

FCC TEST REPORT

Test report On Behalf of MPOW TECHNOLOGY CO., LIMITED For Bluetooth Headset Model No.: BH025C

FCC ID: 2AMH2-BH25

Prepared for : MPOW TECHNOLOGY CO., LIMITED RM 603, 6/F, HANG PONT COMM BLDG 31 TONKIN ST, CHEUNG SHA WAN KL, HK, CHINA

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

Date of Test:Nov. 03, 2018 ~ Nov. 22, 2018Date of Report:Nov. 23, 2018Report Number:HK1811191639E

TEST RESULT CERTIFICATION

Applicant's name:	MPOW TECHNOLOGY CO., LIMITED
Address:	RM 603, 6/F, HANG PONT COMM BLDG 31 TONKIN ST, CHEUNG SHA WAN KL, HK, CHINA
	MPOW TECHNOLOGY CO.,LIMITED
Address:	RM 603, 6/F, HANG PONT COMM BLDG 31 TONKIN ST, CHEUNG SHA WAN KL, HK, CHINA
Product description	
Trade Mark:	MPOW
Product Name:	Bluetooth Headset
Model and/or type reference:	BH025C
Series Model:	BH25, BH025A, BH025B
Difference Description:	All the same except for the model name
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Nov. 03, 2018 ~ Nov. 22, 2018
Date of Issue:	Nov. 23, 2018
Test Result:	Pass

2

Testing Engineer

Gory Di an (Gary Qian)

Technical Manager

Edan Hu

(Eden Hu)

Authorized Signatory :

(Jason Zhou)

TABLE OF CONTENTS PAGE **1. TEST SUMMARY** 5 2. GENERAL INFORMATION 6 2.1. GENERAL DESCRIPTION OF EUT 6 2.2. CARRIER FREQUENCY OF CHANNELS 7 2.3. OPERATION OF EUT DURING TESTING 7 2.4. DESCRIPTION OF TEST SETUP 8 2.5. EQUIPMENT USED IN EUT SYSTEM 8 2.6. MEASUREMENT INSTRUMENTS LIST 9 **3. PEAK OUTPUT POWER** 10 **3.1. MEASUREMENT PROCEDURE** 10 3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 10 **3.3. LIMITS AND MEASUREMENT RESULT** 11 4. BANDWIDTH 17 **4.1. MEASUREMENT PROCEDURE** 17 4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 17 **4.3. LIMITS AND MEASUREMENT RESULTS** 17 5. CONDUCTED SPURIOUS EMISSION 24 5.1. MEASUREMENT PROCEDURE 24 5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 24 **5.3. LIMITS AND MEASUREMENT RESULT** 24 6. RADIATED EMISSION 28 6.1. TEST LIMIT 28 **6.2. MEASUREMENT PROCEDURE** 28 6.3. TEST SETUP 30 6.4. TEST RESULT 32 7. BAND EDGE EMISSION 44 7.1. MEASUREMENT PROCEDURE 44 7.2. TEST SET-UP 44 7.3. TEST RESULT 45 8. NUMBER OF HOPPING FREQUENCY 49 8.1. MEASUREMENT PROCEDURE 49 8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) 49 8.3. LIMITS AND MEASUREMENT RESULT 49 51

9. TIME OF OCCUPANCY (DWELL TIME)

TABLE OF CONTENTS	PAGE
9.1. MEASUREMENT PROCEDURE	51
9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	51
9.3. LIMITS AND MEASUREMENT RESULT	51
10. FREQUENCY SEPARATION	54
10.1. MEASUREMENT PROCEDURE	54
10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	54
10.3. LIMITS AND MEASUREMENT RESULT	54
11. LINE CONDUCTED EMISSION TEST	56
11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	56
11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	56
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	57

11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

12. ANTENNA REQUIREMENT

13. PHOTOGRAPH OF TEST

14. PHOTOGRAPHS OF EUT

1. TEST SUMMARY

1.1. TEST PROCEDURES AND RESULTS

RESULT
COMPLIANT
N/A

Note: N/A means it's not applicable to this item.

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address : 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China Designation Number: : CN1229

Test Firm Registration Number : 616276

1.3. MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	9.58dBm(Max)	
Bluetooth Version	V5.0	
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK	
Number of channels	79 for BR/EDR	
Hardware Version	G518635V2	
Software Version	V1.0	
Antenna Designation	PCB Antenna	
Antenna Gain	0.81dBi	
Power Supply	Power Supply DC 3.7V by battery	
Note: The USB port only used for charging and can't be used to transfer data with PC.		

2.2. CARRIER FREQUENCY OF CHANNELS

BR/EDR Channel List

Frequency Band	Channel Number	Frequency
	0	2402MHz
	1	2403MHz
	:	:
2400~2483.5MHz	38	2440 MHz
	39	2441 MHz
	40	2442 MHz
	:	:
	77	2479 MHz
	78	2480 MHz

2.3. OPERATION OF EUT DURING TESTING

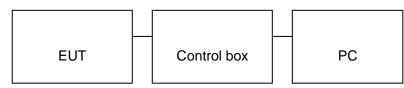
Low channel GFSK
Middle channel GFSK
High channel GFSK
Low channel π /4-DQPSK
Middle channel π /4-DQPSK
High channel π /4-DQPSK
Low channel 8DPSK
Middle channel 8DPSK
High channel 8DPSK
BT Link(Hopping mode)

Note:

1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. The EUT used fully-charged battery when tested.



2.4. DESCRIPTION OF TEST SETUP

Configure 1: (Normal hopping)

EUT

Configure 2: (Control continuous TX)

2.5. EQUIPMENT USED IN EUT SYSTEM

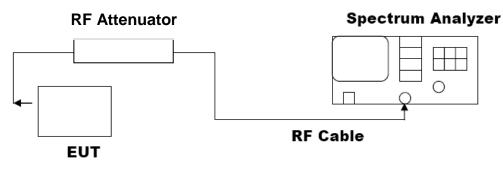
ltem	Equipment	Mfr/Brand	Model/Type No.	Remark	
1	Bluetooth Headset	MPOW	BH025C	EUT	
2	Battery	HHX	751230	Accessory	
3	PC	APPLE	A1465	A.E	
4	IPOD	APPLE	A1367	A.E	
5	Control box	CSR	USB_SPI_TOOLS	A.E	
6	USB Cable	N/A	1.0m unshielded	A.E	

Note: The temporary antenna connector is a RF SMA connector with fifty ohm resistor, which is welded to the PCB board or module.

2.6. MEASUREMENT INSTRUMENTS LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

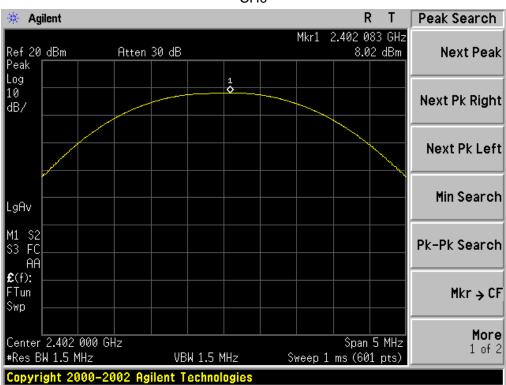
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
2.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
4.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
5.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
6.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
7.	Broad-band Horn Antenna	Schewarzbeck	LB-180400-KF	HKE-031	Dec. 28, 2017	1 Year
8.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 28, 2017	1 Year
9.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
10.	Filter (2.4-2.483GHz)	Micro-tronics	087		N/A	N/A
11.	Radiation Cable 1	MXT	HK1	R05	N/A	N/A
12.	Radiation Cable 2	MXT	HK1	R06	N/A	N/A

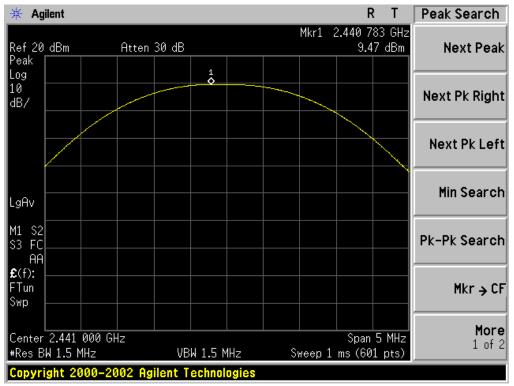

3. PEAK OUTPUT POWER

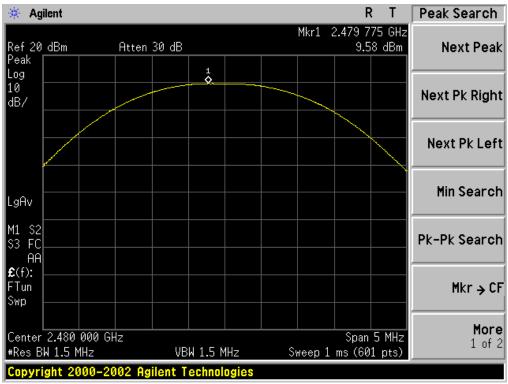
3.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW \ge RBW.
- 4. Record the maximum power from the Spectrum Analyzer.
- 5. The maximum peak power shall be less 21dBm.

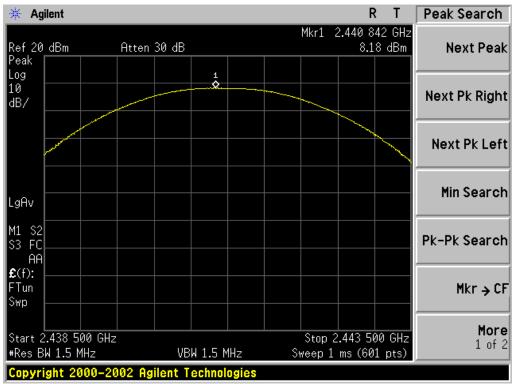

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

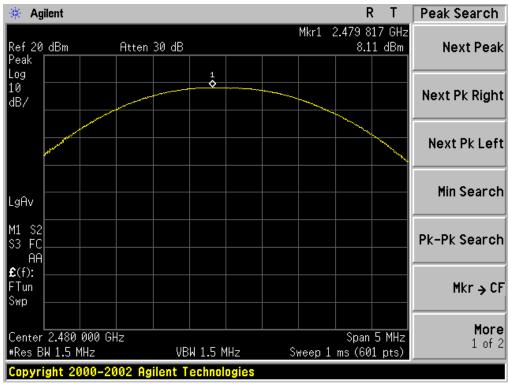




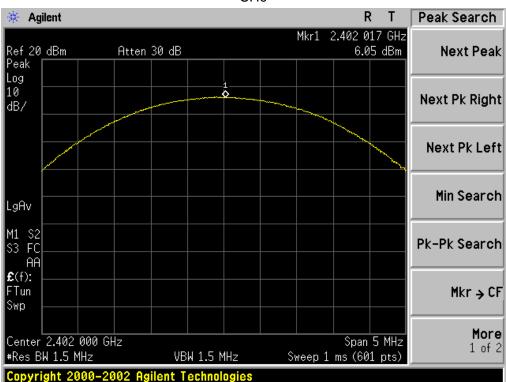
3.3. LIMITS AND MEASUREMENT RESULT

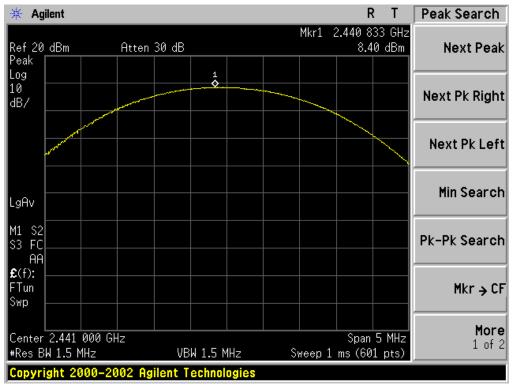
PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION				
Frequency (GHz)Peak PowerApplicable Limits (dBm)Pass or Fail				
2.402	8.02	21	Pass	
2.441	9.47	21	Pass	
2.480	9.58	21	Pass	

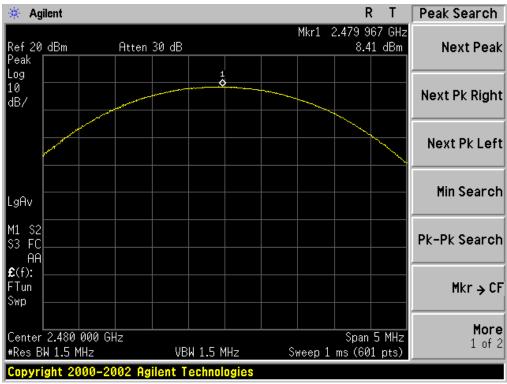




PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION				
Frequency (GHz)Peak PowerApplicable Limits (dBm)Pass or Fail				
2.402	5.88	21	Pass	
2.441	8.18	21	Pass	
2.480	8.11	21	Pass	

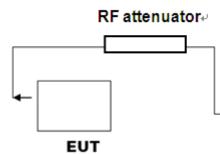


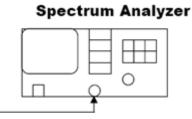




	PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8DPSK MODULATION					
Frequency (GHz)Peak Power (dBm)Applicable Limits (dBm)Pass or Fail						
2.402	6.05	21	Pass			
2.441	8.40	21	Pass			
2.480	8.41	21	Pass			

Page 15 of 68

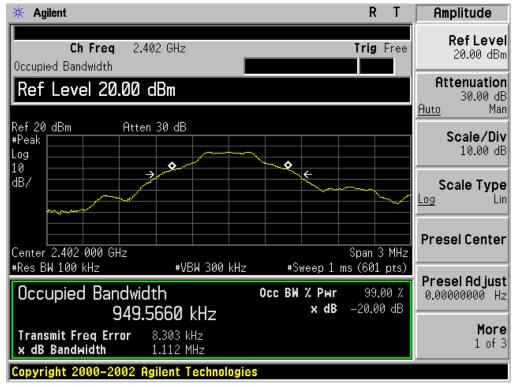



4. BANDWIDTH

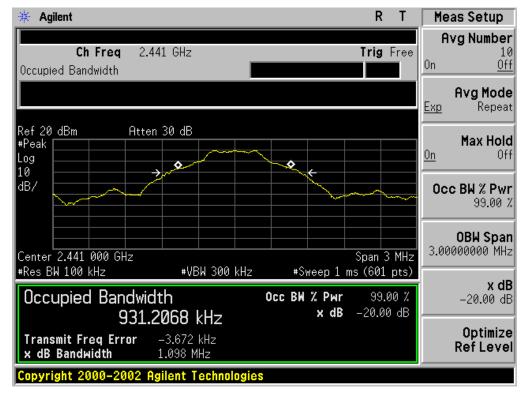
4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

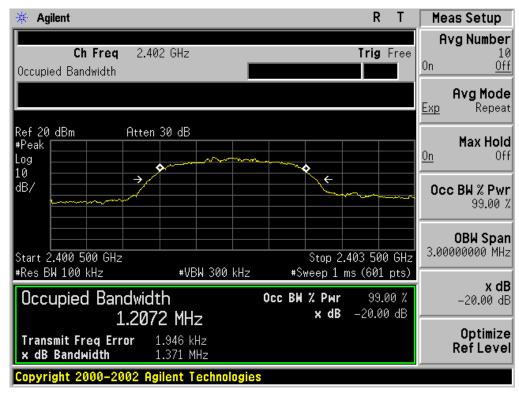
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)


RF Cable

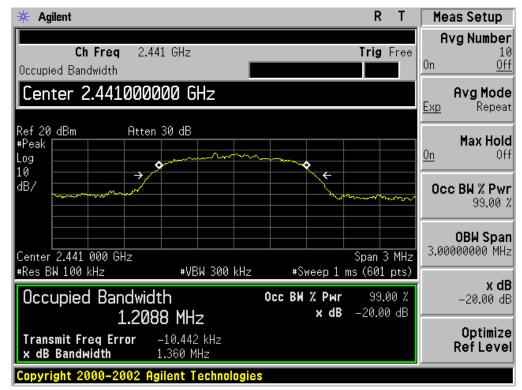
Note: The EUT has been used temporary antenna connector for testing. 4.3. LIMITS AND MEASUREMENT RESULTS


BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT							
		Ме	easurement Result				
Applicable Limits		Test Data (MHz	:)	Decult			
		99%OBW (MHz)	-20dB BW(MHz)	Result			
	Low Channel	0.950	1.112	PASS			
N/A	Middle Channel	0.931	1.098	PASS			
	High Channel	1.207	1.371	PASS			

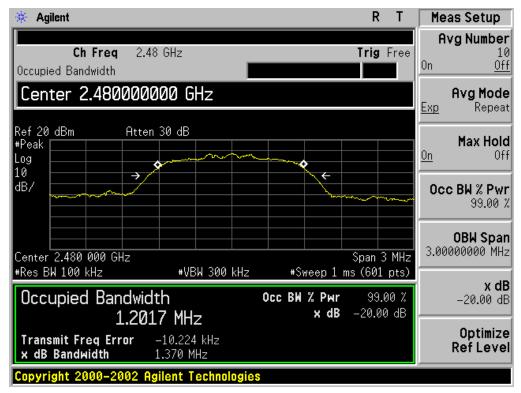
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT								
		Ме	asurement Result					
Applicable Limits		Test Data (MHz	:)	Decult				
		99%OBW (MHz)	-20dB BW(MHz)	Result				
	Low Channel	1.207	1.371	PASS				
N/A	Middle Channel	1.209	1.360	PASS				
	High Channel	1.202	1.370	PASS				

* Agilent	R	T Meas Setup
Ch Freq 2.402 GH Occupied Bandwidth	z Trig	Free Avg Number 10 0n <u>Off</u>
		Avg Mode Exp Repeat
Ref 20 dBm Atten 30 d #Peak Log 10		On Max Hold
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0cc BW % Pwr 99.00 %
Start 2.400 500 GHz #Res BW 100 kHz	Stop 2.403 500 VBW 300 kHz #Sweep 1 ms (601	
Occupied Bandwidth 1.2068 M	Occ BW % Pwr 99.0	x dB 00 % −20.00 dB
Transmit Freq Error2.018x dB Bandwidth1.371	kHz MHz	Optimize RefLevel
Copyright 2000-2002 Agilent	Technologies	

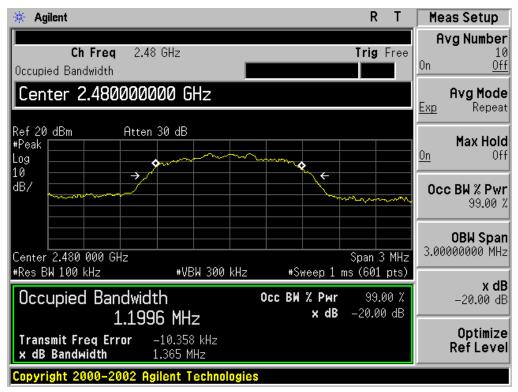

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

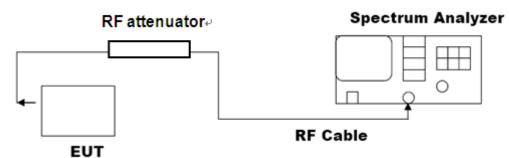

BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT								
		Ме	asurement Result					
Applicable Limits		Test Data (MHz	.)	Decult				
		99%OBW (MHz)	-20dB BW(MHz)	Result				
	Low Channel	1.222	1.355	PASS				
N/A	Middle Channel	1.218	1.361	PASS				
	High Channel	1.200	1.365	PASS				

* Agilent	R T Mea	as Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free On	/g Number 10 <u>Off</u>
	Exp	Avg Mode Repeat
Ref 20 dBm Atten 30 dB #Peak Log 10	<u>On</u>	Max Hold Off
dB/ →/		BW % Pwr 99.00 %
Center 2.402 000 GHz #Res BW 100 kHz #VBW 300 k	opan o mez	OBW Span 300000 MHz
Occupied Bandwidth 1.2223 MHz	Осс ВW % Рыг 99.00 % х dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error 3.349 kHz × dB Bandwidth 1.355 MHz		Optimize RefLevel
Copyright 2000-2002 Agilent Technolo	gies	


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW = 300kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT						
Angliaghta Limita	Measurement Result					
Applicable Limits	Test Data	Result				
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS				
frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS				

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL

쑕 Agilent R Т Peak Search Mkr1 156.0 MHz Ref 10 dBm Peak -65.52 dBm Atten 20 dB Next Peak Log 10 dB/ Next Pk Right Next Pk Left 1 Min Search LgAv Stop 1.000 0 GHz Start 9kHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) Pk-Pk Search Marker Trace (1) Type Freq X Axis 156.0 MHz Amplitude -65.52 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 15.84 GHz -51.56 dBm Ref 15 dBm Atten 30 dB Next Peak Peak ٥ Log 10 Next Pk Right dB/ Next Pk Left 2 \$ Min Search LgAv Start 1.00 GHz Stop 25.00 GHz #Res BW 100 kHz Sweep 2.294 s (8192 pts) Pk-Pk Search #VBW 300 kHz X Axis 2.40 GHz 15.84 GHz Amplitude 7.06 dBm -51.56 dBm Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2006 Agilent Technologies

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

Agilent R T Peak Search 44 Mkr1 156.0 MHz Ref 10 dBm Peak -65.61 dBm Atten 20 dB Next Peak Log 10 dB/ Next Pk Right Next Pk Left 1 Min Search LgAv Stop 1.000 0 GHz Start 9kHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) Pk-Pk Search Marker Trace (1) Type Freq X Axis 156.0 MHz Amplitude -65.61 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 14.01 GHz -52.00 dBm Ref 15 dBm Atten 30 dB Next Peak Peak ٥ Log 10 Next Pk Right dB/ Next Pk Left 2 \$ Min Search LgAv Start 1.00 GHz Stop 25.00 GHz #Res BW 100 kHz Sweep 2.294 s (8192 pts) Pk-Pk Search #VBW 300 kHz Amplitude 8.81 dBm -52.00 dBm X Axis 2.44 GHz 14.01 GHz Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2006 Agilent Technologies

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

Agilent R Т Peak Search 44 Mkr1 156.0 MHz Ref 10 dBm Peak -66.20 dBm Atten 20 dB Next Peak Log 10 dB/ Next Pk Right Next Pk Left \$ • LL L Min Search LgAv Stop 1.000 0 GHz Start 9kHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) Pk-Pk Search Marker Trace (1) Type Freq X Axis 156.0 MHz Amplitude -66.20 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 16.30 GHz -51.09 dBm Ref 20 dBm Atten 30 dB Next Peak Peak Log 10 Next Pk Right dB/ Next Pk Left 2 0 Min Search LgAv Start 1.00 GHz Stop 25.00 GHz #Res BW 100 kHz Pk-Pk Search #VBW 300 kHz Sweep 2.294 s (8192 pts) X Axis 2.48 GHz 16.30 GHz Amplitude 8.08 dBm -51.09 dBm Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2006 Agilent Technologies

6. RADIATED EMISSION

6.1. TEST LIMIT

Distance	Field Strengths Limit					
Meters	μ V/m	dB(µV)/m				
300	2400/F(kHz)					
30	24000/F(kHz)					
30	30					
3	100	40.0				
3	150	43.5				
3	200	46.0				
3	500	54.0				
3	Other:74.0 dB(µV)/m (Peak) 54.0 dB(µV)/m					
	(Average)					
	300 30 30 30 3 3 3 3 3 3 3 3	300 2400/F(kHz) 30 24000/F(kHz) 30 30 30 30 30 30 31 100 32 150 33 200 33 500 3 Other:74.0 dB(μV)/m (F				

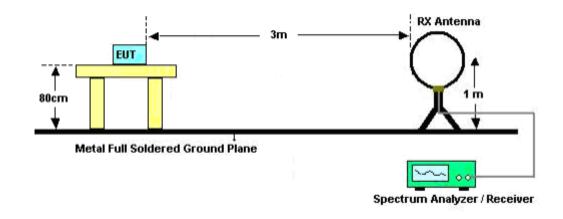
(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

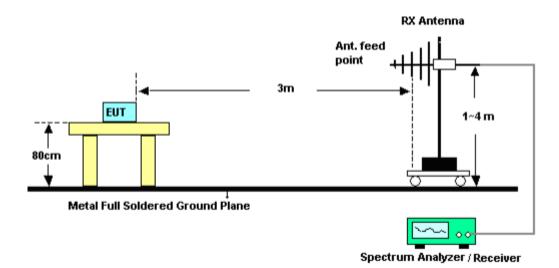
6.2. MEASUREMENT PROCEDURE

- The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The following table is the setting of spectrum analyzer and receiver.

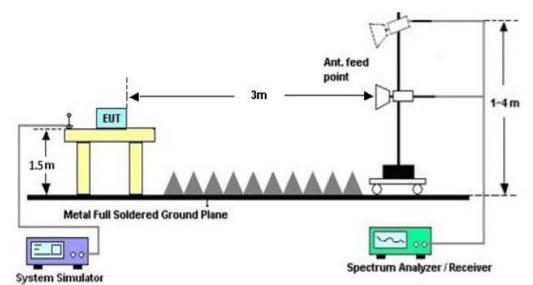

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



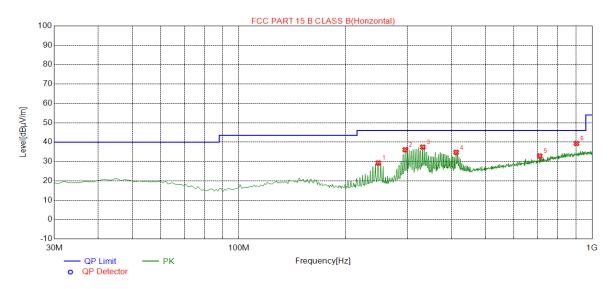
6.3. TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz



RADIATED EMISSION TEST SETUP 30MHz-1000MHz

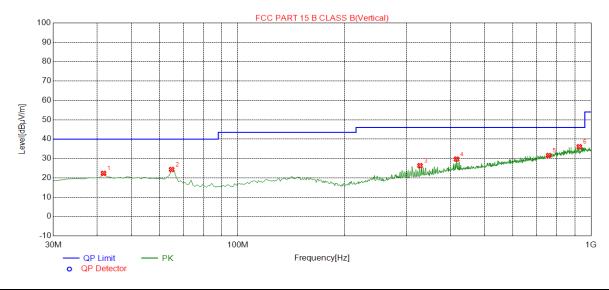
RADIATED EMISSION TEST SETUP ABOVE 1000MHz



RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz. **RADIATED EMISSION BELOW 1GHz**

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL



Suspe	Suspected Data List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	248.250	29.23	13.88	46.00	16.77	100	187	Horizontal		
2	295.780	36.08	15.04	46.00	9.92	100	159	Horizontal		
3	331.670	37.41	16.12	46.00	8.59	100	212	Horizontal		
4	412.180	34.72	18.94	46.00	11.28	100	252	Horizontal		
5	710.940	32.86	24.69	46.00	13.14	200	103	Horizontal		
6	903.000	39.31	28.27	46.00	6.69	150	358	Horizontal		

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

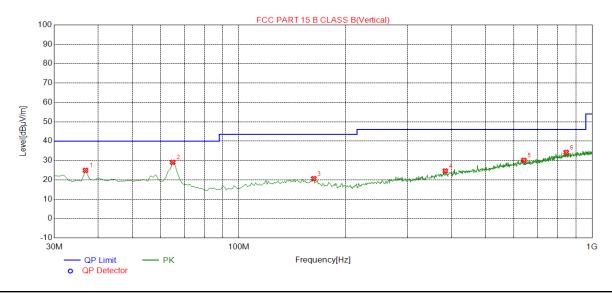
Suspe	Suspected Data List									
	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polority		
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	41.6400	22.32	14.59	40.00	17.68	200	201	Vertical		
2	64.9200	24.31	12.70	40.00	15.69	100	64	Vertical		
3	327.790	26.28	15.97	46.00	19.72	100	106	Vertical		
4	416.060	29.68	19.03	46.00	16.32	200	186	Vertical		
5	758.470	31.54	25.80	46.00	14.46	200	358	Vertical		
6	926.280	36.05	28.48	46.00	9.95	100	40	Vertical		


RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

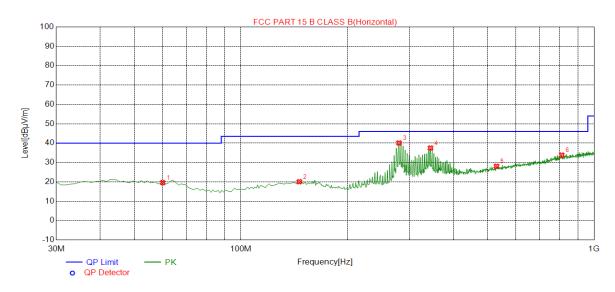


Suspected Data List								
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	
1	129.910	20.82	13.56	43.50	22.68	100	229	Horizontal
2	182.290	22.01	12.16	43.50	21.49	100	358	Horizontal
3	248.250	22.22	13.88	46.00	23.78	100	143	Horizontal
4	344.280	25.15	16.58	46.00	20.85	100	358	Horizontal
5	609.090	30.95	23.07	46.00	15.05	100	303	Horizontal
6	830.250	34.01	27.25	46.00	11.99	100	6	Horizontal

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)- MIDDLE CHANNEL -VERTICAL

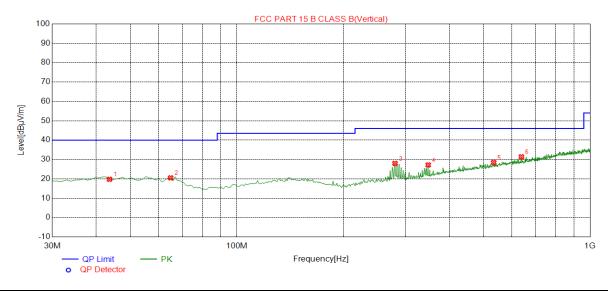
Suspected Data List								
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	
1	36.7900	24.88	13.89	40.00	15.12	100	32	Vertical
2	64.9200	29.05	12.70	40.00	10.95	100	351	Vertical
3	162.890	20.62	13.97	43.50	22.88	100	190	Vertical
4	384.050	24.58	18.06	46.00	21.42	100	177	Vertical
5	641.100	30.13	23.54	46.00	15.87	100	44	Vertical
6	844.800	34.19	27.46	46.00	11.81	100	310	Vertical


RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL



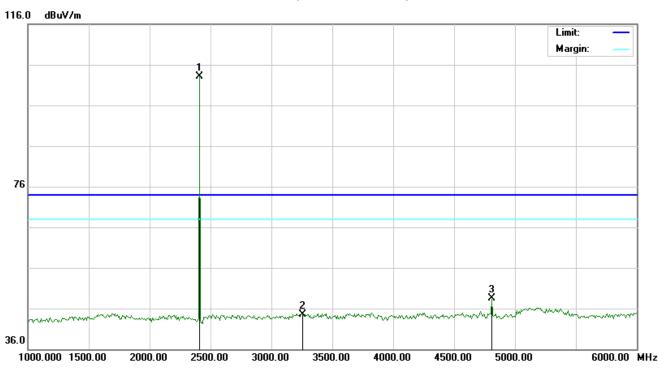
Suspected Data List								
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	
1	60.0700	19.58	13.53	40.00	20.42	100	26	Horizontal
2	146.400	20.07	14.25	43.50	23.43	200	202	Horizontal
3	280.260	40.08	15.35	46.00	5.92	100	16	Horizontal
4	344.280	37.49	16.58	46.00	8.51	100	20	Horizontal
5	529.550	28.04	21.51	46.00	17.96	200	17	Horizontal
6	809.880	33.82	26.95	46.00	12.18	100	96	Horizontal

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

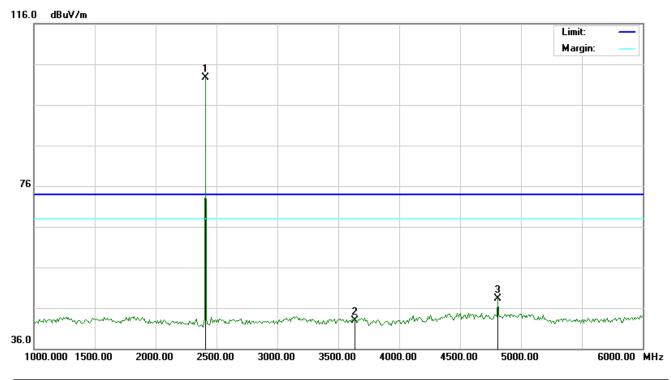
Suspe	Suspected Data List										
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polority			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	43.5800	19.77	14.53	40.00	20.23	100	318	Vertical			
2	64.9200	20.52	12.70	40.00	19.48	100	169	Vertical			
3	280.260	27.97	15.35	46.00	18.03	150	117	Vertical			
4	348.160	27.17	16.72	46.00	18.83	150	111	Vertical			
5	533.430	28.44	21.59	46.00	17.56	200	117	Vertical			
6	639.160	31.39	23.51	46.00	14.61	150	269	Vertical			

RESULT: PASS

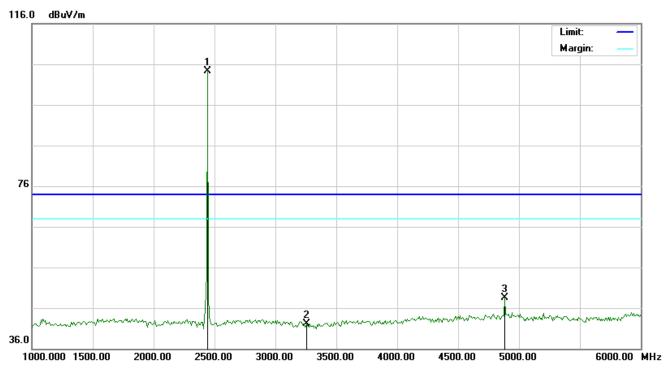

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

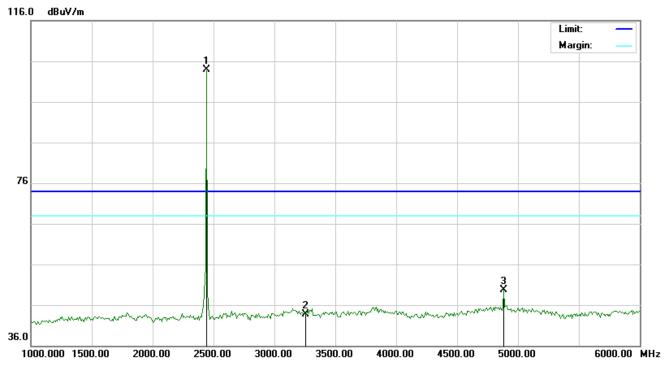
RADIATED EMISSION ABOVE 1GHz


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-LOW CHANNEL-HORIZONTAL

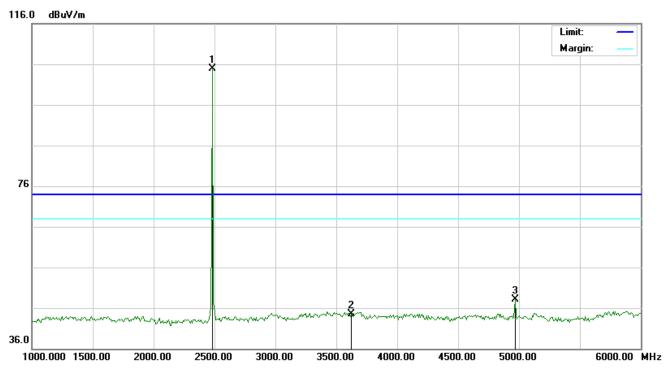
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2402.000	92.83	10.32	103.15	74.00	29.15	peak			
2		3256.000	32.70	11.88	44.58	74.00	-29.42	peak			
3		4804.000	40.71	7.69	48.40	74.00	-25.60	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-LOW CHANNEL -VERTICAL

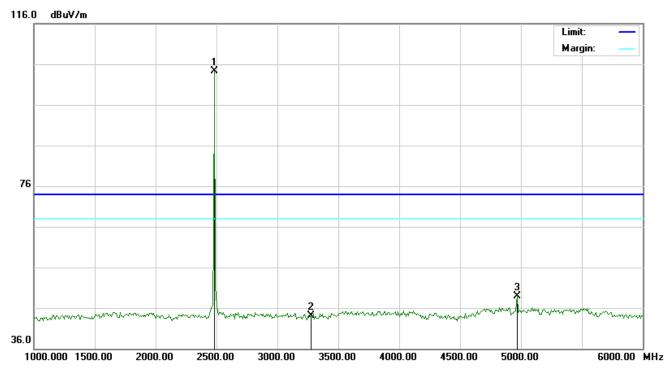
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2402.000	92.44	10.32	102.76	74.00	28.76	peak			
2		3629.000	29.94	12.90	42.84	74.00	-31.16	peak			
3		4804.000	40.55	7.69	48.24	74.00	-25.76	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-MIDDLE CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2441.000	93.97	10.36	104.33	74.00	30.33	peak			
2		3258.000	30.23	11.88	42.11	74.00	-31.89	peak			
3		4882.000	40.66	7.89	48.55	74.00	-25.45	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics) - MIDDLE CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2441.000	93.53	10.36	103.89	74.00	29.89	peak			
2		3256.000	31.87	11.88	43.75	74.00	-30.25	peak			
3		4882.000	41.89	7.89	49.78	74.00	-24.22	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-HIGH CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	94.43	10.41	104.84	74.00	30.84	peak			
2		3625.000	31.67	12.88	44.55	74.00	-29.45	peak			
3		4960.000	40.10	8.09	48.19	74.00	-25.81	peak			

RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-HIGH CHANNEL –VERTICAL

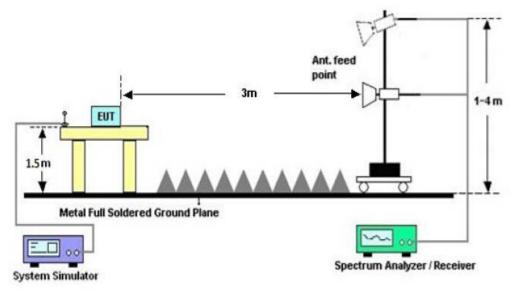
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	93.90	10.41	104.31	74.00	30.31	peak			
2		3269.000	32.30	11.89	44.19	74.00	-29.81	peak			
3		4960.000	40.91	8.09	49.00	74.00	-25.00	peak			

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

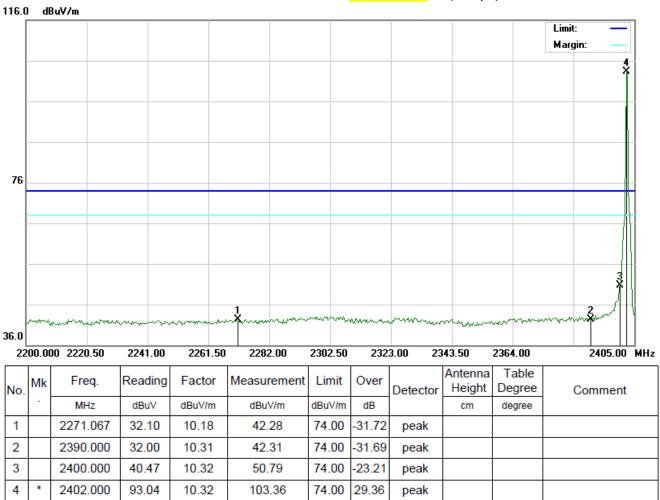


7. BAND EDGE EMISSION

7.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- Set SPA Start or Stop Frequency=Operation Frequency, For unrestricted band: RBW=100kHz, VBW=300kHz
 For restricted band: RBW=1MHz, VBW=3*RBW
 Center frequency =Operation frequency
- 3. The band edges was measured and recorded.

7.2. TEST SET-UP



7.3. TEST RESULT

(Worst Modulation: GFSK)

```
TEST PLOT OF BAND EDGE FOR LOW CHANNEL (1Mbps)-Horizontal
```


3

4

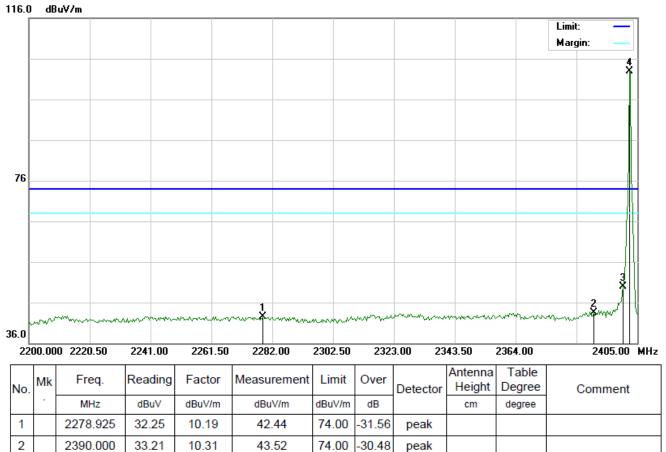
*

2400.000

2402.000

39.56

92.49


10.32

10.32

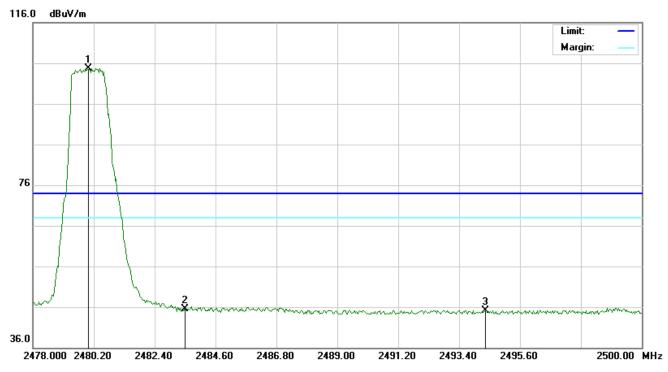
49.88

102.81

TEST PLOT OF BAND EDGE FOR LOW CHANNEL (1Mbps)-Vertical

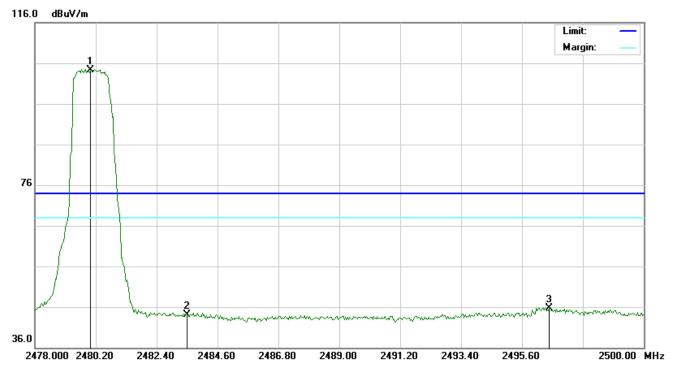
74.00 -24.12

28.81


74.00

peak

peak


TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (1Mbps)-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	94.28	10.41	104.69	74.00	30.69	peak			
2		2483.500	35.19	10.41	45.60	74.00	-28.40	peak			
3		2494.353	34.77	10.42	45.19	74.00	-28.81	peak			

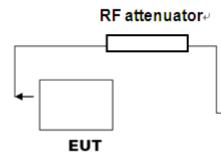
TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (1Mbps)-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	93.90	10.41	104.31	74.00	30.31	peak			
2		2483.500	33.76	10.41	44.17	74.00	-29.83	peak			
3		2496.590	35.37	10.43	45.80	74.00	-28.20	peak			

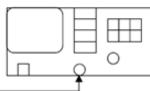
RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. Hopping off and Hopping on have been tested and only worst case recorded



8. NUMBER OF HOPPING FREQUENCY

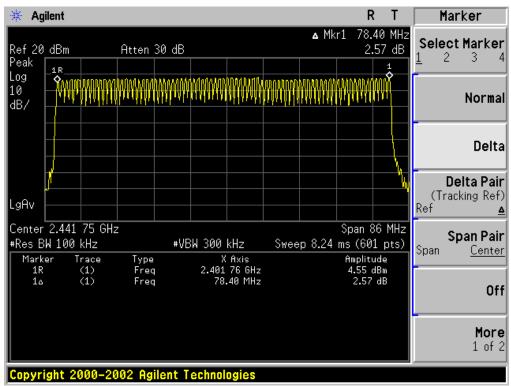

8.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=3RBW.

8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Spectrum Analyzer

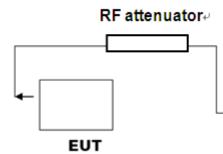
RF Cable

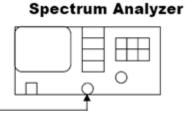

8.3. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

Page 50 of 68

TEST PLOT FOR NO. OF TOTAL CHANNELS



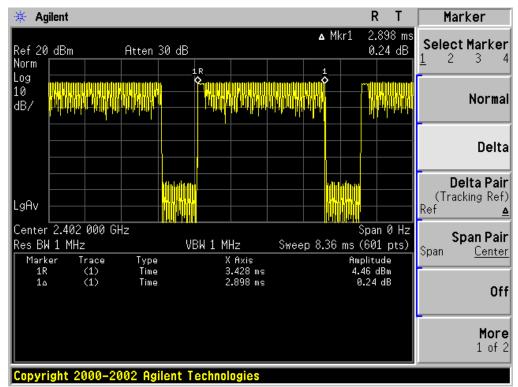

9. TIME OF OCCUPANCY (DWELL TIME)

9.1. MEASUREMENT PROCEDURE

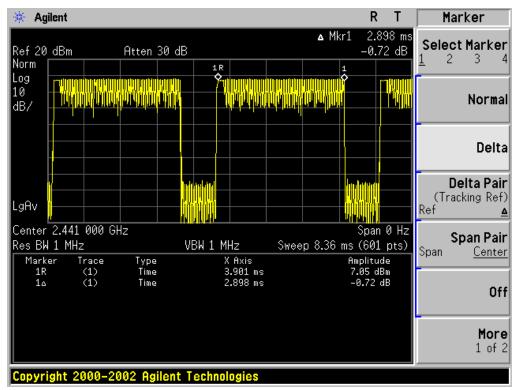
- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set Span = zero span, centered on a hoping channel
- 4. Set the spectrum analyzer as RBW=1MHz, VBW>=RBW, Span = 0 Hz

9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

RF Cable


9.3. LIMITS AND MEASUREMENT RESULT

	The Wo	<mark>rst Case (3Mbps)</mark>		
Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)
Low	2.898	31.6	309.12	400
Middle	2.898	31.6	309.12	400
High	2.926	31.6	312.11	400

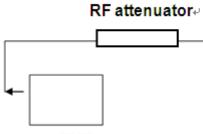

Low Channel Time 2.898*(1600/6)/79*31.6=309.12ms Middle Channel Time 2.898*(1600/6)/79*31.6=309.12ms High Channel Time 2.926*(1600/6)/79*31.6=312.11ms

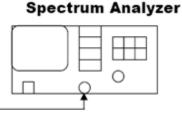
TEST PLOT OF LOW CHANNEL

TEST PLOT OF MIDDLE CHANNEL

	15311		H CHANNE	L	
🔆 Agilent				RT	Marker
Ref 20 dBm Norm 1R	Atten 30 dB	1	▲ Mkr1	2.926 ms -1.44 dB	Select Marker <u>1</u> 2 3 4
Log 10 dB/					Normal
					Delta
_gAv					Delta Pair (Tracking Ref) Ref <u>≜</u>
Center 2.480 000 GH Res BW 1 MHz Marker Trace		W 1 MHz X Axis	Sweep 8.36 ms	Span 0 Hz (601 pts) mplitude	Span Pair Span <u>Center</u>
1R (1) 1 ₄ (1)	Time Time	1.505 ms 2.926 ms	6	.85 dBm 1.44 dB	Off
					More 1 of 2
Copyright 2000-20	002 Agilent Te	chnologies			

TEST PLOT OF HIGH CHANNEL

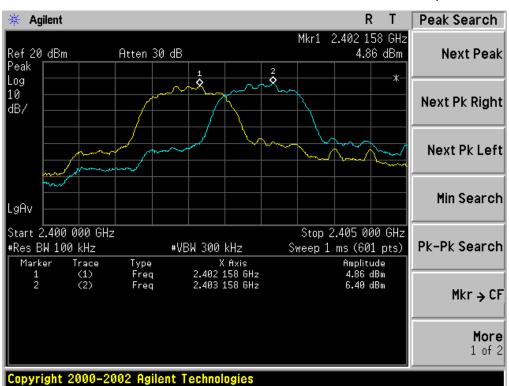



10. FREQUENCY SEPARATION

10.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)



RF Cable

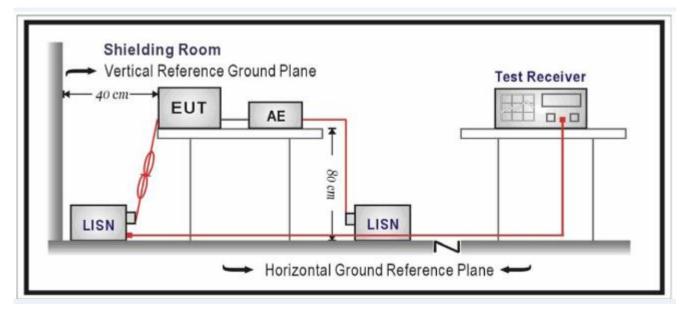
EUT

10.3. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	
CH00-CH01	1000	>=25 KHz or 2/3 20 dB BW	Pass

TEST PLOT FOR FREQUENCY SEPARATION (3Mbps)

11. LINE CONDUCTED EMISSION TEST 11.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

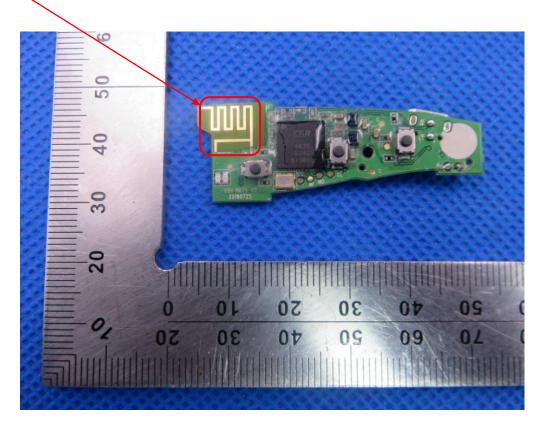
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

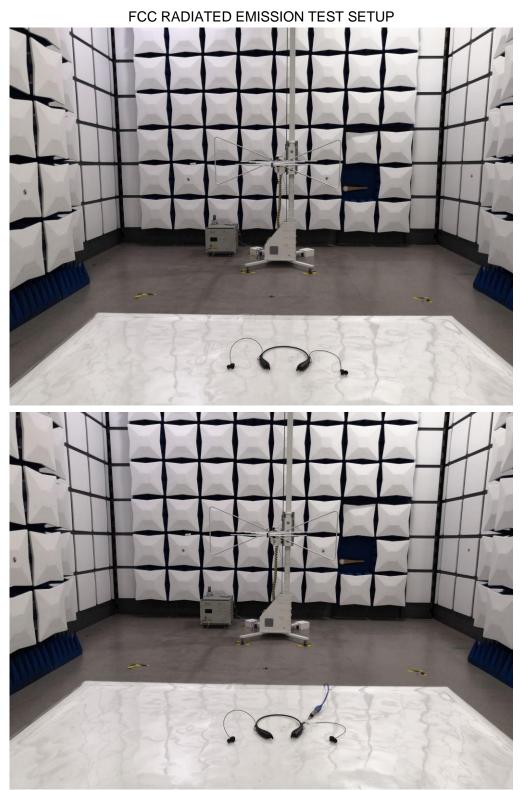
Note: The BT function of EUT didn't work when charging.

12. ANTENNA REQUIREMENT


Standard Applicable

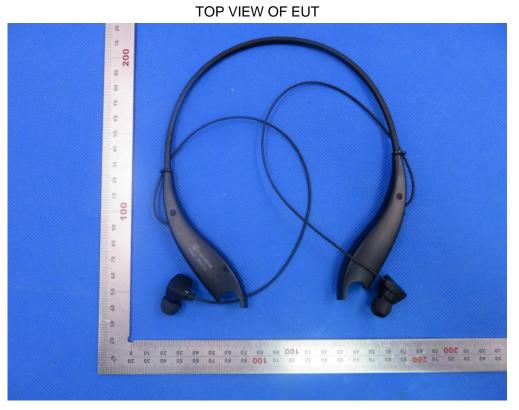
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.


The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

ANTENNA

13. PHOTOGRAPH OF TEST



14. PHOTOGRAPHS OF EUT

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

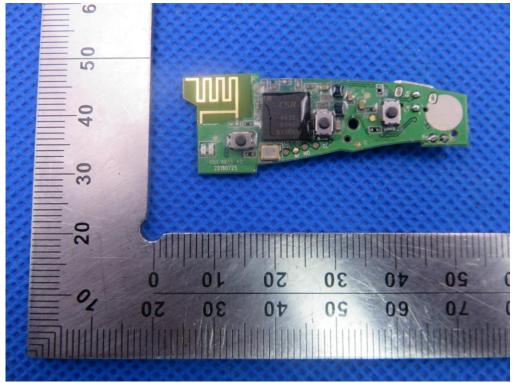
BACK VIEW OF EUT

LEFT VIEW OF EUT

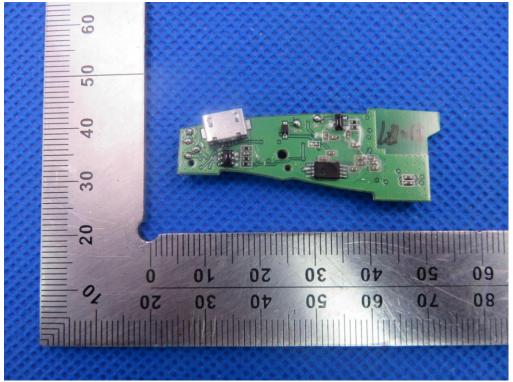
RIGHT VIEW OF EUT

VIEW OF EUT (PORT)

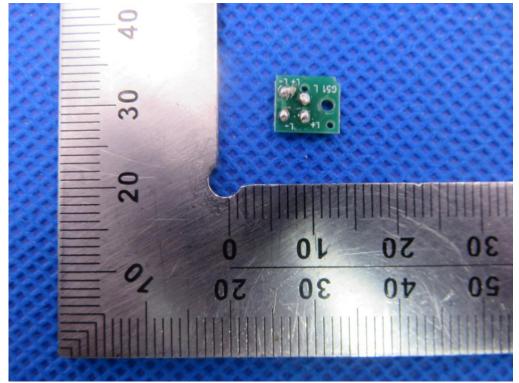
OPEN VIEW OF EUT



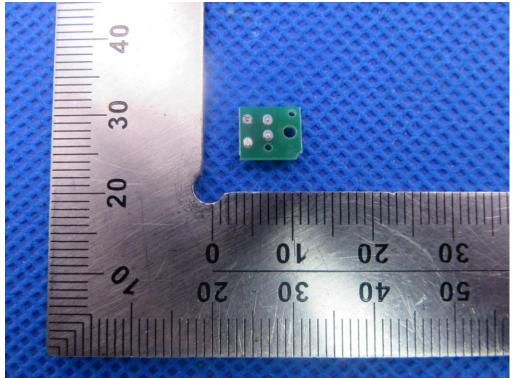
VIEW OF BATTERY



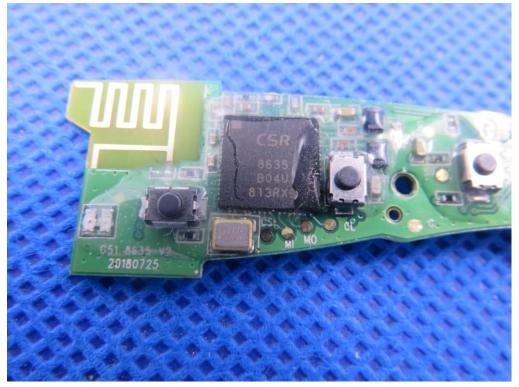
INTERNAL VIEW OF EUT-1



INTERNAL VIEW OF EUT-2



INTERNAL VIEW OF EUT-3



INTERNAL VIEW OF EUT-4

INTERNAL VIEW OF EUT-5

----END OF REPORT----