RSS-GEN, ISSUE 5, MARCH 2019 AMENDMENT 1 RSS-247, ISSUE 2, FEBRUARY 2017

TEST REPORT

For

MPOW TECHNOLOGY CO.,LIMITED

FLAT/RM 605 6/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN STREET MONGKOK KL HONG KONG

FCC ID: 2AMH2-BH388A

IC: 25122-BH388A

Report Type: Original Report		Product Name: MPOW H19 IPO ANC BLUETOOTH HEADPHONES
Report Number:	RDG1912	9005-00B
Report Date:	2020-01-0	
Reviewed By:	Ivan Cao Assistant	nanager fion (as
Test Laboratory:	Bay Area No. 69 Pu Tangxia, Tel: +86- Fax: +86 www.bac	Compliance Laboratories Corp. (Dongguan) ngcun, Puxinhu Industry Area, Dongguan, Guangdong, China 69-86858888 $69-86858891$ orp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION 4
Product Description for Equipment under Test (EUT) 4
Objective 4
Related Submittal(s)/Grant(s) 4
Test Methodology
Measurement Uncertainty. 5
Test Facility 5
Declarations. 5
SYSTEM TEST CONFIGURATION 6
Description of Test Configuration 6
EQuipment Modifications 6
EUT EXERCISE Software 6
EqUIPMENT MODIFICATIONS 7
Support Equipment List and Details7
Support Cable List and Details 7
Block Diagram of Test Setup 8
SUMMARY OF TEST RESULTS 9
FCC §15.247 (i) \& §1.1310 \& §2.1093- RF EXPOSURE. 10
Applicable Standard 10
RSS-102 § 2.5.1 EXEMPTION LIMITS FOR ROUTINE EVALUATION - SAR EVALUATION 11
Applicable Standard 11
FCC §15.203\& RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT 12
Applicable Standard 12
Antenna Information And Connector Construction 13
FCC §15.207 (a) \& RSS-GEN CLAUSE 8.8- AC LINE CONDUCTED EMISSIONS 14
Applicable Standard 14
EUT SEtup 14
EMI Test Receiver Setup. 14
Test Procedure 15
Corrected Amplitude \& Margin Calculation 15
Test Equipment List and Details 15
Test Data 16
FCC §15.209, §15.205, §15.247(d) \& RSS-247 CLAUSE 5.5, RSS-GEN CLAUSE 8.10- SPURIOUS EMISSIONS 18
Applicable Standard 18
EUT Setup 18
EMI Test Receiver \& Spectrum Analyzer Setup 19
Test Procedure 19
Corrected Amplitude \& Margin Calculation 19
Test Equipment List and Details 20
Test Data 20
FCC §15.247(a) (2) \& RSS-247 CLAUSE 5.2 a) \&RSS-GEN CLAUSE 6.7-6 dB EMISSION BANDWIDTH AND 99\% OCCUPIED BANDWIDTH 26
Applicable Standard 26
Test Procedure 27
Test Equipment List and Details 27
Test Data 28
FCC §15.247(b) (3)\& RSS-247 CLAUSE 5.4 d) - MAXIMUM PEAK CONDUCTED OUTPUT POWER 32
Applicable Standard 32
Test Procedure 32
Test Equipment List and Details 32
Test Data 33
FCC §15.247(d)\& RSS-247 CLAUSE 5.5 - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE 34
Applicable Standard 34
Test Procedure 34
Test Equipment List and Details 34
Test Data 35
FCC §15.247(e) \& RSS-247 CLAUSE 5.2 b - POWER SPECTRAL DENSITY 37
Applicable Standard 37
Test Procedure 37
Test Equipment List and Details 37
Test Data 38

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	MPOW H19 IPO ANC BLUETOOTH HEADPHONES
EUT Model:	BH388A
Multiple Mode::	BH388B
Operation Frequency:	$2402-2480 \mathrm{MHz}$
Maximum Peak Output Power	
(Conducted):	4.93 dBm
Modulation Type:	GFSK
Rated Input Voltage:	DC 3.7V from battery or DC 5V from USB port
Serial Number:	RDG191219005-RF-S1
EUT Received Date:	2019.12 .19
EUT Received Status:	Good

Notes: Model BH388A was selected for fully testing, the detailed information about the difference among BH388B and model BH388A can be referred to the declaration letter which was stated and guaranteed by the manufacturer.

Objective

This report is prepared on behalf of MPOW TECHNOLOGY CO.,LIMITED in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules and RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules and RSS247, Issue 2, February 2017, RSS-Gen, Issue 5,March 2019 Amendment 1March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: 2AMH2-BH388A
RSS-247 submissions with IC: 25122-BH388A

Test Methodology

All measurements detailed in this test report were performed in accordance with ANSI C63.102013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" and KDB 558074 D01 15.247 Meas Guidance v05r02. And RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5 \%$
RF output power, conducted	$\pm 0.61 \mathrm{~dB}$
Power Spectral Density, conducted	$\pm 0.61 \mathrm{~dB}$
	$30 \mathrm{M} \sim 200 \mathrm{MHz}: 4.55 \mathrm{~dB}, 200 \mathrm{M} \sim 1 \mathrm{GHz}: 5.92 \mathrm{~dB}$,
Unwanted Emissions, radiated	$1 \mathrm{G} \sim 6 \mathrm{GHz}: 4.98 \mathrm{~dB}, 6 \mathrm{G} \sim 18 \mathrm{GHz}: 5.89 \mathrm{~dB}$,
	$18 \mathrm{G} \sim 26.5 \mathrm{G}: 5.47 \mathrm{~dB}, 26.5 \mathrm{G} \sim 40 \mathrm{G}: 5.63 \mathrm{~dB}$
Unwanted Emissions, conducted	$\pm 1.5 \mathrm{~dB}$
Temperature	$\pm 1 \mathrm{C}^{\circ} \mathrm{C}$
Humidity	$\pm 5 \%$
DC and low frequency voltages	$\pm 0.4 \%$
Duty Cycle	1%
AC Power Lines Conducted Emission	$3.12 \mathrm{~dB}(150 \mathrm{kHz}$ to 30 MHz$)$

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95\% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No. 69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " Δ ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
This report cannot be reproduced except in full, without prior written approval of the Company.
This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the U.S. Government.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.
For Bluetooth LE mode, 40 channels are provided for testing:

Channel	Frequency $(\mathbf{M H z})$	Channel	Frequency $(\mathbf{M H z})$
0	2402	20	2442
1	2404	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	38	2478
19	2440	39	2480

EUT was tested with channel 0,19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The software "Blue Test3"was used for testing and the maximum power was configured as below:

Channel	Frequency $(\mathbf{M H z})$	Power Level Setting
Low	2402	Default
Middle	2440	Default
High	2480	Default

The duty cycle as below:

Mode	$\mathbf{T}_{\text {on }}$ $(\mathbf{m s})$	$\mathbf{T}_{\text {on+off }}$ $(\mathbf{m s})$	Duty Cycle $(\%)$
BLE	0.396	0.636	62.26

Date: 9.JAN.2020 15:19:09

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
OPPO	Phone	A59s	$2.0117 \mathrm{E}+16$

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (\mathbf{m})	From Port	To
USB Cable	yes	No	0.8	Adapter	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
 $\S 2.1093$	RF Exposure	Compliance
RSS-102 Clause 2.5.1	Exemption Limit For Routine Evaluation-SAR Evaluation	Compliance
FCC§15.203, RSS-Gen Clause 6.8	Antenna Requirement	Compliance
FCC§15.207 (a), RSS-Gen Clause 8.8	AC Line Conducted Emissions	Compliance
FCC§15.205, §15.209, FCC §15.247(d), RSS-247 Clause 5.5 RSS-Gen Clause 8.10	Spurious Emissions	Compliance
FCC§15.247 (a)(2), RSS-247 Claus 5.2 a) RSS-Gen Clause 6.7	6 dB Bandwidth	Compliance
FCC§15.247(b)(3), RSS-247 Clause 5.4 d)	Maximum Conducted Output Power	Compliance
FCC§15.247(d), RSS-247 Claus55.5	100 kHz Bandwidth of Frequency Band Edge	Compliance
FCC§15.247(e), RSS-247 Clause5.2 b)	Power Spectral Density	Compliance

FCC §15.247 (i) \& §1.1310 \& §2.1093- RF EXPOSURE

Applicable Standard

According to $15.247(i)$ and $\S 1.1310$, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:
The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:
[(max. power of channel, including tune-up tolerance, mW$) /($ min. test separation distance, $\mathrm{mm})] \cdot[\sqrt{ } \mathrm{f}(\mathrm{GHz})] \leq 3.0$ for $1-\mathrm{g}$ SAR and ≤ 7.5 for $10-\mathrm{g}$ extremity SAR, where

- $\mathrm{f}(\mathrm{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is $\leq 50 \mathrm{~mm}$ and for transmission frequencies between 100 MHz and 6 GHz . When the minimum test separation distance is <5 mm , a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is $5.0 \mathrm{dBm}(3.16 \mathrm{~mW})$.
[(max. power of channel, mW$) /(\mathrm{min}$. test separation distance, mm$)][\sqrt{ } \mathrm{f}(\mathrm{GHz})]$
$=3.16 / 5^{*}(\sqrt{ } 2.480)=1.0<3.0$
So the stand-alone SAR evaluation is not necessary.

RSS-102 § 2.5.1 EXEMPTION LIMITS FOR ROUTINE EVALUATION SAR EVALUATION

Applicable Standard

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm , except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5.

Table 1: SAR evaluation - Exemption limits for routine evaluation based on frequency and separation distance ${ }^{4,5}$

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of $\leq 5 \mathrm{~mm}$	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤ 300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of $\mathbf{3 0 ~ \mathbf { ~ m ~ }}$	At separation distance of $\mathbf{3 5 ~ \mathbf { m m }}$	At separation distance of $\mathbf{4 0} \mathbf{~ m m}$	At separation distance of $\mathbf{4 5} \mathbf{~ m m}$	At separation distance of $\boldsymbol{2 5 0} \mathbf{~ m m}$
≤ 300	223 mW	254 mW	284 mW	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	80 mW	92 mW	105 mW	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	170 mW	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

Measurement Result:

The max tune-up conducted power is $5 \mathrm{dBm}(3.16 \mathrm{~mW})$, Antenna Gain: 0.78 dBi , EIRP $=5.78 \mathrm{dBm}(3.78 \mathrm{~mW})$

The exemption power (P) limits for routine evaluation in $2402-2480 \mathrm{MHz}$ is:
(2480-2450)/(3500-2450)=($\mathrm{P}-4) /(2-4)$
$=>\mathrm{P}=3.94 \mathrm{~mW} @ 2480 \mathrm{MHz}$
$>3.78 \mathrm{~mW}$
So the SAR evaluation can be exempted.

FCC §15.203\& RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC§ 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section $\S 15.203$ of the rules. $\S 15.203$ state that the subject device must meet the following criteria:
a. Antenna must be permanently attached to the unit.
b. Antenna must use a unique type of connector to attach to the EUT.
c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

According to RSS-Gen $\S 6.8$, The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter lenter the device's ISED certification numberl has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Information And Connector Construction

The EUT has one internal antenna arrangement, fulfill the requirement of this section. Please refer to below information and the EUT photos:

Antenna Type	input impedance $(\mathbf{O h m})$	Antenna Gain /Frequency Range
FPC	50	$0.78 \mathrm{dBi} / 2.4 \sim 2.5 \mathrm{GHz}$

Result: Compliance.

FCC §15.207 (a) \& RSS-GEN CLAUSE 8.8-AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a), RSS-Gen§8.8.

EUT Setup

Note: l. Supp ort units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and the RSS-Gen limits.

The spacing between the peripherals was 10 cm .
The adapter was connected to the main lisn with a $120 \mathrm{~V} / 60 \mathrm{~Hz}$ AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz .
During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
$150 \mathrm{kHz}-30 \mathrm{MHz}$	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.
Maximizing procedure was performed on the six (6) highest emissions of the EUT.
All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude \& Margin Calculation

The basic equation is as follows:
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{R}}+\mathrm{A}_{\mathrm{C}}+\mathrm{VDF}$
$\mathrm{C}_{\mathrm{f}}=\mathrm{A}_{\mathrm{C}}+\mathrm{VDF}$
Herein,
V_{C} (cord. Reading): corrected voltage amplitude
V_{R} : reading voltage amplitude
A_{c} : attenuation caused by cable loss
VDF: voltage division factor of AMN
C_{f} : Correction Factor
The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$
\text { Margin }=\text { Limit }- \text { Corrected Amplitude }
$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	$2019-09-05$	2020-09-05
R\&S	Test Software	EMC32	Version8.53.0	N/A	N/A
R\&S	Two-line V-network	ENV 216	101614	$2019-09-12$	$2020-09-12$
R\&S	EMI Test Receiver	ESCI	101121	$2019-05-09$	$2020-05-09$

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	$20.8^{\circ} \mathrm{C}$
Relative Humidity:	62%
ATM Pressure:	102.5 kPa
Test by:	Sem Xiang
Test Date:	$2020-01-02$

Test Mode: Transmitting

AC120 V, 60 Hz , Line:

Frequency $(\mathbf{M H z})$	QuasiPeak $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Bandwidth $(\mathbf{k H z})$	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$
0.151500	29.7	9.000	L1	9.7	36.2	65.9
0.267135	20.1	9.000	L1	9.7	41.1	61.2
0.546852	22.6	9.000	L1	9.7	33.4	56.0
0.822331	23.2	9.000	L1	9.7	32.8	56.0
1.013434	19.6	9.000	L1	9.7	36.4	56.0
4.979837	22.6	9.000	L1	9.8	33.4	56.0

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Bandwidth $(\mathbf{k H z})$	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$
0.192365	16.9	9.000	L1	9.7	37.0	53.9
0.393790	15.8	9.000	L1	9.7	32.2	48.0
0.557844	20.7	9.000	L1	9.7	25.3	46.0
0.830554	10.5	9.000	L1	9.7	35.5	46.0
4.979837	11.3	9.000	L1	9.8	34.7	46.0
6.984605	14.3	9.000	L1	9.9	35.7	50.0

AC120 V, 60 Hz , Neutral:

Frequency $(\mathbf{M H z})$	QuasiPeak $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Bandwidth $\mathbf{(k H z)}$	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$
0.382209	23.8	9.000	N	9.6	34.4	58.2
0.500009	21.6	9.000	N	9.6	34.4	56.0
0.574747	27.7	9.000	N	9.6	28.3	56.0
0.790244	19.3	9.000	N	9.6	36.7	56.0
1.044142	19.8	9.000	N	9.6	36.2	56.0
3.731602	18.9	9.000	N	9.6	37.1	56.0

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Bandwidth $(\mathbf{k H z})$	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$
0.397728	12.5	9.000	N	9.6	35.4	47.9
0.574747	16.6	9.000	N	9.6	29.4	46.0
0.822331	12.5	9.000	N	9.6	33.5	46.0
1.585832	9.4	9.000	N	9.6	36.6	46.0
3.058214	10.4	9.000	N	9.6	35.6	46.0
4.979837	10.8	9.000	N	9.7	35.2	46.0

FCC §15.209, §15.205, §15.247(d) \& RSS-247 CLAUSE 5.5, RSS-GEN CLAUSE 8.10- SPURIOUS EMISSIONS

Applicable Standard

FCC § 15.247 (d); §15.209; §15.205, RSS-247 §5.5, RSS-GEN §8.10.

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site A for the range 30 MHz to 1 GHz and the 3 meters chamber B test site for above 1 GHz , using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 , the RSS-247 §5.5,RSS-Gen §8.10 limits..

The spacing between the peripherals was 10 cm .

EMI Test Receiver \& Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz .
During the radiated emission test, the EMI test receiver \& Spectrum Analyzer Setup were set with the following configurations:
$30 \mathrm{MHz}-1000 \mathrm{MHz}$:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120 kHz

$1 \mathrm{GHz}-26.5 \mathrm{GHz}:$

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1 MHz	3 MHz
Ave.	$>98 \%$	1 MHz	10 Hz
	$<98 \%$	1 MHz	$1 / \mathrm{T}$

Note: T is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of $30 \mathrm{MHz}-1 \mathrm{GHz}$, peak and Average detection modes for frequencies above 1 GHz .

Corrected Amplitude \& Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude $=$ Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$
\text { Margin }=\text { Limit }- \text { Corrected Amplitude }
$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R\&S	EMI Test Receiver	ESR3	102453	$2019-09-12$	$2020-09-12$
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Sunol Sciences	Antenna	JB3	A060611-1	$2017-11-10$	$2020-11-10$
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	$2019-09-05$	$2020-09-05$
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	$2019-09-05$	$2020-09-05$
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	$2019-05-06$	$2020-05-06$
HP	Amplifier	$8447 D$	$2727 A 05902$	$2019-09-05$	$2020-09-05$
Agilent	Spectrum Analyzer	E4440A	SG43360054	$2019-05-09$	$2020-05-09$
ETS-Lindgren	Horn Antenna	3115	00052735	$2018-10-12$	$2021-10-12$
Ducommun	Horn Antenna	ARH-4223-02	$1007726-01$	$2017-12-06$	$2020-12-05$
Technolagies	Coaxial Cable	C-SJSJ-50	C-0800-01	$2019-09-05$	$2020-09-05$
Unknown	Amplifier	ZVA-213-S+	54201245	$2019-09-05$	$2020-09-05$
Mini-Circuit	Amplifier	QLW-18405536-JO	15964001001	$2019-06-27$	$2020-06-27$
Quinstar	Band-stop Filters	OBSF-2400-2483.5-	OE01601525	$2019-06-16$	$2020-06-16$
E-Microwave	S	HPM50111	S/N-G217	$2019-06-16$	$2020-06-16$
Micro-tronics	High Pass Filter	HPM			

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Test Items	Radiation Below 1GHz	Radiation Above 1GHz
Temperature:	$24.3^{\circ} \mathrm{C}$	$24.3^{\circ} \mathrm{C}$
Relative Humidity:	39%	38%
ATM Pressure:	101.8 kPa	102.2 kPa
Tester:	Tyler Pan	Lucy Lu
Test Date:	$2019-12-28$	$2020-01-03$

Test Mode: Transmitting
Test Result: Compliance. Please refer to the following table and plots.

1) $\mathbf{3 0 M H z - 1 G H z}$ (High channel was the worst)

Horizontal:

Frequency $(\mathbf{M H z})$	Receiver Reading $(\mathbf{d B u V})$	Detector	Correction Factor $(\mathbf{d B} / \mathbf{m})$	Cord. Amp. $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$
30.0000	25.22	peak	1.72	26.94	40.00	13.06
167.7400	32.47	peak	-6.38	26.09	43.50	17.41
320.0300	30.69	peak	-3.45	27.24	46.00	18.76
361.7400	30.02	peak	-2.80	27.22	46.00	18.78
567.3800	27.84	peak	0.95	28.79	46.00	17.21
950.5300	32.41	peak	0.85	33.26	46.00	12.74

Vertical:

Frequency $\mathbf{(M H z)}$	Receiver Reading (dBuV)	Detector	Correction Factor $(\mathbf{d B} / \mathbf{m})$	Cord. Amp. $(\mathbf{d B u V / m})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $\mathbf{(d B)}$
30.0000	27.49	peak	1.72	29.21	40.00	10.79
63.9500	30.18	peak	-11.70	18.48	40.00	21.52
136.7000	26.57	peak	-5.28	21.29	43.50	22.21
486.8700	27.47	peak	-0.34	27.13	46.00	18.87
644.9800	28.00	peak	2.16	30.16	46.00	15.84
954.4100	33.39	peak	0.82	34.21	46.00	11.79

2) $\mathbf{1 - 2 6 . 5 G H z}:$

Frequency (MHz)	Receiver		Rx Antenna		$\begin{gathered} \text { Cable } \\ \text { loss } \\ \text { (dB) } \end{gathered}$	Amplifier Gain (dB)	Corrected Amplitude ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\underset{(\mathrm{dB} \boldsymbol{\mathrm { Limit }} \mathrm{~V} / \mathrm{m})}{\mathrm{L}}$	Margin (dB)
	Reading $(\mathrm{dB} \mu \mathrm{V})$	Detector	$\begin{aligned} & \text { Polar } \\ & (\mathbf{H} / \mathrm{V}) \end{aligned}$	Factor (dB/m)					
Low Channel: 2402 MHz									
2402.00	64.73	PK	H	28.10	1.80	0.00	94.63	N/A	N/A
2402.00	63.99	AV	H	28.10	1.80	0.00	93.89	N/A	N/A
2402.00	60.54	PK	V	28.10	1.80	0.00	90.44	N/A	N/A
2402.00	59.67	AV	V	28.10	1.80	0.00	89.57	N/A	N/A
2390.00	25.42	PK	H	28.08	1.80	0.00	55.30	74.00	18.70
2390.00	13.56	AV	H	28.08	1.80	0.00	43.44	54.00	10.56
4804.00	44.25	PK	H	32.91	3.17	25.60	54.73	74.00	19.27
4804.00	40.18	AV	H	32.91	3.17	25.60	50.66	54.00	3.34
7206.00	38.94	PK	H	35.74	4.82	25.60	53.90	74.00	20.10
7206.00	34.26	AV	H	35.74	4.82	25.60	49.22	54.00	4.78
Middle Channel: 2440 MHz									
2440.00	65.93	PK	H	28.18	1.82	0.00	95.93	N/A	N/A
2440.00	65.15	AV	H	28.18	1.82	0.00	95.15	N/A	N/A
2440.00	61.85	PK	V	28.18	1.82	0.00	91.85	N/A	N/A
2440.00	61.04	AV	V	28.18	1.82	0.00	91.04	N/A	N/A
4880.00	45.31	PK	H	33.06	3.27	25.66	55.98	74.00	18.02
4880.00	41.35	AV	H	33.06	3.27	25.66	52.02	54.00	1.98
7320.00	40.25	PK	H	36.03	4.62	25.72	55.18	74.00	18.82
7320.00	35.70	AV	H	36.03	4.62	25.72	50.63	54.00	3.37
High Channel: 2480 MHz									
2480.00	66.82	PK	H	28.26	1.84	0.00	96.92	N/A	N/A
2480.00	66.01	AV	H	28.26	1.84	0.00	96.11	N/A	N/A
2480.00	62.12	PK	V	28.26	1.84	0.00	92.22	N/A	N/A
2480.00	61.37	AV	V	28.26	1.84	0.00	91.47	N/A	N/A
2483.50	25.69	PK	H	28.27	1.84	0.00	55.80	74.00	18.20
2483.50	15.30	AV	H	28.27	1.84	0.00	45.41	54.00	8.59
4960.00	46.25	PK	H	33.22	3.23	25.63	57.07	74.00	16.93
4960.00	42.25	AV	H	33.22	3.23	25.63	53.07	54.00	0.93
7440.00	42.08	PK	H	36.34	4.41	25.85	56.98	74.00	17.02
7440.00	37.82	AV	H	36.34	4.41	25.85	52.72	54.00	1.28

Worst Test plots(High channel)

Horizontal:

Vertical:

FCC §15.247(a) (2) \& RSS-247 CLAUSE 5.2 a) \&RSS-GEN CLAUSE 6.7-6 dB EMISSION BANDWIDTH AND 99\% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (2)
Systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

According to RSS-247 §5.2 a)

The minimum 6 dB bandwidth shall be 500 kHz .

According to RSS-Gen $\S 6.7$

The occupied bandwidth or the " 99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the " x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated $\mathrm{x} d \mathrm{~dB}$ below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied $/ \mathrm{xdB}$ bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Procedure

6dB bandwidth test:

a) Set RBW $=100 \mathrm{kHz}$.
b) Set the video bandwidth $($ VBW $) \geq 3 \times$ RBW.
c) Detector $=$ Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

$\mathbf{9 9 \%}$ Occupied bandwidth test:

Use Occupied bandwidth test function, measure the 99% Occupied bandwidth.
Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R\&S	EMI Test Receiver	ESCI	100035	$2019-09-19$	$2020-09-19$
Unknown	Coaxial Cable	C-SJ00-0010	C0010/02	Each time	N/A

[^0]
Test Data

Environmental Conditions

Temperature:	$24.7^{\circ} \mathrm{C}$
Relative Humidity:	56%
ATM Pressure:	101.9 Pa
Tester:	Fay Hu
Test Date:	$2019-12-24$

Test Mode: Transmitting
Test Result: Compliant. Please refer to the following table and plots.

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99\% Occupied Bandwidth (MHz)	Limit $(\mathbf{M H z})$
Low	2402	0.700	1.032	≥ 0.5
Middle	2440	0.716	1.032	≥ 0.5
High	2480	0.732	1.032	≥ 0.5

6dB bandwidth:

Low Channel

Date: 24.DEC. 2019 20:30:43

Middle Channel

Date: 26.DEC.2019 14:46:25

High Channel

Date: 26.DEC.2019 14:48:59

99\% Occupied bandwidth:

Low Channel

Date: 24.DEC. 2019 20:30:58

Middle Channel

Date: 26.DEC. 2019 14:54:48

High Channel

Date: 26.DEC.2019 14:56:05

FCC §15.247(b) (3)\& RSS-247 CLAUSE 5.4 d) - MAXIMUM PEAK CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC $\S 15.247$ (b) (3), for systems using digital modulation in the $902-928 \mathrm{MHz}, 2400-2483.5$ MHz , and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to RSS-247 $\$ 5.4$ d) For DTSs employing digital modulation techniques operating in the bands $902-928 \mathrm{MHz}$ and $2400-2483.5 \mathrm{MHz}$, the maximum peak conducted output power shall not exceed 1 W . Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W.
As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
3. Add a correction factor to the display.
4. Set the power Meter to test Peak output power, record the result as peak power.
5. Set the power meter to test average output power, record the result as average power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	$2017-12-11$	$2018-12-11$
Unknown	Coaxial Cable	C-SJ00-0010	C0010/02	Each time	N/A

[^1]
Test Data

Environmental Conditions

Temperature:	$24.7^{\circ} \mathrm{C}$
Relative Humidity:	56%
ATM Pressure:	101.9 Pa
Tester:	Fay Hu
Test Date:	$2019-12-24$

Test Mode: Transmitting
Test Result: Compliance. Please refer to the following table.

Channel	Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)
Low	2402	4.92	
Middle	2440	4.93	30
High	2480	4.48	

FCC §15.247(d)\& RSS-247 CLAUSE 5.5 - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

According to FCC§15.247(d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209(\mathrm{a})$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to RSS-247 Clause 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section $5.4(\mathrm{~d})$, the attenuation required shall be 30 dB instead of 20 dB . Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R\&S	EMI Test Receiver	ESCI	100035	$2019-09-19$	$2020-09-19$
Unknown	Coaxial Cable	C-SJ00-0010	C0010/02	Each time	N/A

[^2]
Test Data

Environmental Conditions

Temperature:	$24.7^{\circ} \mathrm{C}$
Relative Humidity:	56%
ATM Pressure:	101.9 Pa
Tester:	Fay Hu
Test Date:	$2019-12-24$

Test mode: Transmitting
Test Result: Compliant. Please refer to following plots.

Band Edge, Left Side

Date: 24.DEC. 2019 20:31:38

Band Edge, Right Side

Date: 24.DEC.2019 20:54:50

FCC §15.247(e) \& RSS-247 CLAUSE 5.2 b - POWER SPECTRAL DENSITY

Applicable Standard

According to FCC $\S 15.247(\mathrm{e})$:For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2 b):
b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the RBW $=3 \mathrm{kHz}, \mathrm{VBW}=10 \mathrm{kHz}$, Set the span to 1.5 times the DTS bandwidth.
4. Use the peak marker function to determine the maximum amplitude level.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R\&S	EMI Test Receiver	ESCI	100035	$2019-09-19$	$2020-09-19$
Unknown	Coaxial Cable	C-SJ00-0010	C0010/02	Each time	N/A

[^3]
Test Data

Environmental Conditions

Temperature:	$24.3 \sim 26.4^{\circ} \mathrm{C}$
Relative Humidity:	$39 \sim 64 \%$
ATM Pressure:	$101.6 \sim 102.6 \mathrm{~Pa}$
Tester:	Fay Hu
Test Date:	$2019-12-24 \sim 2019-12-27$

Test Mode: Transmitting
Test Result: Compliance. Please refer to the following table and plots

Channel	Frequency $(\mathbf{M H z})$	PSD $(\mathbf{d B m} / \mathbf{3 k H z})$	Limit $(\mathbf{d B m} / \mathbf{3 k H z})$
Low	2402	-9.97	≤ 8
Middle	2440	-9.32	≤ 8
High	2480	-8.64	≤ 8

Power Spectral Density, Low Channel

Date: 24.DEC. 2019 20:31:23

Power Spectral Density, Middle Channel

Date: 27.DEC. 2019 17:24:45
Power Spectral Density, High Channel

Date: 27.DEC. 2019 17:22:41
***** END OF REPORT *****

[^0]: * Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

[^1]: * Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

[^2]: * Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

[^3]: * Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

