

Global United Technology Services Co., Ltd.

Report No.: GTSL202104000279-03

TEST REPORT

Applicant: Dalian Cloud Force Technologies Co., Ltd.

Address of Applicant: Unit1, Block B, 6th Floor, No.23 Honggang Road, Ganjingzi

District, Dalian, Liaoning Province, China

Manufacturer: Dalian Cloud Force Technologies Co., Ltd.

Address of Unit1, Block B, 6th Floor, No.23 Honggang Road, Ganjingzi

Manufacturer: District, Dalian, Liaoning Province, China

Equipment Under Test (EUT)

Product Name: Wireless Motion Sensor

Model No.: MS1P

N/A Series model:

Trade Mark: Ubibot

FCC ID: 2AMFC-MS1P

IC: 24405-MS1P

Applicable standards: FCC Part 15.247

RSS 247 Issue 2, February 2017

RSS-GEN Issue 5 ANSI C63.10: 2013

Date of sample receipt: Sep.14,2020

Date of Test: Sep.14,2020- Apr.30,2021

Date of report issued: Apr.30,2021

Test Result: PASS *

Authorized Signature:

Robinson Luo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 42

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Apr.30,2021	Original
	8 8 8 2	
Q 2 2	2 2 2 2 2	8 8 8 8 8 8

Jazan Ely	Date:	Apr.30,2021	
Project Engineer			
(Johnson lust	Date:	Apr.30,2021	
		Project Engineer Apply Songland	Project Engineer Adaptional Law

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	7 7
	5.4 DEVIATION FROM STANDARDS	7 7
	5.8 Additional Instructions	
6		
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	11
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	21
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8	TEST SETUP PHOTO	42
9	EUT CONSTRUCTIONAL DETAILS	42

4 Test Summary

Test Item	Section	Result
AC Power Conducted Emission	RSS-Gen 8.8/515.107(a)S15.207	Pass
6dB Bandwidth & 99% Bandwidth	RSS 247 5.2(a)/ RSS-Gen 6.7/S15.247(a)(2)	Pass
Spurious RF Conducted Emission	RSS 247 5.5/\$15.247(d)	Pass
Maximum Peak Conducted Output Power	RSS 247 5.4 (d)/ S15.247(b)(3)	Pass
Power Spectral Density	RSS 247 5.2(b)/ g15.247(e)	Pass
Radiated Emissions	RSS-Gen 8.9/S 15.247(d)/15.209(a)	Pass
Band Edge	RSS-Gen 8.10/S15.247(b)(1)	Pass
Antenna gain	S15.247(b)(4)	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	Wireless Motion Sensor
Model No.:	MS1P
Series model:	N/A
Test sample(s) ID:	GTSL202104000279-1(Engineer sample) GTSL202104000279-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20) Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna Gain:	OdBi
Power supply:	DC 5V/1A From External Circuit and AC 100-240V/50/60Hz
Adapter Information: (auxiliary test equipment supplied by test Lab)	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2 &	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

P Total about 1	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

Page 6 of 42

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11g 802.11n(HT20)	
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special AT test command provided by manufacturer				
Power level setup	Default				

6 Test Instruments list

Rad	iated Emission:			6 6		8
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	FARAD	EZ-EMC	N/A	// N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)		84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 25 2020	June. 24 2021		

RF C	onducted Test:					28
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	General used equipment:						
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

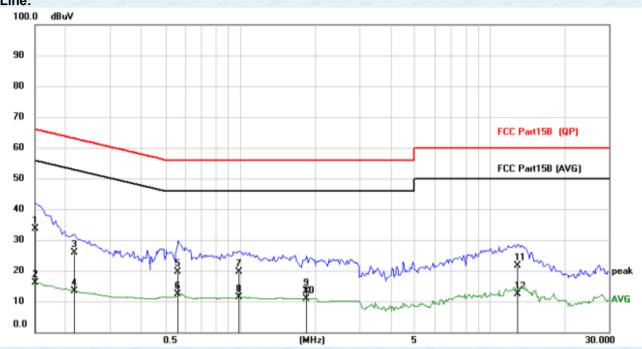
Standard requirement: RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 miliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

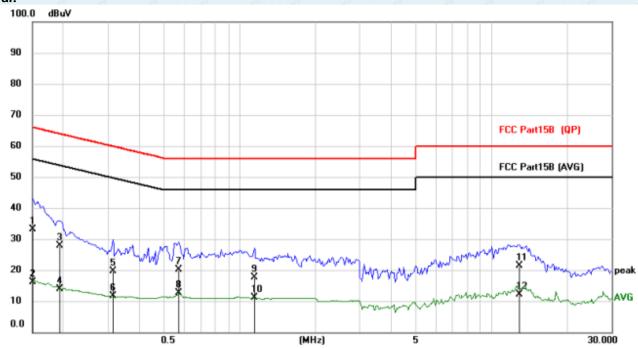
EUT Antenna:

The antennas are PCB Antenna, the best case gain of the antennas are 0dBi, reference to the appendix II for details


7.2 Conducted Emissions

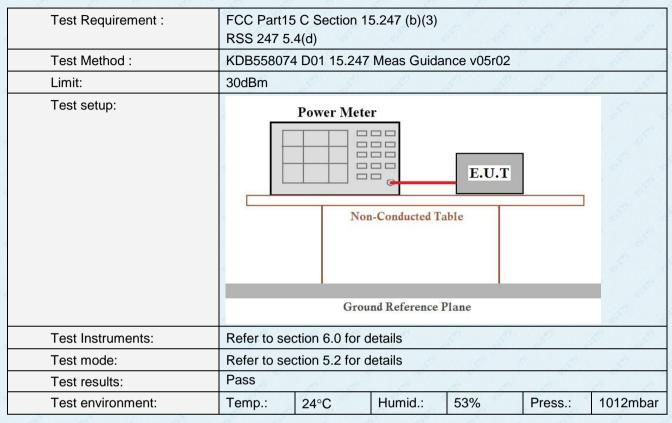
Test Requirement:	FCC Part15 C Section 15.207 RSS Gen 8.8				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz	0 0 0	2 1	7 (0)	
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	9 99	9	
Limit:	Fraguera (MILE)	Limi	t (dBuV)	8	
	Frequency range (MHz)	Quasi-peak	Aver	age	
	0.15-0.5	66 to 56*	56 to	/3	
	0.5-5	56	46		
	5-30	60	50	0	
Test setup:	* Decreases with the logarithm				
	AUX Equipment E.U.T	/ <u></u>	oower		
Test procedure:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization	n network (L.I.S.N.).	This provides	a	
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling importhe block diagram checked for maximum difference of the interface of the maximum emist all of the interface of the connected to the maximum emist all of the interface of the connected to the maximum emist all of the interface of the connected to t	This provides uring equipment and power bedance with 5 of the test set arm conducted assion, the related best must be stated as the stated are the th	a ent. r through a 500hm rup and tive e changed	
Test procedure: Test Instruments:	Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and	Receiver are connected to the network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling important the block diagram checked for maximum difference of 2013 on conducted in the maximum emission of the interface of 2013 on conducted in the maximum emission of the interface of 2013 on conducted in the maximum emission of the interface of 2013 on conducted in the maximum emission of the interface of 2013 on conducted in the interf	This provides uring equipment and power bedance with 5 of the test set arm conducted assion, the related best must be stated as the stated are the th	a ent. r through a 500hm rup and tive e changed	
	Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10:	Receiver are connected to the n network (L.I.S.N.). edance for the meast also connected to the m/50uH coupling important of the block diagram checked for maximud the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the interface of 2013 on co	This provides uring equipment and power bedance with 5 of the test set arm conducted assion, the related best must be stated as the stated are the th	a ent. r through a 500hm cup and tive e changed	
Test Instruments:	Remark EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	Receiver are connected to the n network (L.I.S.N.). edance for the meast also connected to the m/50uH coupling important of the block diagram checked for maximud the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the interface of 2013 on co	This provides uring equipment and power bedance with 5 of the test set arm conducted assion, the related best must be stated as the stated are the th	a ent. r through a 500hm cup and tive e changed	
Test Instruments: Test mode:	Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	are connected to the network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imported the block diagram checked for maximud the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the maximum emist all of the interface of 2013 on conducted in the interface	This provides uring equipment main power to be dance with 5 of the test set arm conducted assion, the related be measurement.	a ent. r through a 500hm up and tive e changed	

Measurement data


Line:

S									
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
ď			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1	*	0.1500	22.81	10.92	33.73	66.00	-32.27	QP
	2		0.1500	5.31	10.92	16.23	56.00	-39.77	AVG
	3		0.2163	15.00	10.92	25.92	62.96	-37.04	QP
4	4		0.2163	2.43	10.92	13.35	52.96	-39.61	AVG
	5		0.5633	8.81	10.92	19.73	56.00	-36.27	QP
Ų	6		0.5633	1.48	10.92	12.40	46.00	-33.60	AVG
S	7		0.9885	8.77	10.92	19.69	56.00	-36.31	QP
	8		0.9885	0.52	10.92	11.44	46.00	-34.56	AVG
8	9		1.8465	2.42	10.96	13.38	56.00	-42.62	QP
	10		1.8465	0.03	10.96	10.99	46.00	-35.01	AVG
S. S.	11		12.8943	10.10	11.42	21.52	60.00	-38.48	QP
	12		12.8943	0.84	11.42	12.26	50.00	-37.74	AVG

Neutral:


/lk. Freq.	Level	Factor	ment	Limit	Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1500	22.23	10.92	33.15	66.00	-32.85	QP
0.1500	5.19	10.92	16.11	56.00	-39.89	AVG
0.1929	16.93	10.92	27.85	63.91	-36.06	QP
0.1929	2.97	10.92	13.89	53.91	-40.02	AVG
0.3138	8.67	10.92	19.59	59.87	-40.28	QP
0.3138	0.68	10.92	11.60	49.87	-38.27	AVG
0.5751	9.31	10.92	20.23	56.00	-35.77	QP
0.5751	1.72	10.92	12.64	46.00	-33.36	AVG
1.1445	6.83	10.92	17.75	56.00	-38.25	QP
1.1445	0.18	10.92	11.10	46.00	-34.90	AVG
12.9138	9.88	11.42	21.30	60.00	-38.70	QP
12.9138	0.69	11.42	12.11	50.00	-37.89	AVG
	MHz 0.1500 0.1500 0.1929 0.1929 0.3138 0.3138 0.5751 0.5751 1.1445 1.1445	MHz dBuV 0.1500 22.23 0.1500 5.19 0.1929 16.93 0.1929 2.97 0.3138 8.67 0.3138 0.68 0.5751 9.31 0.5751 1.72 1.1445 6.83 1.1445 0.18 12.9138 9.88	MHz dBuV dB 0.1500 22.23 10.92 0.1500 5.19 10.92 0.1929 16.93 10.92 0.1929 2.97 10.92 0.3138 8.67 10.92 0.3138 0.68 10.92 0.5751 9.31 10.92 0.5751 1.72 10.92 1.1445 6.83 10.92 1.1445 0.18 10.92 12.9138 9.88 11.42	MHz dBuV dB dBuV 0.1500 22.23 10.92 33.15 0.1500 5.19 10.92 16.11 0.1929 16.93 10.92 27.85 0.1929 2.97 10.92 13.89 0.3138 8.67 10.92 19.59 0.3138 0.68 10.92 11.60 0.5751 9.31 10.92 20.23 0.5751 1.72 10.92 12.64 1.1445 6.83 10.92 17.75 1.1445 0.18 10.92 11.10 12.9138 9.88 11.42 21.30	MHz dBuV dB dBuV dBuV 0.1500 22.23 10.92 33.15 66.00 0.1500 5.19 10.92 16.11 56.00 0.1929 16.93 10.92 27.85 63.91 0.1929 2.97 10.92 13.89 53.91 0.3138 8.67 10.92 19.59 59.87 0.3138 0.68 10.92 11.60 49.87 0.5751 9.31 10.92 20.23 56.00 0.5751 1.72 10.92 12.64 46.00 1.1445 6.83 10.92 17.75 56.00 1.1445 0.18 10.92 11.10 46.00 12.9138 9.88 11.42 21.30 60.00	MHz dBuV dB dBuV dBuV dB 0.1500 22.23 10.92 33.15 66.00 -32.85 0.1500 5.19 10.92 16.11 56.00 -39.89 0.1929 16.93 10.92 27.85 63.91 -36.06 0.1929 2.97 10.92 13.89 53.91 -40.02 0.3138 8.67 10.92 19.59 59.87 -40.28 0.3138 0.68 10.92 11.60 49.87 -38.27 0.5751 9.31 10.92 20.23 56.00 -35.77 0.5751 1.72 10.92 12.64 46.00 -33.36 1.1445 6.83 10.92 17.75 56.00 -38.25 1.1445 0.18 10.92 11.10 46.00 -34.90 12.9138 9.88 11.42 21.30 60.00 -38.70

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

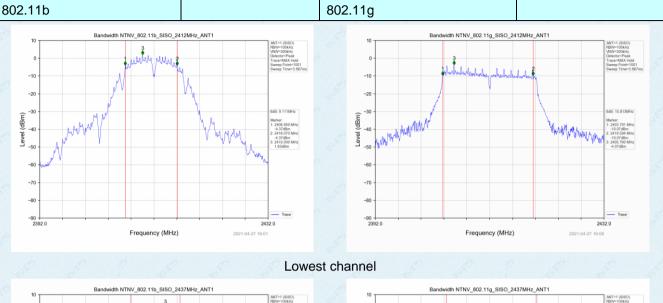
7.3 Conducted Peak Output Power

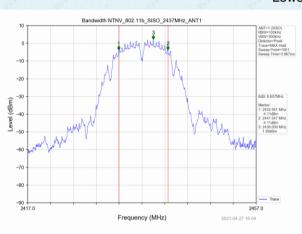
Measurement Data

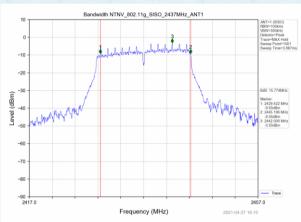
Test CH		Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	Limit(dDin)	Nesuit
Lowest	12.68	13.26	12.82		
Middle	12.67	14.34	13.93	30.00	Pass
Highest	12.61	13.82	13.66		10 10

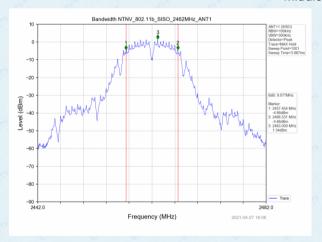
7.4 Channel Bandwidth & 99% Occupy Bandwidth

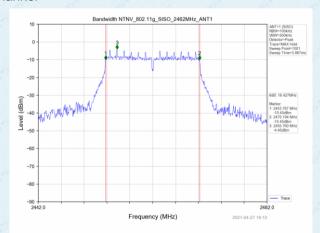
Test Requirement : Test Method :	FCC Part15 C Section 15.247 (a)(2) RSS 247 5.2(a) KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
Test environment:	Temp.: 24°C Humid.: 53% Press.: 1012mbar				


Measurement Data

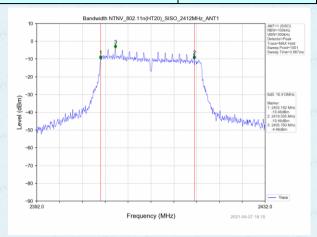

Test CH	Channel Bandwidth (MHz)			Limit(KHz)	Result
1651 011	802.11b	802.11g	802.11n(HT20)	Liiiii((Ki iZ)	Nesuit
Lowest	9.111	15.813	16.413	8	
Middle	8.607	15.774	16.388	>500	Pass
Highest	9.077	16.427	17.631		

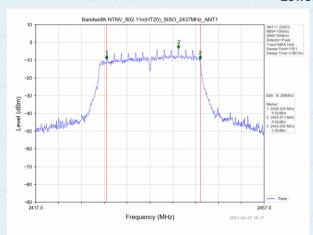

Test CH	99% Occupy Bandwidth			Limit(KHz)	Result
165t Off	802.11b	802.11g	802.11n(HT20)	Limit(Ki iz)	Nesuit
Lowest	12.232	17.301	18.041		E E
Middle	11.480	17.026	17.841	>500	Pass
Highest	12.156	17.461	18.173		

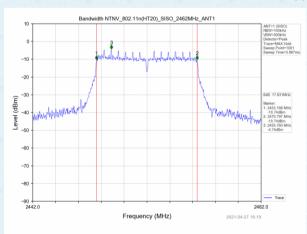




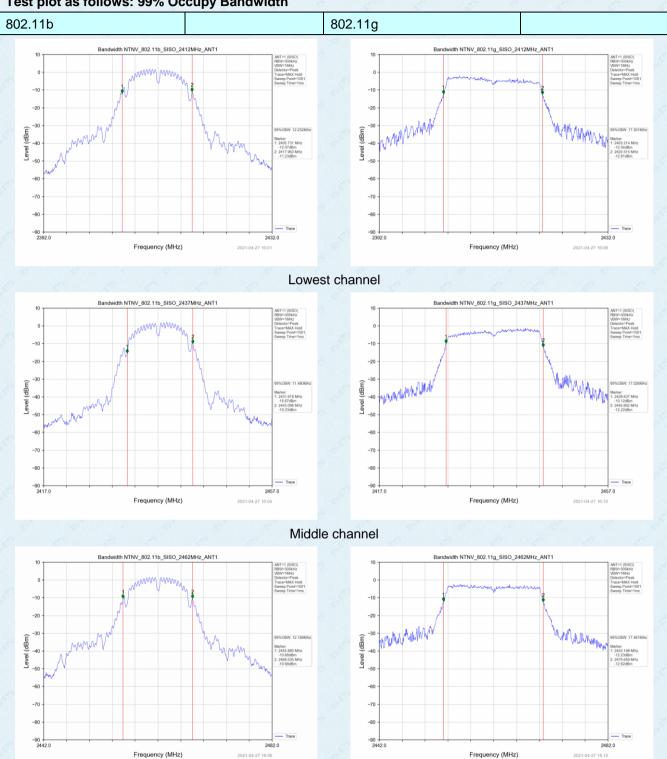
Middle channel



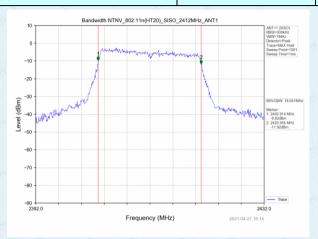

Highest channel

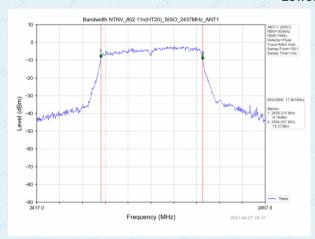

802.11n

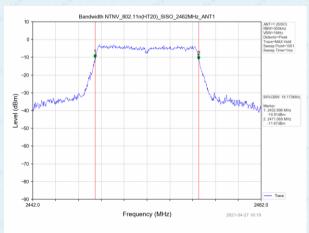
Lowest channel


Middle channel

Highest channel


Test plot as follows: 99% Occupy Bandwidth

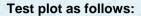

Highest channel

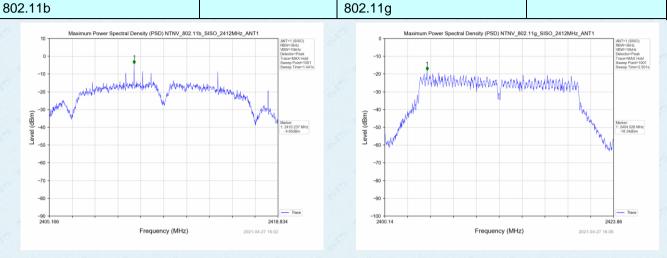

802.11n

Lowest channel

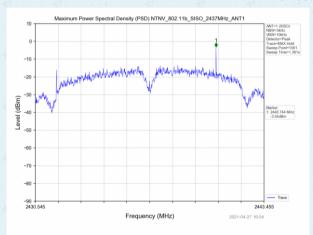
Middle channel

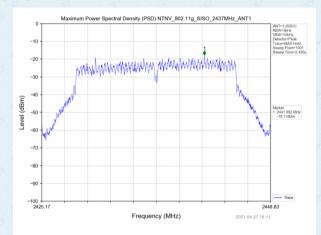
Highest channel

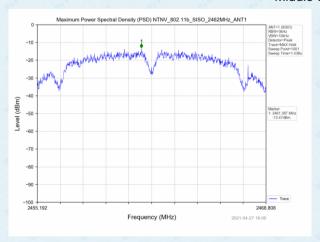

7.5 Power Spectral Density

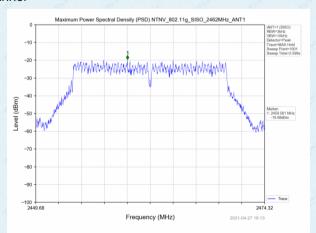

Test Requirement:	FCC Part15 C Section 15.247 (e) RSS 247 5.2(b)				
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	8dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
Test environment:	Temp.: 24°C Humid.: 53% Press.: 1012mbar				

Measurement Data

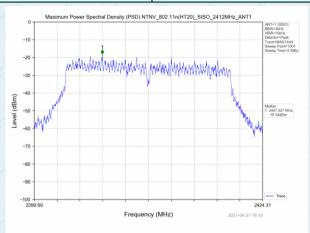

Test CH	Po	Limit	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Nesuit
Lowest	-4.65	-18.34	-18.34	1 8	
Middle	-3.54	-18.11	-18.13	8.00	Pass
Highest	-13.47	-19.98	-16.95		8

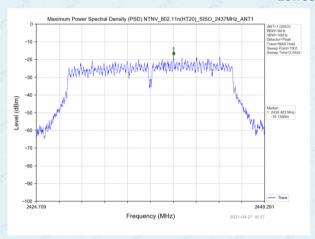


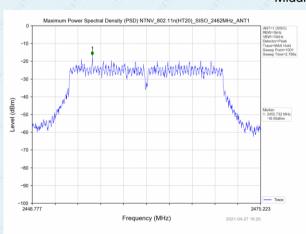



Lowest channel

Middle channel



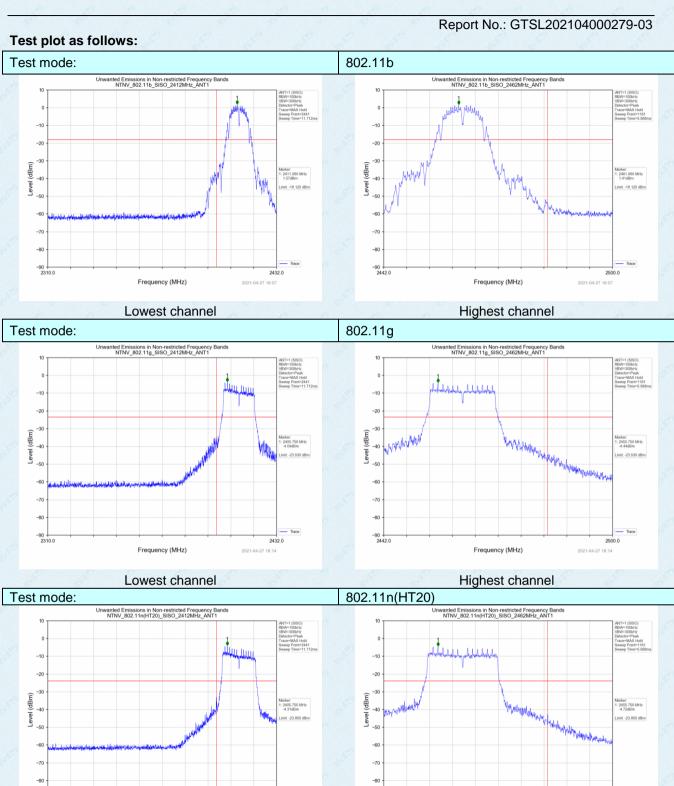

Highest channel


802.11n

Lowest channel

Middle channel

Highest channel



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
	RSS-Gen 8.10				
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
Toot Instruments:	Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
Test environment:	Temp.: 24°C Humid.: 53% Press.: 1012mbar				

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Global United Technology Services Co., Ltd.

Frequency (MHz)

Lowest channel

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

2432.0

Frequency (MHz)

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 RSS-Gen 8.9							
Test Method:	ANSI C63.10: 20	013	8 8		8 8			
Test Frequency Range:		t bands were t	tested, only	the worst ba	and's (2310MHz to			
Test site:	Measurement D		- S	7	19 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
•	231	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Average	1MHz	3MHz	Average			
Limit:	Freque	×	Limit (dBuV/	m @3m)	Value			
	28	A 1	54.0		Average			
	Above 1	GHZ	74.0		Peak			
	Tum Table	EUT+	Test Antenna	?				
Test Procedure:	1. The EUT was							
	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rotal to the maximum 5. The test-rece Specified Bar 6. If the emission limit specified the EUT would 10dB margin average meth 7. The radiation And found the	a 3 meter came position of the set 3 meters and the was mounted the ight is varied ermine the mad vertical polarit. pected emission and was turned reading. iver system was and width with Man level of the Ell, then testing of the reported. It would be re-tend as specified measurement.	aber. The table highest rade way from the away from the don the top of the cations of the cation	ole was rotated liation. The interference of a variable meter to four reports of the field see antenna are was arranged by the first from 1 meters from 1 meters from 1 meters from 2 mode. The mode was 10 mode in X, Y, X is is worse case in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in the interference in X, Y, X is worse case in X, Y,	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than the peak values of s that did not have eak, quasi-peak or			
Test Instruments:	Refer to section				6 6 6			
Test mode:	Refer to section	5.2 for details						
Test results:	Pass							

Measurement data:

Report No.: GTSL202104000279-03

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported Horizontal: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2390	66.79	-5.68	61.11	74.00	-12.89	peak	
2390	46.59	-5.68	40.91	54.00	-13.09	AVG	
g g	2 2		2 2		9 9		
	2 2		2 2				

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2390	66.58	-5.68	60.90	74.00	-13.10	peak	
2390	49.35	-5.68	43.67	54.00	-10.33	AVG	
£.	e e	0 8	E E	8 8	8 8	8	
E E	2 - 8			- B - 6		0 - 0	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	equency Meter Reading Fac		Factor Emission Level		Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.5	63.35	-5.85	57.50	74.00	-16.50	peak
2483.5	47.58	-5.85	41.73	54.00	-12.27	AVG

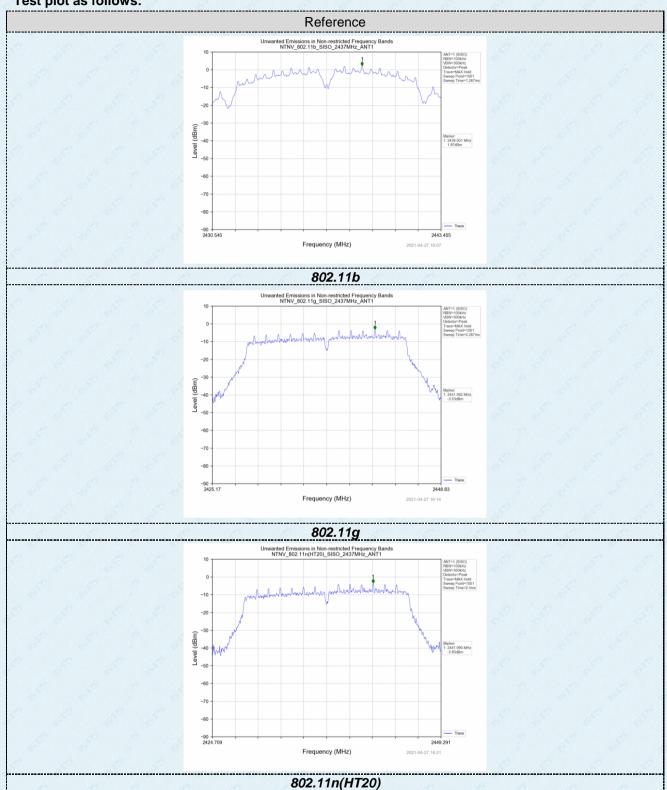
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2483.5	63.58	-5.65	57.93	74.00	-16.07	peak	
2483.5	47.59	-5.85	41.74	54.00	-12.26	AVG	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

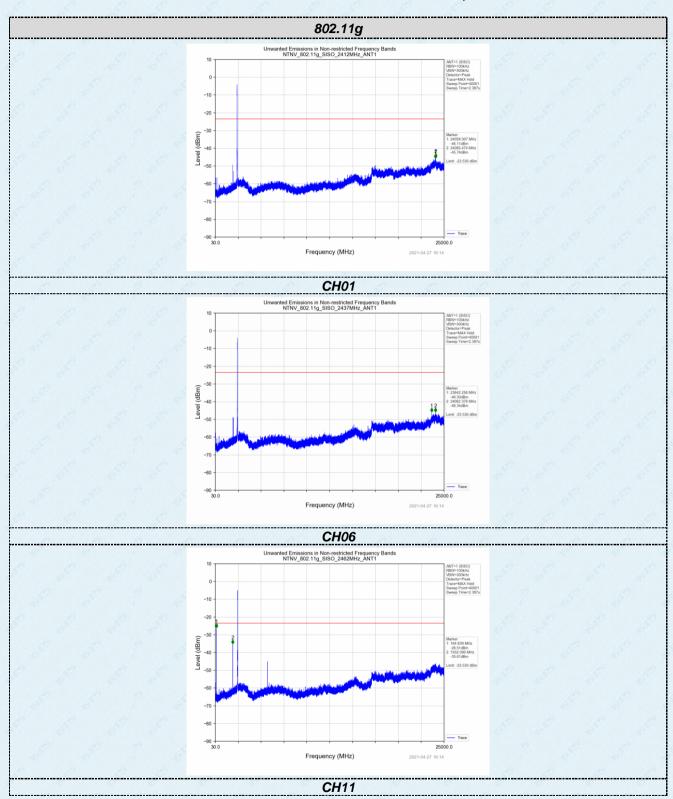
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

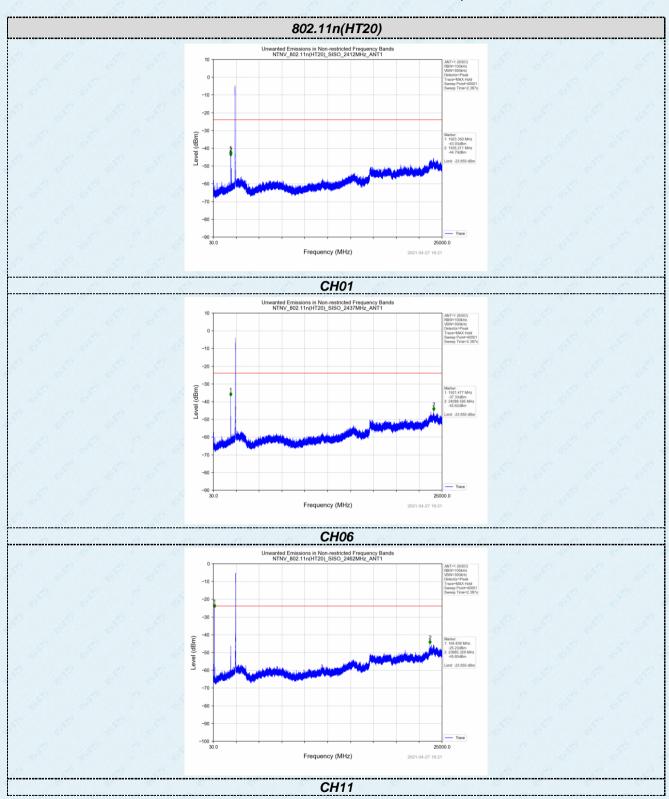

7.7 Spurious Emission

7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d) RSS-Gen 8.9
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.: 24°C Humid.: 53% Press.: 1012mbar

Report No.: GTSL202104000279-03


Test plot as follows:


Report No.: GTSL202104000279-03

Report No.: GTSL202104000279-03

Report No.: GTSL202104000279-03

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 RSS-Gen 8.9						
Test Method:	ANSI C63.10: 2013	*		- 6	4	6 6	
Test Frequency Range:	9kHz to 25GHz	Š		ê.	6 6		
Test site:	Measurement Distar	nce: 3	3m	6	2	8 8 8	
Receiver setup:	Frequency	© [Detector	RBW	/ VBW	/ Value	
	9KHz-150KHz	Qı	uasi-peak	200H	z 600H	z Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KHz	z 30KH	Iz Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	100KF	1z 300KF	Hz Quasi-peak	
	Above 4011=	49	Peak	1MH	z 3MH	z Peak	
	Above 1GHz	87	Peak	1MH	z 10Hz	z Average	
Limit:	Frequency	6	Limit (u\	//m)	Value	Measurement Distance	
	0.009MHz-0.490MHz		2400/F(l	(Hz)	QP	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	300m	
	1.705MHz-30MH	lz	30	650	QP	30m	
	30MHz-88MHz	á	100	2	QP	8 8 8	
	88MHz-216MHz	<u>z</u>	150	10	QP		
	216MHz-960MHz		200		QP	3m	
	960MHz-1GHz	500		QP	3111		
	Above 1GHz		500		Average		
			5000		Peak	E - E - E	
Test setup:	For radiated emissions from 9kHz to 30MHz						
	lum lable	Sions	za Tum Table•'	st Antenna			

Report No.: GTSL202104000279-03 Test Antenna < 1m ... 4m EUT4 Turn Table Turn Table↔ < 80cm Preamplifier. For radiated emissions above 1GHz Test Antenna+ < 1m ... 4m > EUT. Turn Table <150cm Preamplifier+ Receiver+ Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

				Report No	.: GTSL20210	4000279-03
Test voltage:	AC120V 6	0Hz		8 - 6	e ^e	8 - 8 -
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V,	60Hz	9	2 6	9 /9	9 9
Test results:	Pass	9 9			6 6	

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

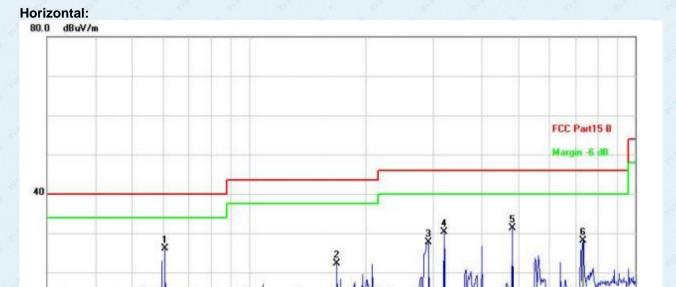
Measurement data:

■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

600 700

1000.000


■ Below 1GHz

30,000

40

50

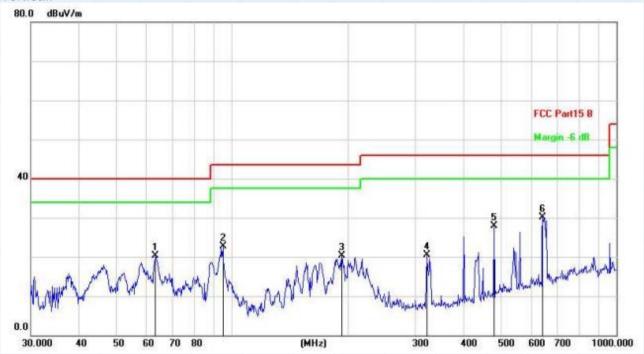
60

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1	*	60.7044	45.01	-18.83	26.18	40.00	-13.82	QP
ĺ	2		169.0054	38.62	-16.33	22.29	43.50	-21.21	QP
	3		291.0360	46.37	-18.59	27.78	46.00	-18.22	QP
ľ	4		319.9370	48.47	-18.12	30.35	46.00	-15.65	QP
	5		480.5276	47.01	-15.67	31.34	46.00	-14.66	QP
ĺ	6		731.9203	39.44	-11.27	28.17	46.00	-17.83	QP

(MHz)

300

400


500

Final Level =Receiver Read level + Correct Factor

70 80

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		63.3132	39.48	-19.14	20.34	40.00	-19.66	QP
2		94.7601	43.54	-20.93	22.61	43.50	-20.89	QP
3		193.0945	40.34	-19.98	20.36	43.50	-23.14	QP
4		321.0608	38.03	-17.52	20.51	46.00	-25.49	QP
5		480.5276	43.51	-15.67	27.84	46.00	-18.16	QP
6	*	642.8613	42.77	-12.63	30.14	46.00	-15.86	QP

Final Level = Receiver Read level + Correct Factor

■ Above 1GHz

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported

Horizontal: LOW CH1 (802.11b Mode)/2412

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz) (dBµV)		(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	63.33	-3.67	59.66	74.00	-14.34	peak
4824	45.28	-3.64	41.64	54.00	-12.36	AVG
7236	58.66	-0.90	57.76	74.00	-16.24	peak
7236	42.31	-0.90	41.41	54.00	-12.59	AVG
8 8	2-8	<u> </u>	i 2 - 6	<u> </u>	£?	8
	8 4	8 <u>-</u> 8	88	\$ <u></u> \$	<u> </u>	4

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: LOW CH1 (802.11b Mode)/2412

Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
63.79	-3.67	60.12	74.00	-13.88	peak	
45.22	-3.64	41.58	54.00	-12.42	AVG	
56.79	-0.90	55.89	74.00	-18.11	peak	
42.32	-0.90	41.42	54.00	-12.58	AVG	
8 <u>4</u>	<u>-</u> 6	_6	- F	- 6 - 6	4	
- 6°	- 8 - 6		6 6	<u> </u>	6	
	(dBµV) 63.79 45.22 56.79 42.32	(dBµV) (dB) 63.79 -3.67 45.22 -3.64 56.79 -0.90 42.32 -0.90	(dBμV) (dB) (dBμV/m) 63.79 -3.67 60.12 45.22 -3.64 41.58 56.79 -0.90 55.89 42.32 -0.90 41.42	(dBμV) (dB) (dBμV/m) (dBμV/m) 63.79 -3.67 60.12 74.00 45.22 -3.64 41.58 54.00 56.79 -0.90 55.89 74.00 42.32 -0.90 41.42 54.00	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 63.79 -3.67 60.12 74.00 -13.88 45.22 -3.64 41.58 54.00 -12.42 56.79 -0.90 55.89 74.00 -18.11 42.32 -0.90 41.42 54.00 -12.58	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	61.35	-3.53	57.82	74.00	-16.18	peak
4874	46.59	-3.53	43.06	54.00	-10.94	AVG
7311	56.58	-0.85	55.73	74.00	-18.27	peak
7311	42.16	-0.85	41.31	54.00	-12.69	AVG
4	8 <u>4</u>	\$\$	#	E - E	- E - E	42
# <u></u> #	- <i>-</i>	- 6 <u>-</u> - 6				é é

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	61.34	-3.53	57.81	74.00	-16.19	peak
4874	45.79	-3.53	42.26	54.00	-11.74	AVG
7311	56.93	-0.85	56.08	74.00	-17.92	peak
7311	42.96	-0.85	42.11	54.00	-11.89	AVG
-	g - 2	g -g	g g	g - g	g- g	- - 1
8 8	2 8	8 8	?	-	Ø	g s

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal: HIGH CH11 (802.11b Mode)/2462

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	63.59	-3.49	60.10	74.00	-13.90	peak
4924	47.58	-3.49	44.09	54.00	-9.91	AVG
7386	58.62	-0.78	57.84	74.00	-16.16	peak
7386	40.32	-0.78	39.54	54.00	-14.46	AVG
#	8 2 .	££	8 - 8	8 -8	% -	<u> </u>
8 - 8	2 - 8	8 8	? &	<u> </u>	g <u>-</u> 2	\$ s

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: HIGH CH11 (802.11b Mode)/2462

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.39	-3.49	58.90	74.00	-15.10	peak
4924	46.58	-3.49	43.09	54.00	-10.91	AVG
7386	58.36	-0.78	57.58	74.00	-16.42	peak
7386	41.33	-0.78	40.55	54.00	-13.45	AVG
g g	gg	D D	g g	# <u> </u>	g- 2	
g- 	6		e		9	gg

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----