# EMC TEST REPORT No. 2434 FR

eurofins | Hursley

Issue#2: 17th December 2020

# **FCC Test Report**

Senceive Ltd
Nano Macro Node
Model: FM3NT-50

FCC ID: 2AMFBFM3NTF IC ID: 24373-FM3NTF

Project Engineer: R. Pennell

Approval Signatory

Approved signatories: D. Tiroke  $\ \ \ \ \ \ \ \$  A. R. Coombes  $\ \ \ \ \ \ \$ 

The above named are authorised Eurofins Hursley signatories.

UKAS Accredited EU Notified Body, No 2635 FCC Registered KC Lab ID: EU0184







## **Contents**

| 1.0  | DECLARATION                                    | 4  |
|------|------------------------------------------------|----|
| 1.1  | FCC CLASS A TEST REPORT                        | 4  |
| 1.2  | PRODUCT MODIFICATIONS                          | 4  |
| 2.0  | EQUIPMENT & TEST DETAILS                       | 5  |
| 2.1  | GENERAL                                        | 5  |
| 2.2  | EUT DESCRIPTION                                |    |
| 2.3  | EUT Test Exerciser                             | 6  |
| 2.4  | EUT SUPPORT EQUIPMENT                          | 6  |
| 2.5  | EUT TEST CONFIGURATION                         | 6  |
| 2.6  | ENVIRONMENTAL TEST CONDITIONS                  | 7  |
| 2.7  | EMC TEST EQUIPMENT                             | 7  |
| 2.8  | EMC Test Software                              | 7  |
| 2.10 | RADIATED EMISSIONS                             | 8  |
| 3.0  | EMISSION RESULTS                               | g  |
| 3.1  | RADIATED EMISSIONS; 30 TO 1000 MHz             | g  |
| 3.2  | RADIATED EMISSIONS; 30 TO 1000 MHz (CONTINUED) | 11 |
| 3.3  | RADIATED EMISSIONS; 30 TO 1000 MHz (CONTINUED) | 13 |
| 3.4  | RADIATED EMISSIONS; 30 TO 1000 MHz (CONTINUED) | 15 |
| 3.5  | RADIATED EMISSIONS; 30 TO 1000 MHz (CONTINUED) | 17 |
| 3.6  | RADIATED EMISSIONS; 1 TO 10 GHz                | 19 |
| 3.7  | RADIATED EMISSIONS; 1 TO 10 GHz (CONTINUED)    | 21 |
| 3.8  | RADIATED EMISSIONS; 1 TO 10 GHz (CONTINUED)    | 23 |
| 3.9  | RADIATED EMISSIONS; 1 TO 10 GHz (CONTINUED)    | 25 |
| 3.10 | RADIATED EMISSIONS; 1 TO 10 GHz (CONTINUED)    | 27 |
| 3.11 | RADIATED EMISSIONS; 2 TO 3 GHz                 | 29 |
| 3.12 | RADIATED EMISSIONS; 2 TO 3 GHz (CONTINUED)     | 31 |
| 3.13 | RADIATED EMISSIONS; 2 TO 3 GHz (CONTINUED)     | 32 |
| 3.14 | RADIATED EMISSIONS; 2 TO 3 GHz (CONTINUED)     | 33 |
| 3.15 | RADIATED EMISSIONS; 2 TO 3 GHz (CONTINUED)     | 34 |
| 3.16 | RADIATED EMISSIONS; 2 TO 3 GHz (CONTINUED)     | 35 |
| 3.17 | RADIATED EMISSIONS; 10 TO 18 GHZ               | 36 |
| 3.18 | RADIATED EMISSIONS; 10 TO 18 GHz (CONTINUED)   | 38 |
| 3.19 | RADIATED EMISSIONS; 10 TO 18 GHz (CONTINUED)   | 40 |
| 3.20 | RADIATED EMISSIONS; 10 TO 18 GHz (CONTINUED)   | 42 |
| 3.21 | RADIATED EMISSIONS; 10 TO 18 GHz (CONTINUED)   | 44 |
| 3.22 |                                                |    |
| 3.23 | RADIATED EMISSIONS; 18 TO 25 GHz (CONTINUED)   | 48 |
| 3.24 | RADIATED EMISSIONS; 18 TO 25 GHz (CONTINUED)   | 50 |
| 3.25 | RADIATED EMISSIONS; 18 TO 25 GHz (CONTINUED)   | 52 |
| 3.26 | RADIATED EMISSIONS; 18 TO 25 GHz (CONTINUED)   | 54 |
| 4.0  | PHOTO LOG                                      | 56 |
| 5.0  | MEASUREMENT UNCERTAINTIES                      | 58 |
| 6.0  | ANNEX – CONDUCTED EMISSIONS RESULTS            | 59 |
| 6.1  | DTS BANDWIDTH                                  |    |
| 6.2  | MAXIMUM PEAK CONDUCTED OUTPUT POWER            |    |
| 6.3  | MAXIMUM POWER SPECTRAL DENSITY                 |    |
| 6.4  | EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS    | 65 |

# EMC TEST REPORT 2434 FR



| 6.5 | OCCUPIED BANDWIDTH | 67 |
|-----|--------------------|----|
| 6.6 | TEST EQUIPMENT     | 68 |

#### **Document History:**

Issue#1: 8th December 2020 was withdrawn and replaced by Issue#2: 17th December 2020 updated with editorial correction.

Issue#2: 17<sup>th</sup> December 2020



#### 1.0 DECLARATION

#### 1.1 FCC Class A Test Report

The Equipment Under Test (EUT), as described and reported within this document, complies with part 15.205, 15.209 and 15.247 of CFR 47 FCC rules in accordance with ANSI C63.4:2014 and ANSI C63.10:2013 measurement procedure referencing the following EMC tests:-

• RADIATED EMISSIONS - Airborne, from 30.0 MHz to 25 GHz

Note: The highest associated operating frequency on the system, as declared by the manufacturer is a clock rate of 2.475 GHz.

This report relates to the sample tested and may not represent the entire population. It is valid only for the product identified, either in part or in full, to the relevant electromagnetic requirements necessary for compliance.

Eurofins Hursley is recognized by the Federal Communications Commissions (FCC) as an EMI laboratory, outside of the USA, for the measurement of radiated emissions at three metres.

#### 1.2 Product Modifications

None to sample submitted.



# 2.0 EQUIPMENT & TEST DETAILS

#### 2.1 General

**Product (EUT):** Nano Macro Node

Model: FM3NT-50

Serial number: 000000

**Product mains rating:** Battery

**Product build level:** Production sample

**Product manufacturer:** Senceive Ltd

**Customer:** Senceive Ltd

7b/7c Imperial Studios

Imperial Road

Fulham London SW6 2AG

United kingdom

**Test commissioned by:** Mr Charlie Blackham (Sulis Consultants)

**EMC Test lab reference:** Eurofins Hursley Files: 2434

Sulis Consultants Test Plan: 2434 RF Test

**Date EUT received:** 20<sup>th</sup> November 2020

**Test date(s):** 20<sup>th</sup> to 24<sup>th</sup> November 2020

**EMC measurement site:** Eurofins Hursley

Trafalgar House, Trafalgar Close, Chandlers Ford, Hampshire

IC Canada ID: UK0005



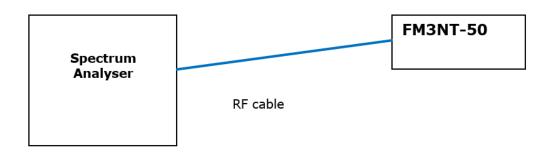
#### 2.2 EUT Description

The device operates inside the 2400 - 2483.5 MHz band with a single bandwidth and single modulation. The following test frequencies were used to cover the full band of operation of the device:

| Test Channel   | Centre Frequency (MHz) |
|----------------|------------------------|
| Bottom channel | 2405.0                 |
| Middle channel | 2440.0                 |
| Top channel    | 2475.0                 |

Table 1: Test frequencies

#### 2.3 EUT Test Exerciser


For the purposes of testing, the EUT was configured with test firmware that transmitted continuously with a 100% duty cycle.

The RF test cable is the internal cable to the Node that was connected directly to the Spectrum Analyser via a UF.L to N-Type adapter.

# 2.4 EUT Support Equipment

None.

# 2.5 EUT Test Configuration





## 2.6 Environmental Test Conditions

| Temperature          | 17.4 to 20.9° Celsius      |  |  |  |  |
|----------------------|----------------------------|--|--|--|--|
| Relative Humidity    | 42 to 46%                  |  |  |  |  |
| Atmospheric Pressure | 1017.1 to 1037.2 millibars |  |  |  |  |

# 2.7 EMC Test Equipment

| #ID  | СР | Manufacturer    | Туре              | Serial Nø  | Description                            | Calibration due date |
|------|----|-----------------|-------------------|------------|----------------------------------------|----------------------|
| 021  | 1  | Rohde & Schwarz | ESIB              | 100192     | Test receiver (40GHz)                  | 12/08/2021           |
| 250  | 1  | HP              | 8449B             | 3008A01077 | Pre-amplifier (1.0-26.5GHz)            | 26/02/2021           |
| 357  | 1  | Microtronics    | BRN50702-01       | 25         | Notch Filter                           | 17/11/2021           |
| 456  | 1  | Rohde & Schwarz | ESCI7             | 1144573407 | EMI Test Receiver                      | 26/08/2021           |
| 466  | 3  | Schwarzbeck     | BBHA 9120 571     | 571        | 1-10GHz Horn                           | 28/02/2022           |
| 651  | 1  | Rohde & Schwarz | ESIB 40 no.2      | 100262     | 40GHz receiver                         | 25/11/2020           |
| 750  | 1  | Global          | CISPR16 chamber   | 1          | 11 x 7 x 6.2m                          | 11/11/2021           |
| 761  | 3  | Schwarzbeck     | VULB9162          | 128        | Trilog Broadband Antenna<br>30-7000MHz | 02/03/2023           |
| 761a | 3  | Schwarzbeck     | DGA 9552N         | 0          | 6dB attenuator for #761                | 02/03/2023           |
| 769  | 3  | Schwarzbeck     | BBHA 9120 C       | 631        | 2-18GHz Horn antenna (RE)              | 06/12/2020           |
| 779  | 3  | Steatite        | QWH-SL-18-40-K-SG | 17504      | 18-40GHz wideband horn antenna         | 11/05/2021           |

#### $\label{eq:cp} \mathbf{CP} = \mathbf{Interval} \ \mathbf{period} \ [\mathbf{year}] \ \mathbf{prescribed} \ \mathbf{for} \ \mathbf{external} \ \mathbf{calibrations}$

'Calibration due date' means that the instrument is certified with a UKAS or traceable calibration certificate.

#### 2.8 EMC Test Software

The following table shows the current EMC test equipment software used by Eurofins Hursley:

| ID  | Manufacturer    | Description                           |
|-----|-----------------|---------------------------------------|
| 856 | Rohde & Schwarz | EMC32 Version 10.50.10                |
| 857 | Gauss           | TDMI 30 Version 5.00                  |
| 858 | Ametek          | Compliance 5 Immunity Version 5.26.48 |
| 859 | EMC Partner     | HARCS Version 4.22                    |
| 860 | Frankonia       | Hurbert IEC1000-4-6 Version 1.3.0     |
| 861 | Schaffner       | Win 2110 Version 1.27.0.3             |
| 862 | EMC Partner     | TEMA3000 Version 4.4.2                |
| 863 | EFH             | ProfilaMil Version 2.8.1              |
| 864 | AFJ             | CL55C Version 1.00                    |

<sup>&#</sup>x27;Internal' means internally calibrated using Eurofins Hursley procedures



#### 2.10 Radiated Emissions

#### **Initial Scan**

Radiated profile scans were taken on eight azimuths between 30.0 MHz and 25.0 GHz in both the vertical and horizontal polarities of the antennae in a semi-anechoic chamber at 110V/60Hz. The resulting data obtained from these scans was used to determine subsequent measurement for final measurement evaluation.

#### **Final Measurements**

The EUT was then measured at three metres in the chamber using the pre-scan results as a guide. Emissions from the EUT were maximised by revolving the system on the turntable and moving the antennae in height and azimuth. Cable and system component positions had been investigated for maximum emissions, and the system under test represented the worst-case configuration. The highest values obtained are presented in this report.



#### 3.0 EMISSION RESULTS

#### 3.1 Radiated Emissions; 30 to 1000 MHz

Radiated emissions pre-scan profile measurements were taken at a distance of three metres on eight azimuths of the EUT in both horizontal and vertical antenna polarities in a semi-anechoic chamber for FCC measurements.

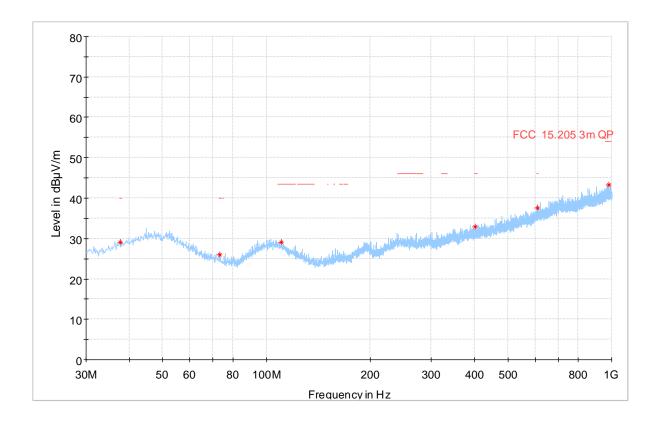
Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out a distance of three metres in a CISPR 16-1-4 compliant semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The EUT was tested in 3 axis and the worst-case results are shown below.

#### 3.1.1 Data; Orientation 1, flat, Mid channel

| Emission<br>frequency       | Measured<br>quasi-peak value | Class B specified<br>quasi-peak limit | Pass<br>Margin | Antenna<br>polarity | Antenna<br>height | Turntable<br>azimuth |        |  |
|-----------------------------|------------------------------|---------------------------------------|----------------|---------------------|-------------------|----------------------|--------|--|
| MHz                         | MHz dBμV/m dBμV/r            |                                       | dB             | H/V                 | cm                | deg                  | Status |  |
| No significant peaks found. |                              |                                       |                |                     |                   |                      |        |  |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RAD-01.


TEST ENGINEER: Malcolm Musgrave



## 3.1.2 Profile; Orientation 1, flat, Mid channel

Max hold trace with quasi-peak values (◆)

Peak measurements are shown in red (★)





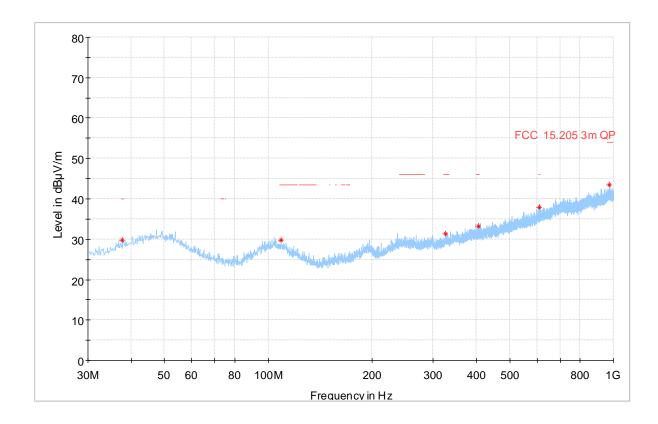
# 3.2 Radiated Emissions; 30 to 1000 MHz (continued)

## 3.2.1 Data; Orientation 2, serial cable at bottom, Mid channel

| Emission<br>frequency | Measured<br>quasi-peak value | Class B specified<br>quasi-peak limit | Pass<br>Margin | Antenna<br>polarity | Antenna<br>height | Turntable<br>azimuth |        |  |  |
|-----------------------|------------------------------|---------------------------------------|----------------|---------------------|-------------------|----------------------|--------|--|--|
| MHz                   | dBμV/m                       | dBμV/m                                | dB             | H/V                 | cm                | deg                  | Status |  |  |
|                       | No significant peaks found.  |                                       |                |                     |                   |                      |        |  |  |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RAD-01.


TEST ENGINEER: Malcolm Musgrave



# 3.2.2 Profile; Orientation 2, serial cable at bottom, Mid channel

Max hold trace with quasi-peak values (◆)

Peak measurements are shown in red (★)





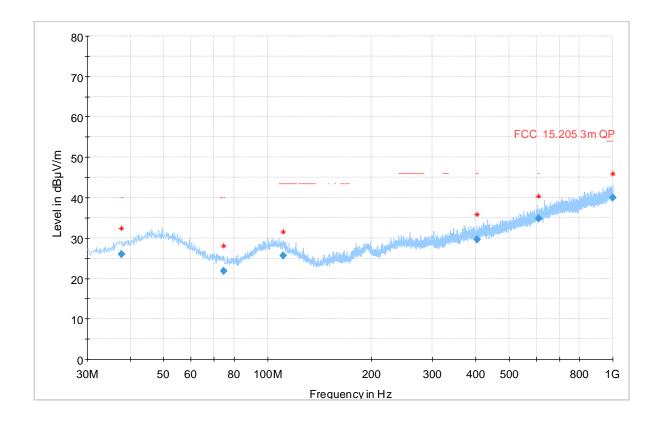
# 3.3 Radiated Emissions; 30 to 1000 MHz (continued)

## 3.3.1 Data; Orientation 3, serial cable at side, Mid channel

| Emission<br>frequency | Measured<br>quasi-peak value | Class B specified<br>quasi-peak limit | Pass<br>Margin | Antenna<br>polarity | Antenna<br>height | Turntable<br>azimuth |        |
|-----------------------|------------------------------|---------------------------------------|----------------|---------------------|-------------------|----------------------|--------|
| MHz                   | dBμV/m                       | dBμV/m                                | dB             | H/V                 | cm                | deg                  | Status |
| 37.638750             | 25.94                        | 40.00                                 | 14.06          | Н                   | 344.0             | 167.0                | Pass   |
| 74.498750             | 21.84                        | 40.00                                 | 18.16          | V                   | 192.0             | 334.0                | Pass   |
| 111.116250            | 25.58                        | 43.50                                 | 17.92          | Н                   | 212.0             | 227.0                | Pass   |
| 405.147500            | 29.68                        | 46.00                                 | 16.32          | V                   | 277.0             | 188.0                | Pass   |
| 608.483750            | 34.73                        | 46.00                                 | 11.27          | V                   | 199.0             | 345.0                | Pass   |
| 999.393750            | 40.01                        | 54.00                                 | 13.99          | V                   | 231.0             | 51.0                 | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RAD-01.


TEST ENGINEER: Malcolm Musgrave



## 3.3.2 Profile; Orientation 3, serial cable at side, Mid channel

Max hold trace with quasi-peak values (◆)

Peak measurements are shown in red (\*)





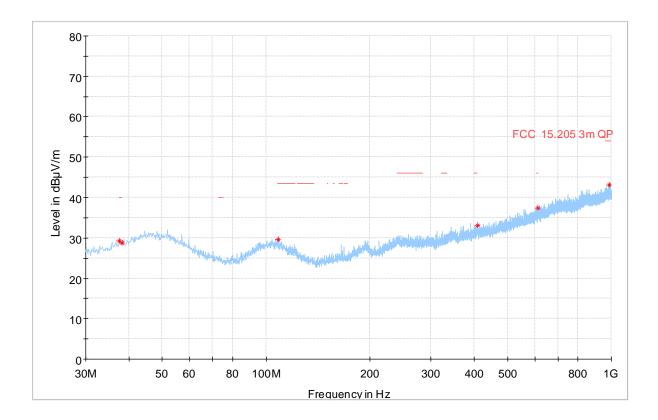
# 3.4 Radiated Emissions; 30 to 1000 MHz (continued)

## 3.4.1 Data; Orientation 3, serial cable at side, Bottom Channel

| Emission<br>frequency | Measured<br>quasi-peak value | Class B specified<br>quasi-peak limit | Pass<br>Margin | Antenna<br>polarity | Antenna<br>height | Turntable<br>azimuth |        |  |  |
|-----------------------|------------------------------|---------------------------------------|----------------|---------------------|-------------------|----------------------|--------|--|--|
| MHz                   | MHz dBμV/m                   |                                       | dB             | H/V                 | cm                | deg                  | Status |  |  |
|                       | No significant peaks found.  |                                       |                |                     |                   |                      |        |  |  |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RAD-01.


TEST ENGINEER: Malcolm Musgrave



## 3.4.2 Profile; Orientation 3, serial cable at side, Bottom Channel

Max hold trace with quasi-peak values (◆)

Peak measurements are shown in red (★)





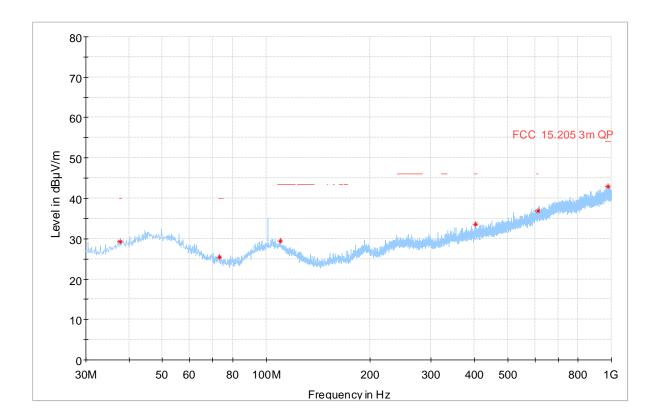
# 3.5 Radiated Emissions; 30 to 1000 MHz (continued)

## 3.5.1 Data; Orientation 3, serial cable at side, Top Channel

| Emission<br>frequency | Measured<br>quasi-peak value | Class B specified<br>quasi-peak limit | Pass<br>Margin | Antenna<br>polarity | Antenna<br>height | Turntable<br>azimuth |        |  |  |
|-----------------------|------------------------------|---------------------------------------|----------------|---------------------|-------------------|----------------------|--------|--|--|
| MHz                   | dBμV/m                       | dBμV/m                                | dB             | H/V                 | cm                | deg                  | Status |  |  |
|                       | No significant peaks found.  |                                       |                |                     |                   |                      |        |  |  |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC Class B limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RAD-01.


TEST ENGINEER: Malcolm Musgrave



## 3.5.2 Profile; Orientation 3, serial cable at side, Top Channel

Max hold trace with quasi-peak values (◆)

Peak measurements are shown in red (\*)





#### 3.6 Radiated Emissions; 1 to 10 GHz

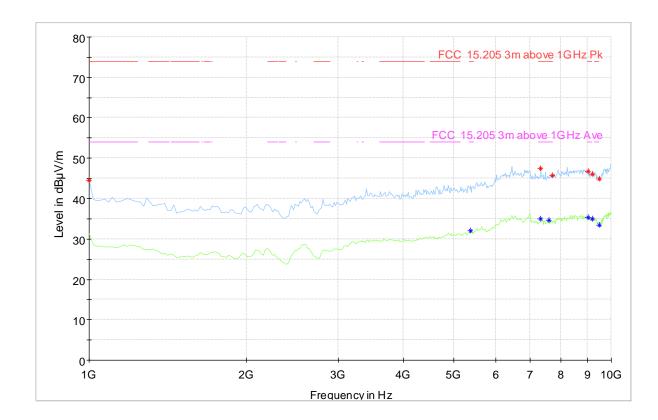
Radiated emissions pre-scan profile measurements were taken at a distance of three metres on eight azimuths of the EUT in both horizontal and vertical antenna polarities in a semi-anechoic chamber for FCC measurements.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out at a distance of three metres in a CISPR 16-1-4 compliant semi-anechoic chamber with a 2.45GHz notch filter fitted. Cable positions were then finally adjusted to produce the maximum emission levels. The EUT was tested in 3 axis and the worst-case results are recorded below.

#### 3.6.1 Data; Orientation 1, flat, Mid channel (notch filter fitted)

| Frequency | Peak   | CISPR<br>Average | Limit      | Margi<br>n | Height | Pol | Azimuth | Corr. |        |
|-----------|--------|------------------|------------|------------|--------|-----|---------|-------|--------|
| MHz       | dBµV/m | dBµV/m           | $dB\mu V/$ | dB         | cm     | H/V | Deg     | dB/m  | Status |
|           |        | No               | significa  | nt peaks f | ound.  |     |         |       | Pass   |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

TEST ENGINEER: Richard Pennell



## 3.6.2 Profile; Orientation 1, flat, Mid channel (notch filter fitted)

Max hold trace with peak values (◆)



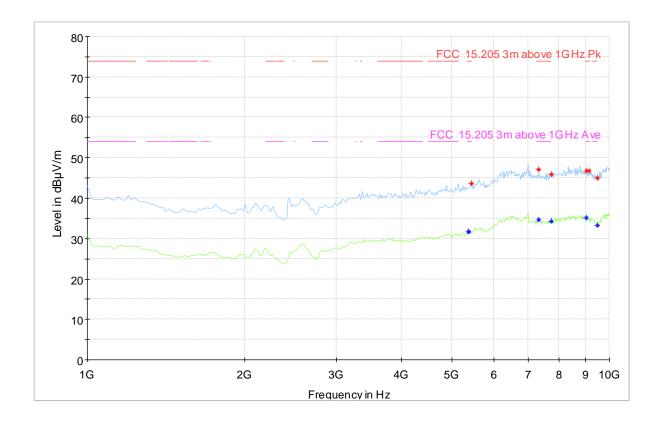


# 3.7 Radiated Emissions; 1 to 10 GHz (continued)

#### 3.7.1 Data; Orientation 2, serial cable at bottom, Mid channel (notch filter fitted)

| Frequency | Peak        | CISPR<br>Average | Limit      | Margi<br>n | Height | Pol | Azimuth | Corr. |        |
|-----------|-------------|------------------|------------|------------|--------|-----|---------|-------|--------|
| MHz       | $dB\mu V/m$ | dBµV/m           | $dB\mu V/$ | dB         | cm     | H/V | Deg     | dB/m  | Status |
|           |             | No               | significa  | nt peaks f | ound.  |     |         |       | Pass   |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

TEST ENGINEER: Richard Pennell



## 3.7.2 Profile; Orientation 2, serial cable at bottom, Mid channel (notch filter fitted)

Max hold trace with peak values (◆)



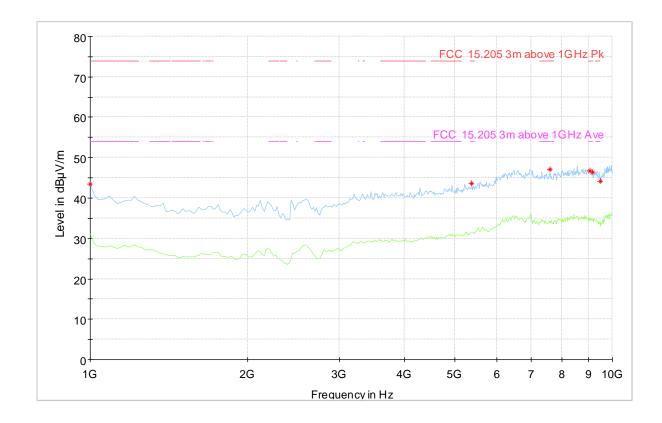


## 3.8 Radiated Emissions; 1 to 10 GHz (continued)

#### 3.8.1 Data; Orientation 3, serial cable at side, Mid channel (notch filter fitted)

| Frequency | Peak        | CISPR<br>Average | Limit      | Margi<br>n | Height | Pol | Azimuth | Corr. |        |
|-----------|-------------|------------------|------------|------------|--------|-----|---------|-------|--------|
| MHz       | $dB\mu V/m$ | dBµV/m           | $dB\mu V/$ | dB         | cm     | H/V | Deg     | dB/m  | Status |
|           |             | No               | significa  | nt peaks f | ound.  |     |         |       | Pass   |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

TEST ENGINEER: Richard Pennell



## 3.8.2 Profile; Orientation 3, serial cable at side, Mid channel (notch filter fitted)

Max hold trace with peak values (◆)





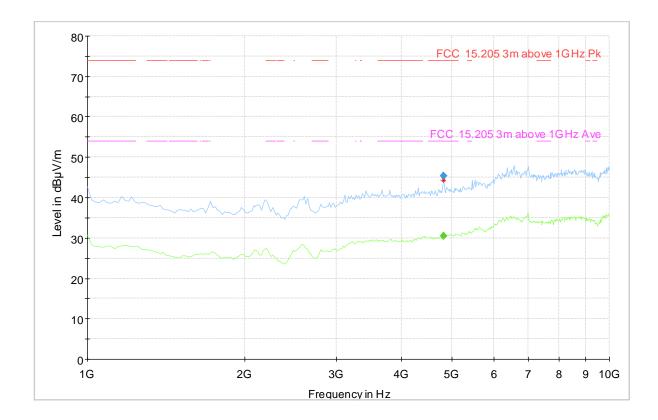
## 3.9 Radiated Emissions; 1 to 10 GHz (continued)

## 3.9.1 Data; Orientation 3, serial cable at side, bottom channel (notch filter fitted)

| Frequency  | Peak        | CISPR<br>Average | Limit      | Margi<br>n | Height | Pol | Azimuth | Corr. |        |
|------------|-------------|------------------|------------|------------|--------|-----|---------|-------|--------|
| MHz        | $dB\mu V/m$ | dBµV/m           | $dB\mu V/$ | dB         | cm     | H/V | Deg     | dB/m  | Status |
| 4810.00000 |             | 30.42            | 54.00      | 23.58      | 100.0  | Н   | 273.0   | -2.0  | Pass   |
| 4810.00000 | 45.36       |                  | 74.00      | 28.64      | 172.0  | Н   | 278.0   | -2.0  | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.


TEST ENGINEER: Richard Pennell



## 3.9.2 Profile; Orientation 3, serial cable at side, bottom channel (notch filter fitted)

Max hold trace with peak values (◆)

Peak measurements are shown in red (★)



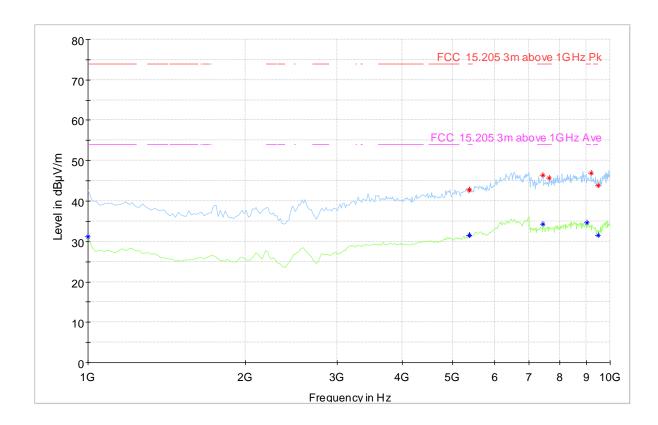


# 3.10 Radiated Emissions; 1 to 10 GHz (continued)

#### 3.10.1 Data; Orientation 3, serial cable at side, top channel (notch filter fitted)

| Frequency | Peak        | CISPR<br>Average | Limit      | Margi<br>n | Height | Pol | Azimuth | Corr. |        |
|-----------|-------------|------------------|------------|------------|--------|-----|---------|-------|--------|
| MHz       | $dB\mu V/m$ | dBµV/m           | $dB\mu V/$ | dB         | cm     | H/V | Deg     | dB/m  | Status |
|           |             | No               | significa  | nt peaks f | ound.  |     |         |       | Pass   |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

TEST ENGINEER: Richard Pennell



## 3.10.2Profile; Orientation 3, serial cable at side, top channel (notch filter fitted)

Max hold trace with peak values (◆)





#### 3.11 Radiated Emissions; 2 to 3 GHz

Radiated emissions pre-scan profile measurements were taken at a distance of three metres on eight azimuths of the EUT in both horizontal and vertical antenna polarities in a semi-anechoic chamber for FCC measurements.

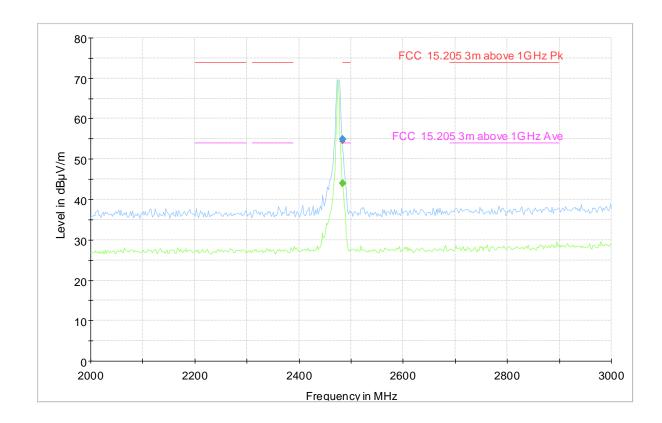
Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out a distance of three metres in a CISPR 16-1-4 compliant semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The EUT was tested in 3 axis and the worst-case results are recorded below.

#### 3.11.1Data; Orientation 1, flat, Top channel

| Frequency   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| 2483.500000 |       | 44.05            | 54.00 | 9.95   | 125.0  | V   | 318.0   | -8.1  | Pass   |
| 2483.500000 | 54.86 |                  | 74.00 | 19.14  | 288.0  | V   | 301.0   | -8.1  | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.


TEST ENGINEER: Richard Pennell



## 3.11.2Profile; Orientation 1, flat, Top channel

Max hold trace with peak values (◆)

Peak measurements are shown in red (\*)





## 3.12 Radiated Emissions; 2 to 3 GHz (continued)

#### 3.12.1Data; Orientation 2, cable lower, Top channel

| Frequency   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| 2483.500000 |       | 35.54            | 54.00 | 18.46  | 105.0  | V   | 285.0   | -8.1  | Pass   |
| 2483.500000 | 47.33 |                  | 74.00 | 26.67  | 141.0  | V   | 286.0   | -8.1  | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

#### 3.12.2Data; Orientation 3, cable to side, Top channel

| Frequency   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| 2483.500000 |       | 43.29            | 54.00 | 10.71  | 125.0  | Н   | 244.0   | -8.1  | Pass   |
| 2483.500000 | 53.16 |                  | 74.00 | 20.84  | 128.0  | Н   | 236.0   | -8.1  | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

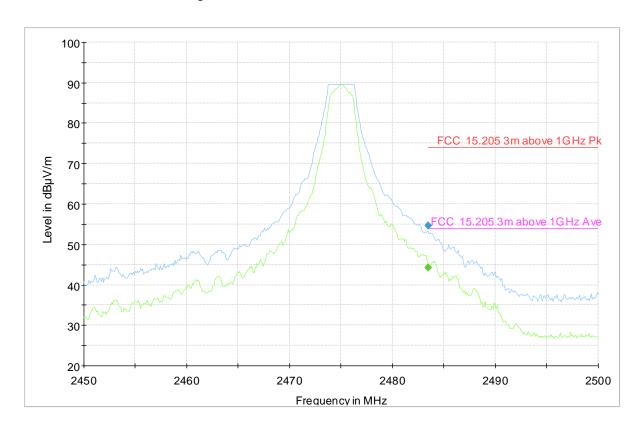
TEST ENGINEER: Richard Pennell



## 3.13 Radiated Emissions; 2 to 3 GHz (continued)

#### 3.13.1Data; Orientation 1, flat, Top channel

| Frequency | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-----------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz       | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| 2483.5    |       | 44.22            | 54    | 9.78   | 108    | V   | 278     | -8.1  | Pass   |
| 2483.5    | 54.58 |                  | 74    | 19.42  | 115    | V   | 283     | -8.1  | Pass   |


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

#### 3.13.2 Profile; Orientation 1, flat, Top channel

Max hold trace with peak values (◆)

Peak measurements are shown in red (★)

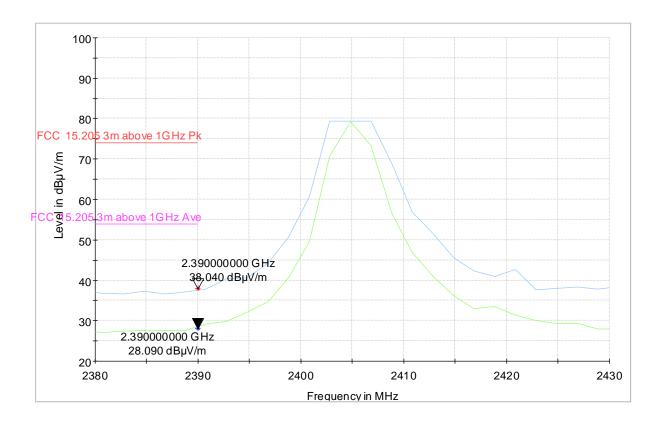




## 3.14 Radiated Emissions; 2 to 3 GHz (continued)

#### 3.14.1 Data; Orientation 1, flat, Bottom channel

| Frequency | Peak  | CISPR<br>Average | Limit     | Margin      | Height | Pol | Azimuth | Corr. |        |
|-----------|-------|------------------|-----------|-------------|--------|-----|---------|-------|--------|
| MHz       | dBμV/ | dBμV/m           | dBμV/     | dB          | cm     | H/V | Deg     | dB/m  | Status |
|           |       | No               | significa | nt peaks fo | ound.  |     |         |       | Pass   |


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

# 3.14.2 Profile; Orientation 1, flat, Bottom channel

Max hold trace with peak values (◆)

Peak measurements are shown in red (\*)

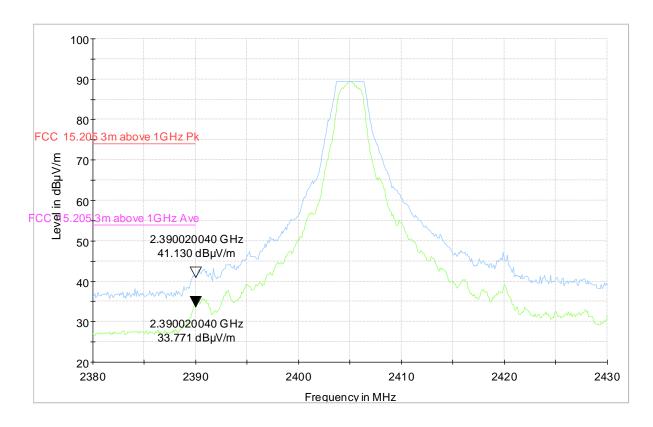




#### 3.15 Radiated Emissions; 2 to 3 GHz (continued)

#### 3.15.1Data; Orientation 2, serial cable at bottom, Bottom channel

| Frequency | Peak  | CISPR<br>Average | Limit     | Margin      | Height | Pol | Azimuth | Corr. |        |
|-----------|-------|------------------|-----------|-------------|--------|-----|---------|-------|--------|
| MHz       | dBμV/ | dBμV/m           | dBμV/     | dB          | cm     | H/V | Deg     | dB/m  | Status |
|           |       | No               | significa | nt peaks fo | ound.  |     |         |       | Pass   |


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

# 3.15.2 Profile; Orientation 2, serial cable at bottom, Bottom channel

Max hold trace with peak values ( )

Peak measurements are shown in red (\*)

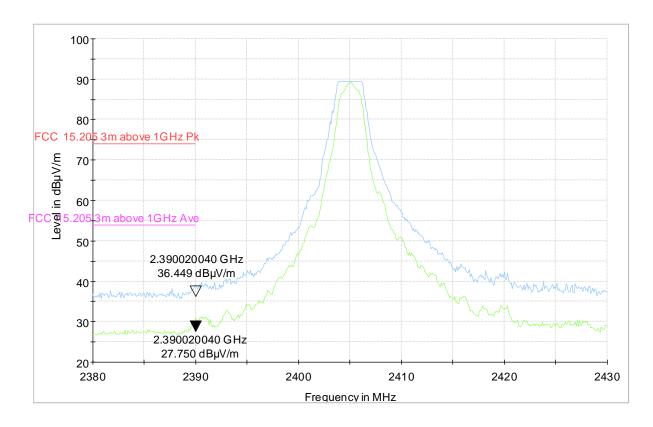




#### 3.16 Radiated Emissions; 2 to 3 GHz (continued)

#### 3.16.1Data; Orientation 3, serial cable at side, Bottom channel

| Frequency | Peak  | CISPR<br>Average | Limit     | Margin      | Height | Pol | Azimuth | Corr. |        |
|-----------|-------|------------------|-----------|-------------|--------|-----|---------|-------|--------|
| MHz       | dBμV/ | dBμV/m           | dBμV/     | dB          | cm     | H/V | Deg     | dB/m  | Status |
|           |       | No               | significa | nt peaks fo | ound.  |     |         |       | Pass   |


V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

#### 3.16.2 Profile; Orientation 3, serial cable at side, Bottom channel

Max hold trace with peak values ( )

Peak measurements are shown in red (\*)





#### 3.17 Radiated Emissions; 10 to 18 GHz

Radiated emissions pre-scan profile measurements were taken at a distance of three metres on eight azimuths of the EUT in both horizontal and vertical antenna polarities in a semi-anechoic chamber for FCC measurements.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out a distance of three metres in a CISPR 16-1-4 compliant semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The EUT was tested in 3 axis and the worst-case results are recorded below.

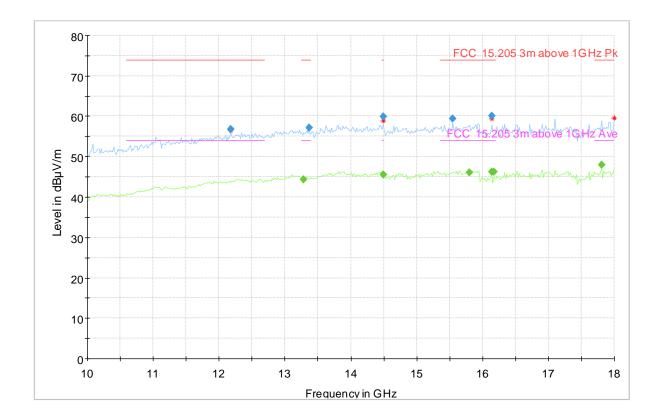
#### 3.17.1 Data; Orientation 1, flat, mid channel

| Frequency    | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|--------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz          | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| 12180.360722 | 56.88 |                  | 74.00 | 17.12  | 199.0  | V   | 80.0    | 10.9  | Pass   |
| 13286.573146 |       | 44.35            | 54.00 | 9.65   | 323.0  | Н   | 314.0   | 12.8  | Pass   |
| 13366.733467 | 57.15 |                  | 74.00 | 16.85  | 216.0  | V   | 203.0   | 12.9  | Pass   |
| 14488.977956 |       | 45.58            | 54.00 | 8.42   | 165.0  | Н   | 272.0   | 13.7  | Pass   |
| 14488.977956 | 59.97 |                  | 74.00 | 14.04  | 112.0  | V   | 228.0   | 13.7  | Pass   |
| 15547.094188 | 59.45 |                  | 74.00 | 14.55  | 354.0  | V   | 82.0    | 13.2  | Pass   |
| 15803.607215 |       | 46.10            | 54.00 | 7.90   | 135.0  | V   | 207.0   | 13.3  | Pass   |
| 16140.280561 | 60.04 |                  | 74.00 | 13.96  | 339.0  | Н   | 210.0   | 13.7  | Pass   |
| 16140.280561 |       | 46.20            | 54.00 | 7.80   | 400.0  | V   | 0.0     | 13.7  | Pass   |
| 16172.344689 |       | 46.28            | 54.00 | 7.72   | 202.0  | V   | 68.0    | 13.7  | Pass   |
| 17807.615231 |       | 48.02            | 54.00 | 5.98   | 205.0  | V   | 124.0   | 16.1  | Pass   |

V = Vertical / H = Horizontal

The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.

TEST ENGINEER: Richard Pennell




# 3.17.2 Profile; Orientation 1, flat, mid channel

Max hold trace with peak values (◆)

Peak measurements are shown in red (★)

Max hold trace with average values (◆)



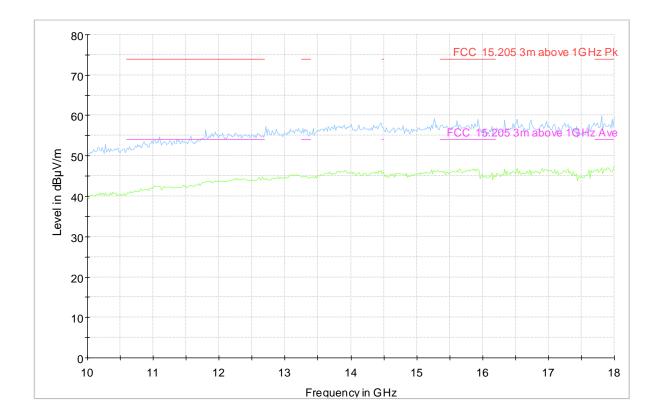


# 3.18 Radiated Emissions; 10 to 18 GHz (continued)

## 3.18.1 Data; Orientation 2, serial cable at bottom, Mid channel

| Frequency                   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found. |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.18.2 Profile; Orientation 2, serial cable at bottom, Mid channel

Max hold trace with peak values (◆)

Max hold trace with average values (◆)



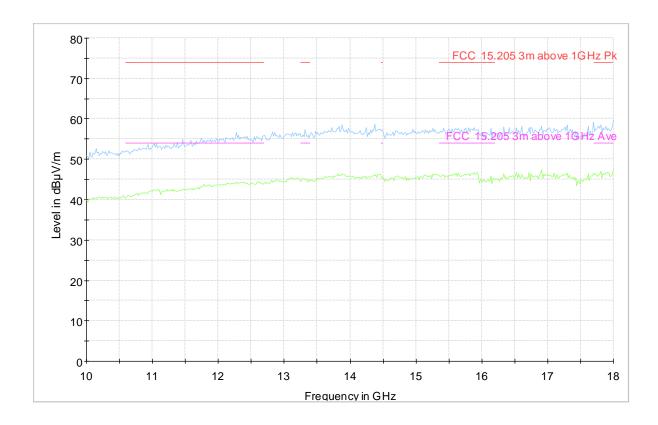


# 3.19 Radiated Emissions; 10 to 18 GHz (continued)

# 3.19.1Data; Orientation 3, serial cable at side, Mid channel

| Frequency                   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found. |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.19.2 Profile; Data; Orientation 3, serial cable at side, Mid channel

Max hold trace with peak values (◆)

Max hold trace with average values (◆)



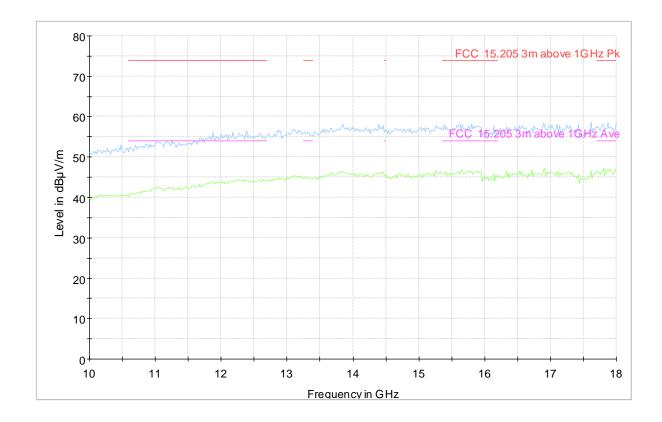


# 3.20 Radiated Emissions; 10 to 18 GHz (continued)

# 3.20.1 Data; Orientation 1, flat, Bottom channel

| Frequency                   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found. |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.20.2 Profile; Orientation 1, flat, Bottom channel

Max hold trace with peak values (◆)

Max hold trace with average values (◆)



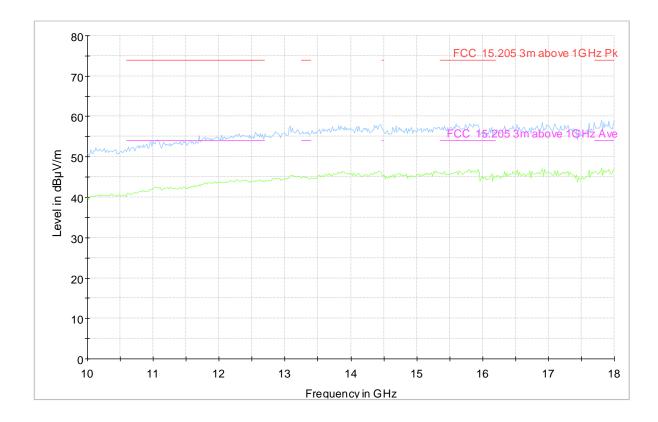


# 3.21 Radiated Emissions; 10 to 18 GHz (continued)

# 3.21.1 Data; Orientation 1, flat, Top channel

| Frequency                   | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|-----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                         | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found. |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.21.2 Profile; Orientation 1, flat, Top channel

Max hold trace with peak values (◆)

Max hold trace with average values (◆)





# 3.22 Radiated Emissions; 18 to 25 GHz

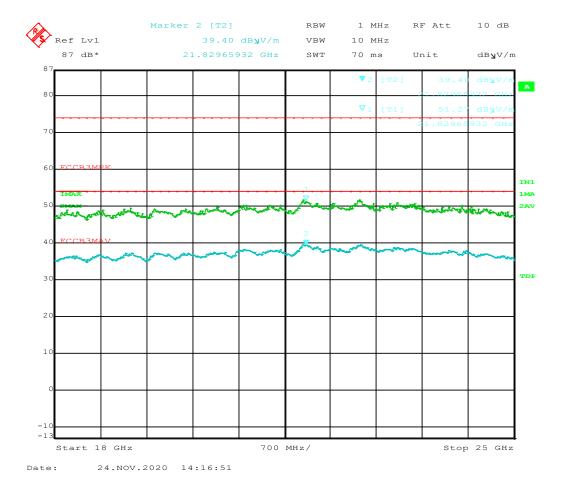
Radiated emissions pre-scan profile measurements were taken at a distance of three metres on eight azimuths of the EUT in both horizontal and vertical antenna polarities in a semi-anechoic chamber for FCC measurements.

Using the pre-scan results as a guide, each emission from the EUT was maximised. Measurements were carried out a distance of three metres in a CISPR 16-1-4 compliant semi-anechoic chamber. Cable positions were then finally adjusted to produce the maximum emission levels. The EUT was tested in 3 axis and the worst-case results are recorded below.

## 3.22.1 Data; Orientation 1, flat, Top Channel

| Frequency                  | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                        | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.22.2 Profile; Orientation 1, flat, Top Channel

Max hold trace with peak values  $(\nabla)$ 

Max hold trace with average values (V)



Issue#2: 17th December 2020

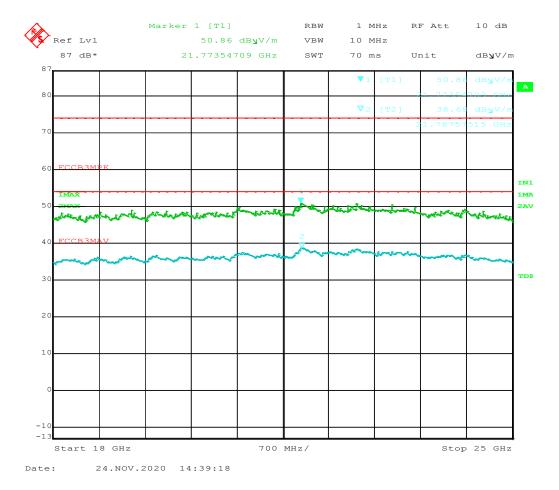


# 3.23 Radiated Emissions; 18 to 25 GHz (continued)

# 3.23.1 Data; Orientation 2, serial cable at bottom, Top Channel

| Frequency                  | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                        | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.23.2 Profile; Orientation 2, serial cable at bottom, Top Channel

Max hold trace with peak values  $(\nabla)$ 

Max hold trace with average values (V)



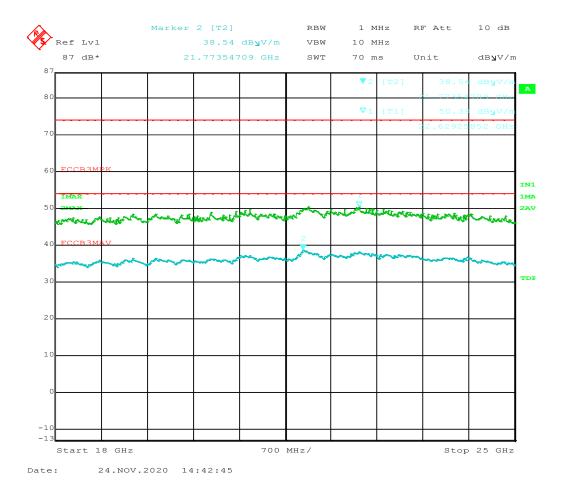


# 3.24 Radiated Emissions; 18 to 25 GHz (continued)

# 3.24.1 Data; Orientation 3, serial cable at side, Top Channel

| Frequency                  | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                        | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.24.2 Profile; Orientation 3, serial cable at side, Top Channel

Max hold trace with peak values  $(\nabla)$ 

Max hold trace with average values (V)



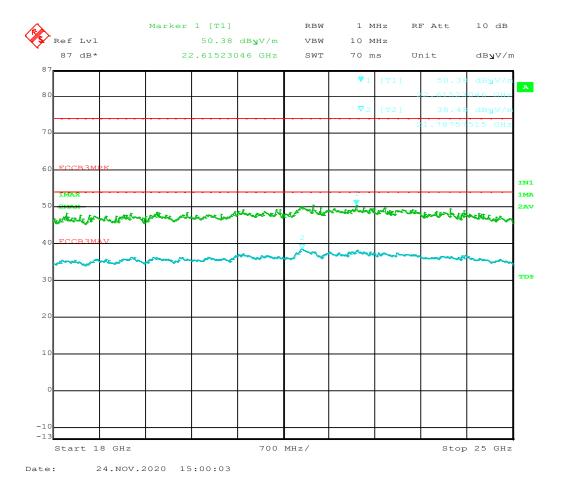


# 3.25 Radiated Emissions; 18 to 25 GHz (continued)

# 3.25.1 Data; Orientation 1, flat, Bottom Channel

| Frequency                  | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                        | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.25.2 Profile; Orientation 1, flat, Bottom Channel

Max hold trace with peak values  $(\nabla)$ 

Max hold trace with average values (V)



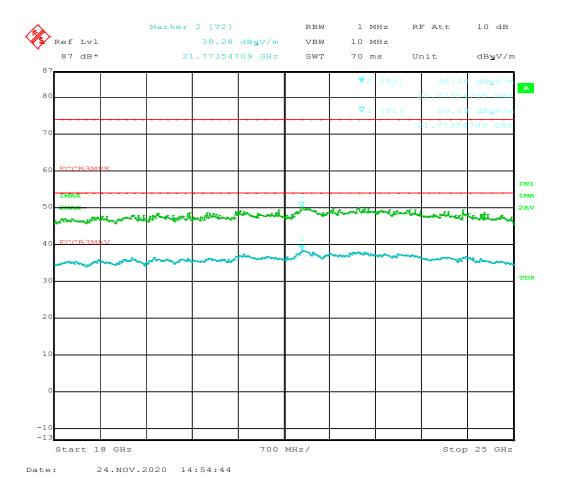


# 3.26 Radiated Emissions; 18 to 25 GHz (continued)

# 3.26.1 Data; Orientation 1, flat, Mid Channel

| Frequency                  | Peak  | CISPR<br>Average | Limit | Margin | Height | Pol | Azimuth | Corr. |        |
|----------------------------|-------|------------------|-------|--------|--------|-----|---------|-------|--------|
| MHz                        | dBμV/ | dBμV/m           | dBμV/ | dB     | cm     | H/V | Deg     | dB/m  | Status |
| No significant peaks found |       |                  |       |        |        |     | Pass    |       |        |

V = Vertical / H = Horizontal


The measurements reported are the highest emissions relative to the FCC limits and take into account the antenna and cable loss factors. Measurements made according to the FCC test standard and Eurofins Hursley test procedure RHF-01.



# 3.26.2 Profile; Orientation 1, flat, Mid Channel

Max hold trace with peak values  $(\nabla)$ 

Max hold trace with average values (V)





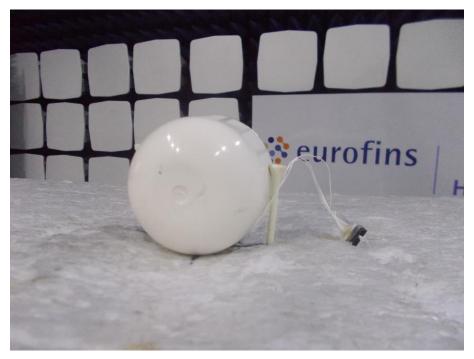
# 4.0 PHOTO LOG

**Emissions:** 

Radiated emissions Orientation 1 flat



Radiated emissions Orientation 2 serial cable side






**Photo Log (continued)** 

**Emissions:** 





Issue#2: 17<sup>th</sup> December 2020



## 5.0 MEASUREMENT UNCERTAINTIES

#### Emissions tests

For all emissions tests, measurement uncertainties have been calculated in line with the requirements of CISPR 16-4-2 to give a confidence level of greater than 95%. In all cases the laboratories calculated uncertainty values (known as Ulab) are equal to or are less than the expected uncertainty values contained in CISPR 16-4-2 (known as Ucispr). Below is a list of the laboratories calculated measurement uncertainties:

#### Conducted emissions:

Via AMN/LISN: ±3.27 dB (9 kHz - 150 kHz), ±3.28 dB (150 kHz - 30 MHz)

Via AAN/ISN: ±4.99 dB (150 kHz - 30 MHz) Via CVP: ±3.47 dB (150 kHz - 30 MHz) Via CP: ±2.69 dB (150 kHz - 30 MHz) Via 100 Ω: ±2.69 dB (150 kHz - 30 MHz) Clicks: ±3.34 dB (150 kHz - 30 MHz) Harmonics: ±5.82 % (100 Hz - 2 kHz)

Flicker: ±3.78 % (worst case for all parameters)

#### Radiated emissions:

H-Field: ±2.73 dB (9 kHz - 3 MHz), ±2.88 dB (3 MHz - 30 MHz)

D = 3.0 m (Horizontal): ±3.92 dB (30 MHz - 200 MHz), ±3.78 dB (200 MHz - 1 GHz)

D = 3.0 m (Vertical): ±3.74 dB (30 MHz - 200 MHz), ±5.06 dB (200 MHz - 1 GHz)

D = 3.0 m: ±4.50 dB (1 GHz - 6 GHz), ±4.04 dB (6 GHz - 18 GHz),

±4.27 dB (18 GHz - 40 GHz)

 $D = 10.0 \text{ m (Horizontal)} : \pm 4.53 \text{ dB (30 MHz} - 200 \text{ MHz)}, \pm 4.61 \text{ dB (200 MHz} - 1 \text{ GHz)}$   $D = 10.0 \text{ m (Vertical)} : \pm 4.41 \text{ dB (30 MHz} - 200 \text{ MHz)}, \pm 4.77 \text{ dB (200 MHz} - 1 \text{ GHz)}$ 

Issue#2: 17th December 2020



# 6.0 ANNEX – CONDUCTED EMISSIONS RESULTS

## 6.1 DTS Bandwidth

## 6.1.1 Measurement method

Test was conducted in accordance with ANSI C63.10 Clause 11.8 Option 1:

- a) Set resolution bandwidth to 100 kHz
- b) Set the video bandwidth to  $\geq 3 \times RBW$
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### 6.1.2 Test results

| Channel | 6dB DTS Bandwidth<br>(MHz) | Requirement | Result |
|---------|----------------------------|-------------|--------|
| Bottom  | 1.59                       | > 500 kHz   | Pass   |
| Middle  | 1.47                       | > 500 kHz   | Pass   |
| Top     | 1.59                       | > 500 kHz   | Pass   |

Table 1: DTS Bandwidth

Issue#2: 17th December 2020



# 6.1.3 Profile; DTS Bandwidth

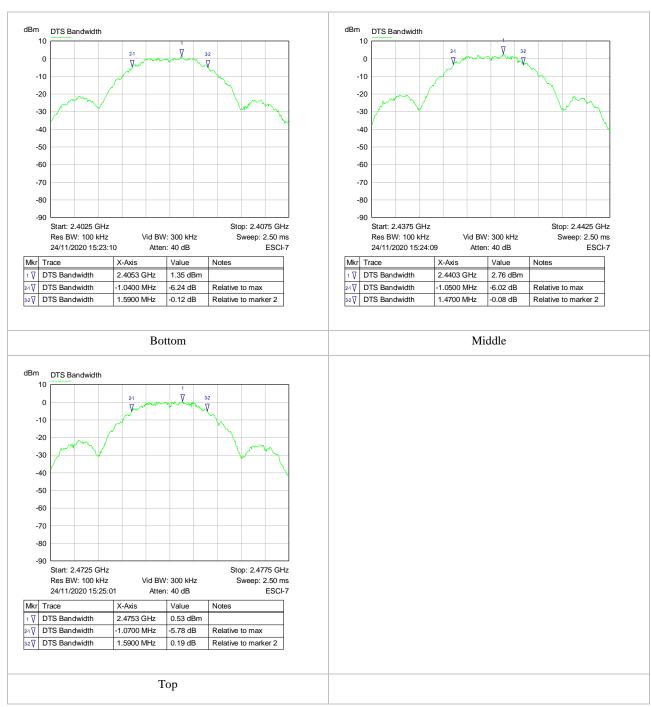



Figure 1: DTS Bandwidth plots



# 6.2 Maximum Peak Conducted Output Power

### **6.2.1** Measurement method

As the analyser could be set RBW  $\geq$  DTS bandwidth, the test was conducted in accordance with ANSI C63.10 Clause 11.9.1.1:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW  $\geq$  3 x RBW.
- c) Set span  $\geq$  3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

### 6.2.2 Test results

| Channel | Channel Power (dBm) | Limit (dBm) | Result |
|---------|---------------------|-------------|--------|
| Bottom  | 4.27                | 30.0        | Pass   |
| Middle  | 5.61                | 30.0        | Pass   |
| Тор     | 4.18                | 30.0        | Pass   |

**Table 2: Channel Power** 

Issue#2: 17th December 2020



# 6.2.3 Profile; Maximum Peak Conducted Output Power

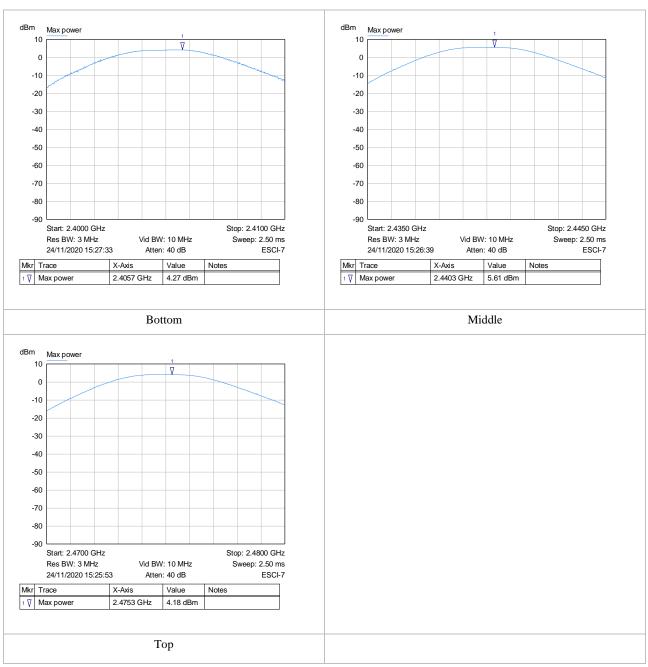



Figure 2: Peak Conducted Power plots



# 6.3 Maximum Power Spectral Density

### **6.3.1** Measurement method

As conducted power was measured as Maximum Peak Conducted Power, measurement was performed in accordance with ANSI C63.10 Clause 11.10.2:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 x DTS bandwidth.
- c) Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
- d) Set the VBW  $\geq$  3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### 6.3.2 Test results

| Channel | Peak Marker<br>reading (dBm) | Limit (dBm/3kHz) | Result |
|---------|------------------------------|------------------|--------|
| Bottom  | 1.35                         | 8.0              | Pass   |
| Middle  | 2.76                         | 8.0              | Pass   |
| Top     | 0.53                         | 8.0              | Pass   |

**Table 3: Spectral Density results** 

Issue#2: 17th December 2020



# 6.3.3 Profile; Maximum Power Spectral Density

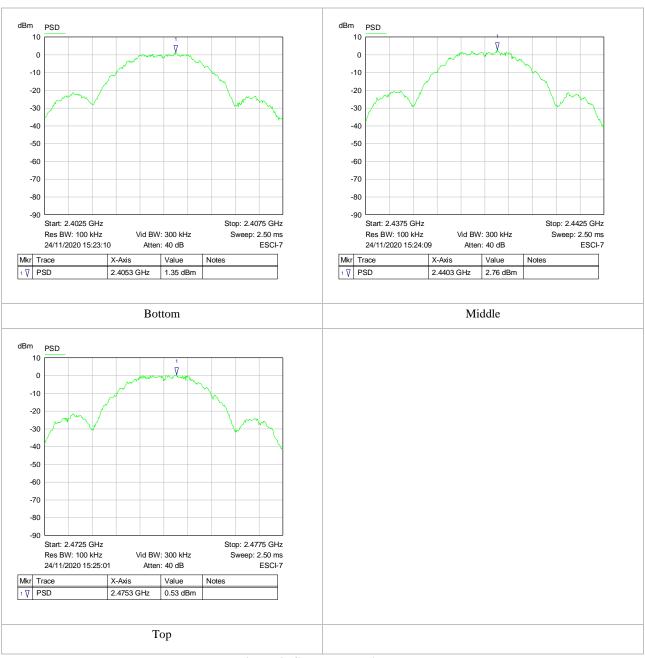



Figure 3: Spectral Density plots



# 6.4 Emissions in non-restricted frequency bands

### **6.4.1** Measurement method

Since peak power measurements were made using a peak detector, the same detector will be used for unwanted emissions. The unwanted emissions shall be at least 20dB lower than the wanted emission.

First, establish a reference level in accordance with ANSI C63.10 Clause 11.11.2:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to  $\geq 1.5 \times DTS$  bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW  $\geq$  3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Then measure the emission levels in accordance with ANSI C63.10 Clause 11.11.3

- j) Set the center frequency and span to encompass frequency range to be measured.
- k) Set the RBW = 100 kHz.
- I) Set the VBW  $\geq$  3 x RBW.
- m) Detector = peak.
- n) Sweep time = auto couple.
- o) Trace mode = max hold.
- p) Allow trace to fully stabilize.
- q) Use the peak marker function to determine the maximum amplitude level.

### 6.4.2 Test results

The reference trace was taken from the Power Spectral Density Measurement which used the same settings.

For ease of measurement, maximum values are reported anywhere in the frequency band of investigation, whether or not it is outside a restricted band. Further measurements in restricted bands are in the next section.

| Channel | Maximum Peak<br>level in 100 kHz<br>RBW (dBm) | -20 dBc<br>(dBm) | Maximum emission<br>(dBm) | Result |
|---------|-----------------------------------------------|------------------|---------------------------|--------|
| Bottom  | 1.35                                          | -18.65           | -42.44                    | Pass   |
| Middle  | 2.76                                          | -17.24           | -47.00                    | Pass   |
| Тор     | 0.53                                          | -19.47           | -46.00                    | Pass   |

Table 4: Emissions in non-restricted bands



## 6.4.3 Profile; Emissions in non-restricted frequency bands

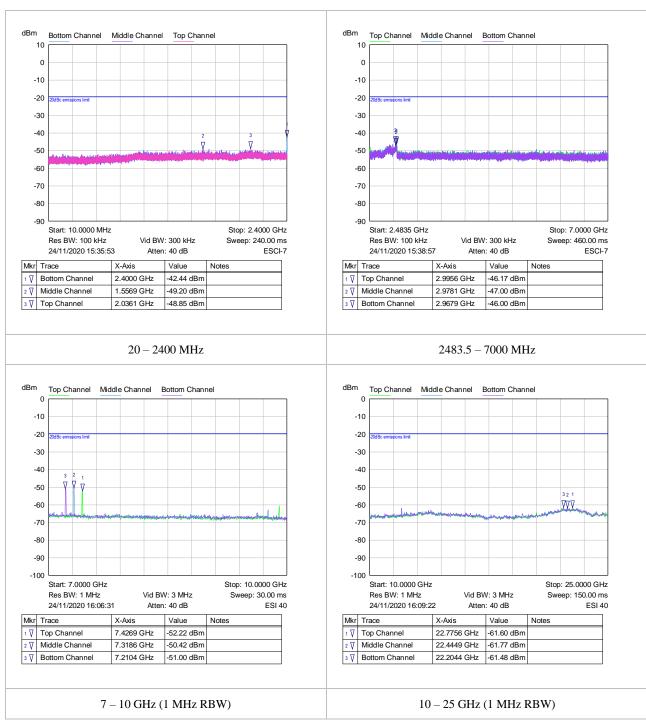



Figure 4: Emissions in non-restricted frequency bands



### **6.5** Occupied bandwidth

99% occupied bandwidth measured using the inbuilt function in the spectrum analyser

| Channel | Occupied Bandwidth (MHz) | Requirement | Result          |
|---------|--------------------------|-------------|-----------------|
| Bottom  | 2.3975                   | None        | For information |
| Middle  | 2.3675                   | None        | For information |
| Тор     | 2.3800                   | None        | For information |

**Table 5: Occupied Bandwidth** 

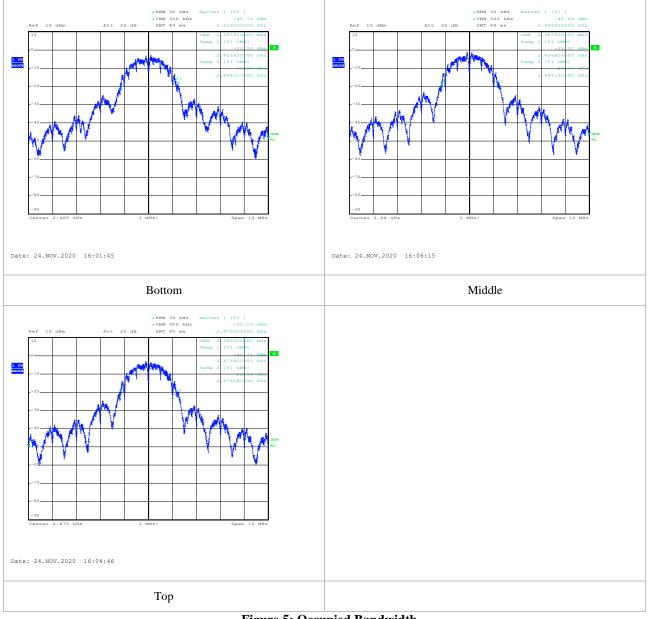



Figure 5: Occupied Bandwidth



# 6.6 Test equipment

| Description       | Manufacturer    | Name    | Serial Number | Calibration certificate Or Calibration due |
|-------------------|-----------------|---------|---------------|--------------------------------------------|
| Spectrum Analyser | Rohde & Schwarz | ESCI 7  | HEMC #552     | 01/07/2021                                 |
| Spectrum Analyser | Rohde & Schwarz | ESIB 40 | HEMC #021     | 12/08/2021                                 |

**Table 6: Test Equipment** 

End of Document

Issue#2: 17<sup>th</sup> December 2020