Ш	21.22

Measurement Value		Limit Value		Margin Level
21.22	I	54	Ι	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2 TEST PROCEDURE

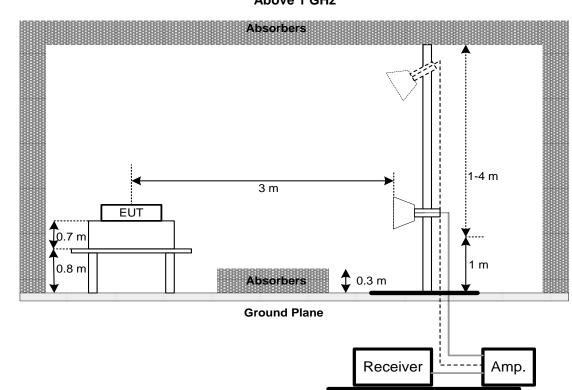

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

BL

4.4 TEST SETUP



30 MHz to 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 OUTPUT POWER TEST

5.1 LIMIT

	FC	C Part15 (15.247) , Subpart	С	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the **APPENDIX D**.

6 LIST OF MEASURING EQUIPMENTS

		AC Pow	er Line Conducted	d Emissions		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

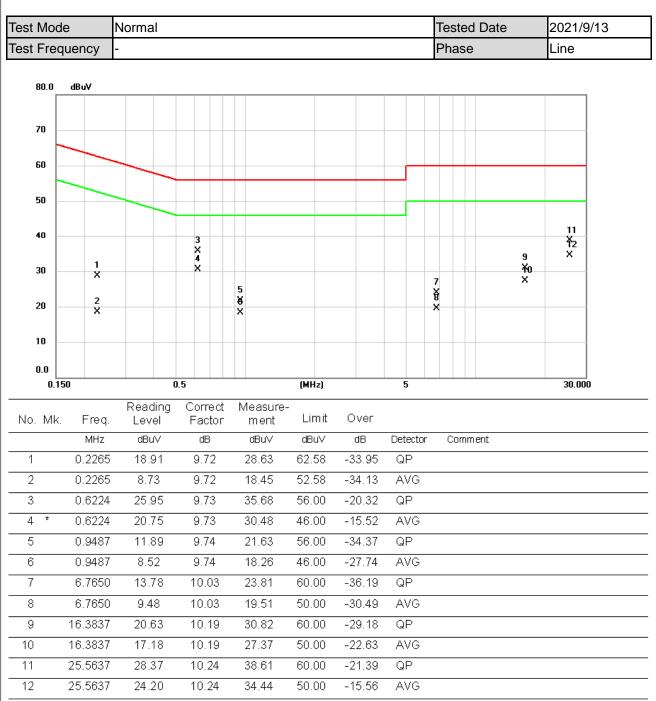
			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26
8	Signal Analyzer	Agilent	N9010A	MY52220990	2021/8/18	2022/8/17
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2105T078-FCCP-2 (APPENDIX-TEST PHOTOS).


8 EUT PHOTOS

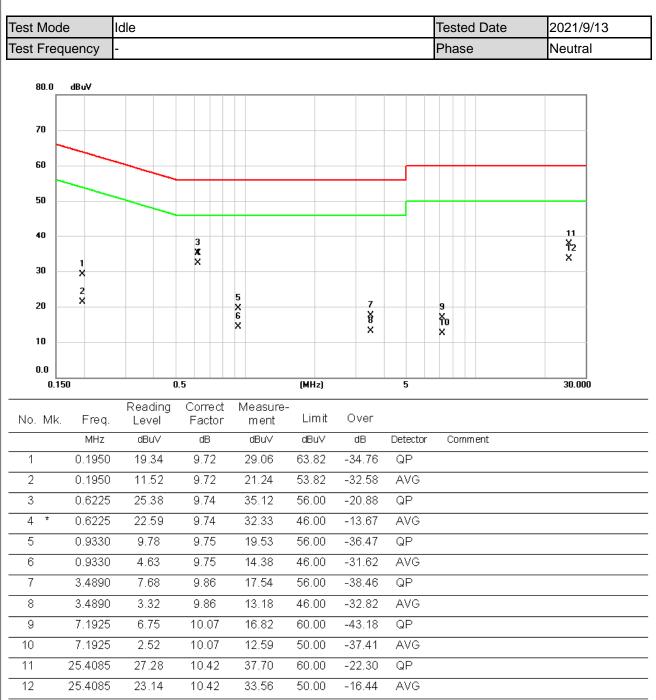
Please refer to document Appendix No.: EP-2105T078-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

st Mo	de	Normal						Tested Date	2021/9/13
st Fre	equency	-						Phase	Neutral
80.0	dBu¥								
70									
60									
50									
40			3						11 ¥2
30	1 X		¥ ×						X
20	2 X			5 X		7		9 Yo	
10				×		¥ ×		×	
0.0 0.	150	0	.5		(MHz)		5		30.000
		Reading	Correct	Measure-	-				
lo. Mi	k. Freq.	Level	Factor	ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1838	21.76	9.73	31.49	64.31	-32.82	QP		
2	0.1838	12.27	9.73	22.00	54.31	-32.31	AVG		
3	0.6225	25.19	9.74	34.93	56.00	-21.07	QP		
4 *	0.6225	21.03	9.74	30.77	46.00	-15.23	AVG		
5	0.9487	11.32	9.75	21.07	56.00	-34.93	QP		
6	0.9487	6.68	9.75	16.43	46.00	-29.57	AVG		
7	3.5138	6.17	9.86	16.03	56.00	-39.97	QP		
8	3.5138	2.33	9.86	12.19	46.00	-33.81	AVG		
9	6.7988	8.87	10.05	18.92	60.00	-41.08	QP		
10	6.7988	5.04	10.05	15.09	50.00	-34.91	AVG		
	05.0000	26.00	10.42	37.32	60.00	-22.68	QP		
11	25.3860	26.90	10.42	57.52	00.00	-22.00	GI		



(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

-	Test Mo	do		BT (3	Mhr))			-	Fest Da	to			202	1/7/5	
	st Frequ				2MH					olarizat					tical	
	Temp				3°C	_				Hum.					7%	
80.0 dB	uV/m															_
70																
60																
-															Г	-
50	1		2						4	5						-
	× –		2 X					3	х	5 X		6				
40								x				×				
30																
20																
10																
0.0																
30.000	127.00	224.00	321.	00	418.0	00	515.	D0	612.	.00	709.0	0 80	6.00		1000.0	 0 мн
No.	Mk.	Freq.		ding vel		rrect ctor		easure ment	-	Limit		Over				
		MHz		uV		B		BuV/m	(dBuV/n	n	dB	Dete	ctor	Comr	nent
1	*	89.0404		.55		1.62		2.93		43.50		-0.57	Q			-
2	!	255.6862	2 52	.68	-9	.06	2	13.62		46.00		-2.38	Q	Ρ		
3		551.1163	<u> </u>	.35	-1	.73	3	38.62		46.00		-7.38	Q	P		
4	!	600.0043	3 44	.26	-0	.46	2	13.80		46.00		-2.20	Q			
5	!	649.9913		.56		.10		13.66		46.00		-2.34	Q			
6		749.9986	3 7	.81	1	.86	3	39.67		46.00		-6.33	pea	ak		

	Test Mode Test Frequency		BT (3	3 Mbps)		Test Date		2021/7/5 Horizontal		
Tes				2MHz		Polarizatio	n			
	Temp)	2	3°C		Hum.		5	7%	
80.0 dB	uV/m									
70										
Ŭ										
0										
									6	
50		2				4			×	
	1	×			3	×	5			
40					×		×			
30										
20										
10										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 61	2.00 709	9.00 806	5.00	1000.00 MH	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	90.0751	57.79	-14.81	42.98	43.50	-0.52	QP		
2	!	253.2615	53.52	-9.13	44.39	46.00	-1.61	QP		
3		557.9063	40.99	-1.54	39.45	46.00	-6.55	QP		
4		649.9916	44.31	0.10	44.41	46.00	-1.59	QP		
5	!	758.7933	38.44	1.96	40.40	46.00	-5.60	QP		
6	1	1000.000	43.95	5.54	49.49	54.00	-4.51	QP		

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mo Test Frequ				2 Mbps 02MHz)				lest Dat olarizati				21/6/3 izontal	
	Temp				23°C				<u> </u>	Hum.				6%	
130.0	dBuV/m			-										0,0	
120															
100															
90								1							
80															
70															-
60						6								Б.	
50 📩	han way way when	Northwest Market	and the state of the	annewater	providente	theyter	dlyrw/	Unissiphi	halppe	mundlipp	ajirayan da	wyterpent	r hydrog to far angles a	hand and the	щ
40 -						2								6	
30 -					>	<								x	
20															
10.0															
2302	2.000 2322.0	0 2342.	.00	2362.00	2382.0	0	2402	2.00	2422	2.00 2	2442.00	246	62.00	2502.00	МН
No.	Mk.	Freq.		Reading Level	Corr Fac			easure [.] ment	-	Limit	(Over			
		MHz		dBuV	dE			BuV/m		dBuV/m	1	dB	Detector	Comm	ent
1		2386.08	80	30.25	30.5	53	(60.78		74.00	- ^	13.22	peak		
2		2386.08	80	5.08	30.5	53	3	35.61		54.00	-1	18.39	AVG		
3	Х	2402.00	00	70.65	30.5	57	1	01.22		74.00	2	7.22	peak	NoLin	nit
4	*	2402.00	00	67.32	30.5	57	Ç	97.89		54.00	4	3.89	AVG	NoLin	nit
5		2497.22	27	25.73	30.7	77	Ę	56.50		74.00	- ^	17.50	peak		
6		2497.22	27	4.67	30.7	77	3	35.44		54.00	-	18.56	AVG		

т	Test Mo Test Freq			2 Mbps) 0MHz		Test Date Polarization			1/6/3 zontal
I	Tem			3°C		Hum.			2011.ai
30.0	dBuV/m	5	2	50		Tium.			J /0
20									
10									
					2				
00 -									
					Ω				
30 -									
70 🗖									
						5			
50 1 X		1	whenty meanth			Maria		hadio antionada fra	
50 💾	provident for the state of the	sarafaranyak karik phinematipatenter	hallochter finnlation an	an a	NAVA MANANA A	- I WINGAN	per al management of the second s	Maradian and Anna Ang Ang A	An also Dustin Stephen
.						_			
10 2 X						6 X			
30									
20									
0.0	.000 2400.	00 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	0.00	 2580.00 MH
2380. No.	.000 2400. Mk.	Freq.	Reading	Correct	Measure-	Limit	20.00 254 Over	0.00	2380.00 MH
INU.	IVIK.	Fieq.	Level	Factor	ment	LIIIII	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2383.140	27.53	30.53	58.06	74.00	-15.94	peak	
2		2383.140	4.54	30.53	35.07	54.00	-18.93	AVG	
3	Х	2480.000	69.35	30.73	100.08	74.00	26.08	peak	NoLimit
4	*	2480.000	66.19	30.73	96.92	54.00	42.92	AVG	NoLimit
			00.44	00 77	61 10	74.00	-12.82	naak	
5		2498.167	30.41	30.77	61.18	74.00	-12.02	peak	

	Test Mo	hde		F		Mbp	c)			-	Fest Dat			20	21/6/2	
Т	est Frequ			L		2MHz					olarizati				izontal	
	Temp					3°C					Hum.				56%	
130.0	dBuV/m															
120																
10																
100																
90 -																
BO																
70			1					-							5	
50 <u> </u>	and a marke		.×				n			L	L. L. I. M. A.			. C. S. M. Marches	Adde with all	1
50	the stand of the s	allegizzar have		en and an	sayeso	everal data	990 9 00	Urw	Norwend	-0.00	ቀንቀበሳለቤ የግን	Magazine 1	an new angeog	adapt provide a strain	4	
40 -			2 X												6 X	
30 -															^	
20																-
10.0																
2302.	000 2322.0	0 2342	.00	2362.0	00	2382.	00	2402	2.00	242	2.00 2	2442.0	0 246	52.00	2502.00	л мн
No.	Mk.	Freq	•	Read Leve	•		rect ctor		easure ment	-	Limit		Over			
		MHz		dBu	V	d	В	d	3uV/m		dBuV/m		dB	Detector	Comm	nent
1		2345.9	20	29.2	20	30	.45	Ę	59.65		74.00	-	14.35	peak		
2		2345.9	20	13.1	5	30	.45	2	13.60		54.00	-	10.40	AVG		
3	Х	2402.0	00	71.0	00	30	.57	1	01.57		74.00		27.57	peak	NoLir	mit
4	*	2402.0	00	67.4	7	30	.57	ę	98.04		54.00		44.04	AVG	NoLir	nit
5		2497.2		30.9			.77		61.70		74.00		12.30	peak		
6		2497.2	87	4.8	3	30	77		35.60		54.00	-	18.40	AVG		

	Test M Test Fred			3 Mbps) 0MHz		Test Date Polarizatio			1/6/2 zontal
	Tem	· · · · · · · · · · · · · · · · · · ·		3°C		Hum.			6%
130.0	dBuV/m	· [-							
120									
10									
100 -					3				
90 -									
BO									
70						F			
60 —	1 Millionara	watherwater	mathematical	moundand	when the house	Www.marmorth	Alman	um hunder where the	when when a grief
50									
40	2 X					6 X			
20									
10.0									
2380	D.000 2400	.00 2420.00	2440.00	2460.00	2480.00 2	500.00 25	20.00 254	0.00	2580.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.433	27.48	30.54	58.02	74.00	-15.98	peak	
2		2387.433	3.88	30.54	34.42	54.00	-19.58	AVG	
3	Х	2480.000	69.28	30.73	100.01	74.00	26.01	peak	NoLimit
4	*	2480.000	65.37	30.73	96.10	54.00	42.10	AVG	NoLimit
5		2498.213	29.68	30.77	60.45	74.00	-13.55	peak	
6		2498.213	5.75	30.77	36.52	54.00	-17.48	AVG	

-	Test Mo Test Frequ			2 Mbps))2MHz		Test Date Polarization	2		1/6/3 rtical
	Temp			23°C		Hum.	<u> </u>		6%
130.0	dBuV/m	,						0.	070
120									
110									
100									
90 -									
80 -									
70									
60 —									
50		1 X							
40		2 X							
20									
10.0									
	.000 3550.0	0 6100.00		11200.00	13750.00 1		350.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-8.86	44.23	74.00	-29.77	peak	
2	*	4804.000	41.67	-8.86	32.81	54.00	-21.19	AVG	

	Test Mode			BT (2	Mbps)		Test Date		202	1/6/3
1	Fest Freq			2402MHz			Polarizatio	n		zontal
	Tem			°C		Hum.		5	6%	
130.0	dBuV/m									
120										
110										
100										
90 -										
80 -										
70										
60 —										
50										
40		1 X								
30		2 X								
20										
10.0										
	.000 3550.				11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.		iding vel	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dE	BuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	0 51	.66	-8.86	42.80	74.00	-31.20	peak	
2	*	4804.00	0 41	.63	-8.86	32.77	54.00	-21.23	AVG	

			2 Mbps) I1MHz		Test Date Polarizatior	1		1/8/24 rtical	
	Temp			3°C		Hum.	-		6%
130.0	dBuV/m								
120									
110									
100									
90 -									
80 -									
70									
60 —									
50		1 X							
40 -		2							
30 -		×							
20 -									
10.0									
	.000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	54.01	-8.74	45.27	74.00	-28.73	peak	
2	*	4882.000	42.46	-8.74	33.72	54.00	-20.28	AVG	

			BT (2 Mbps) Test Date			2021/8/24			
	Test Frequ			1MHz		Polarization	1		zontal
130.0	Temp dBuV/m)	2	3°C		Hum.		51	6%
120 -									
110									
100 -									
90									
80									
70									
60 -									
50		1 X							
40									
		2 X							
30									
20									
10.0									
	0.000 3550.0	0 6100.00	8650.00	11200.00			50.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dDu\//m	dB	Detector	Commont
1		4882.000	52.94	-8.74	44.20	dBuV/m 74.00	-29.80	Detector peak	Comment
2	*	4882.000	43.32	-8.74	34.58	54.00	-19.42	AVG	

7				BT (2 Mbps) 2480MHz 23°C		Test Date Polarizatior	1		1/6/3 tical
			2			Hum.		56%	
130.0	dBu¥∕m								
120									
110									
100									
90									
80									
70									
60 —									
50		1 X							
40		2 X							
30		^							
20									
10.0	.000 3550.0)0 6100.00	8650.00	11200.00	13750.00 16	6300.00 188	50.00 214	00.00	26500.00 MHz
No.	3550.1 Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	00.00	20000.00 MHZ
INU.	IVIN.	i iey.	Level	Factor	ment		0.61		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.78	-8.60	45.18	74.00	-28.82	peak	
2	*	4960.000	42.14	-8.60	33.54	54.00	-20.46	AVG	

	Test Mode BT			2 Mbps)		Test Date			1/6/3
	Test Frequ			30MHz		Polarization			zontal
	Temp)	2	:3°C		Hum.		5	6%
130.0	dBu¥∕m						1		
120									
110									
100									
90 –									
80									
70 -									
60 -									
50		1							
40		1 X							
		2 X							
30 -									
20 -									
10.0									
	0.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.95	-8.60	45.35	74.00	-28.65	peak	
2	*	4960.000	42.21	-8.60	33.61	54.00	-20.39	AVG	

				3 Mbps) 02MHz		Test Date Polarizatior	1		1/6/2 tical
	Tem			23°C		Hum.		56%	
130.0	dBuV/m	F	-						
120									
110									
100									
90 –									
80 —									
70									
60 —									
50		1 X							
40 30		2 X							
20									
10.0									
1000	.000 3550.	.00 6100.0		11200.00	13750.00 1	6300.00 188	50.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00		-8.86	44.52	74.00	-29.48	peak	
2	*	4804.00	0 42.31	-8.86	33.45	54.00	-20.55	AVG	

	TestMark					Tak		2021/6/2		
	Test Mo Test Frequ			3 Mbps) 2MHz		Test Date Polarization	2		zontal	
	Temp			3°C		Hum.	1		6%	
130.0	dBuV/m									
120										
110										
100										
90 –										
80										
70 —										
60 -										
50										
50		1 X								
40 -										
30		2 X								
20										
10.0										
	.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	4804.000	52.61	-8.86	43.75	74.00	-30.25	peak		
2		4804.000	41.96	-8.86	33.10	74.00	-40.90	peak		

			3 Mbps) 1MHz		Test Date Polarizatior			1/8/24 rtical	
	Temp			3°C		Hum.			6%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40									
30		2 X							
20									
10.0									
	.000 3550.0		8650.00	11200.00	13750.00 1		50.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	54.01	-8.74	45.27	74.00	-28.73	peak	
2	*	4882.000	42.28	-8.74	33.54	54.00	-20.46	AVG	

	Test Mode		BT (3 Mbps)		Test Date		202	1/6/2
7	Test Frequ		244	1MHz		Polarization	า		zontal
	Temp)	2	23°C		Hum.		5	6%
130.0	dBu∀/m				1	1	1	1	
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2 X							
30		^							
20									
10.0									
	.000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	53.42	-8.74	44.68	74.00	-29.32	peak	
2	*	4882.000	42.97	-8.74	34.23	54.00	-19.77	AVG	

-	Test Mode Test Frequency			3 Mbps) 80MHz		Test Date Polarization	n		1/6/2 rtical
	Temp			3°C		Hum.	·		6%
130.0	dBuV/m							- / -	
120									
110									
100									
90 -									
80									
70									
60 —									
50		1 X							
40 30		2 X							
20									
10.0									
).000 3550.0		8650.00	11200.00	13750.00 1		350.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	54.08	-8.60	45.48	74.00	-28.52	peak	
2	*	4960.000	41.37	-8.60	32.77	54.00	-21.23	AVG	

	Test Mode			BT (3			Test Dat		202	1/6/2
٦	Test Freq		_	2480MHz			Polarizati	on		zontal
130.0	Tem dBuV/m	р		23	°C		Hum.		5	6%
130.0	ann 1 w									
120										
110										
100										
90 -										
80										
70										
60 —										
50		1								
40		×								
		2 X								
30										
20										
10.0										
	.000 3550.				11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.		ding vel	Correct Factor	Measure ment	- Limit	Over		
		MHz	dB		dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		4960.00	0 54	.08	-8.60	45.48	74.00	-28.52	peak	
2	*	4960.00	0 41	.35	-8.60	32.75	54.00	-21.25	AVG	

APPENDIX D	OUTPUT POWER	

Test Mode :	BT(2 Mbps)		٦	Tested Date 2021/9/16	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.31	0.0027	20.97	0.1250	Pass
2441	4.55	0.0029	20.97	0.1250	Pass
2480	3.89	0.0024	20.97	0.1250	Pass

Test Mode :	Test Mode : BT(3 Mbps)			ested Date 2	2021/9/16
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.36	0.0027	20.97	0.1250	Pass
2441	4.59	0.0029	20.97	0.1250	Pass
2480	4.16	0.0026	20.97	0.1250	Pass

End of Test Report