FCC Part 95 Rules Test Report

Report No.: AGC07629170501FE10

FCC ID : 2AMEA-T38

BRAND NAME : YYT

MODEL NAME : T38, T48, T899, T668, T98

CLIENT : GLOBAL MEI CHUANG CO., LIMITED

DATE OF ISSUE : Jun, 01,2017

STANDARD(S) : FCC Part 95 Rules

REPORT VERSION: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC07629170501FE10 Page 2 of 43

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun, 01,2017	Valid	Original Report

Page 3 of 43

VERIFICATION OF COMPLIANCE

GLOBAL MEI CHUANG CO., LIMITED				
2 nd Floor, F Building, Yujie Industrial Park, Qiuchang, Huiyang, Huizhou, Guangdong, China				
Huizhou Huiyang Qiuchang YYT Electronics Manufacturer				
2 nd Floor, F Building, Yujie Industrial Park, Qiuchang, Huiyang, Huizhou, Guangdong, China				
Walkie Talkie				
YYT				
Т38				
T48, T899, T668, T98				
All the same except for the model name.				
May.25, 2017 to Jun, 01,2017				

WE HEREBY CERTIFY THAT:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 95 requirements

The test results of this report relate only to the tested sample identified in this report.

Tested by

Steven Zhou

Jun, 01,2017

Approved by

Solger Zhang(Zhang Hongyi)
Authorized Officer

Jun, 01,2017

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2RELATED SUBMITTAL(S) / GRANT (S)	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.5 SPECIAL ACCESSORIES	
2. SYSTEM TEST CONFIGURATION	
2.1EUT CONFIGURATION	
2.4 CONFIGURATION OF TESTED SYSTEM	
3. SUMMARY OF TEST RESULTS	
5. FREQUENCY TOLERANCE	
5.1 PROVISIONS APPLICABLE	
5.2 MEASUREMENT PROCEDURE	
5.3 TEST SETUP BLOCK DIAGRAM	
5.4 TEST RESULT	
6. EMISSION BANDWIDTH	
6.1 PROVISIONS APPLICABLE	16
6.2 MEASUREMENT PROCEDURE	16
6.3 TEST SETUP BLOCK DIAGRAM	
6.4 MEASUREMENT RESULT	
7. UNWANTED RADIATION	19
7.1 PROVISIONS APPLICABLE	
7.2 MEASUREMENT PROCEDURE	
7.3 TEST SETUP BLOCK DIAGRAM	
7.4 MEASUREMENT RESULTS:	
8. MAXIMUMN TRANSMITTER POWER	
8.1 PROVISIONS APPLICABLE	
8.2 TEST PROCEDURE	
8.4 TEST RESULT	
8.5 CONDUCT SPURIOUS PLOT	

	Page 5 of 43
9. MODULATION CHARACTERISTICS	32
9.1 PROVISIONS APPLICABLE	32
9.2 MEASUREMENT METHOD	
9.3 MEASUREMENT RESULT	
APPENDIX I: PHOTOGRAPHS OF SETUP	
ADDENDIV II EVTEDNAL VIEW OF FUT	

Page 6 of 43

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a **ANALOG RADIO** designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

<u> </u>	
Hardware Version	PCB V03
Software Version	VOXV4A
Modulation	FM
Channel Separation	12.5KHz
Emission Type	11K0F3E
Emission Bandwidth	10.80KHz
Maximum Transmitter Power	25.56 dBm
Output power Modification	0.5W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)
Antenna Designation	Inseparable
Power Supply	DC 3*1.2V, 800mAh (by battery)
Limiting Voltage	DC 3.06 V-4.14 V
	Frequency Range: 462 MHz
Operation Frequency Range and Channel	GMRS/FRS: 462.5625MHz to 462.7125MHz FRS: 467.5625MHz to 467.7125MHz GMRS: 462.5500MHz to 462.7250MHz Channel 1,2,3,4,5,6&7 are common channels for GMRS&FRS
Frequency Tolerance	1.074ppm

Page 7 of 43

Channel List:

Channel	Frequency	Description	Channel	Frequency	Description
1	462.5625 MHz	GMRS/FRS	12	467.6625 MHz	FRS
2	462.5875 MHz	GMRS/FRS	13	467.6875 MHz	FRS
3	462.6125 MHz	GMRS/FRS	14	467.7125 MHz	FRS
4	462.6375 MHz	GMRS/FRS	15	462.5500 MHz	GMRS
5	462.6625 MHz	GMRS/FRS	16	462.5750 MHz	GMRS
6	462.6875 MHz	GMRS/FRS	17	462.6000 MHz	GMRS
7	462.7125 MHz	GMRS/FRS	18	462.6250 MHz	GMRS
8	467.5625 MHz	FRS	19	462.6500 MHz	GMRS
9	467.5875 MHz	FRS	20	462.6750 MHz	GMRS
10	467.6125 MHz	FRS	21	462.7000 MHz	GMRS
11	467.6375 MHz	FRS	22	462.7250 MHz	GMRS

Page 8 of 43

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2AMEA-T38, filing to comply with the FCC Part 95 requirements.

1.3 TEST METHODOLOGY.

The radiated emission testing was performed according to the procedures of TIA/EIA 603.

1.4 TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.
Description	The test site is constructed and calibrated to meet the FCC requirements in documents TIA/EIA 603
FCC Registration No.	371540

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 43

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Page 10 of 43

2.4 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Walkie Talkie	T38	FCC ID: 2AMEA-T38	EUT

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§ 95.639(a)(d)	Maximum Transmitter Power	Compliant
§ FCC part 2.1047(a) § 95.637(a)(b)	Modulation Characteristics	Compliant
§ FCC part 2.1049 § 95.633(a)(c) § 95.635(b)(1)(3)(7)	Occupied Bandwidth and Emission Mask	Compliant
§ FCC Part 2.1055 § 95.621(b) § 95.626(b)	Frequency Stability	Compliant
§ 95.635(b7)	Transmitter Radiated Spurious Emission	Compliant

Report No.: AGC07629170501FE10 Page 11 of 43

LIST OF EQUIPMENTS USED

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NO.	Cal. Date	Cal. Due
CLIMATE CHAMBER	EXPERY	TN-400	TN2007SR038	2016.07.02	2017.07.01
ATTENUATOR	WEINSCHEL CORP	58-30-33	ML030	2016.07.02	2017.07.01
DC POWER SUPPLY	ZHAOXIN	RXN-605D	N/A	2016.07.02	2017.07.01
MODULATION ANALYZER	HP	8920B	3104A03367	2016.07.02	2017.07.01
SIGNAL GENERATOR	AGILENT	E4421B	122501288	2016.07.03	2017.07.02
SIGNAL GENERATOR	R&S	SMT03	A0304261	2016.07.03	2017.07.02
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	2016.07.03	2017.07.02
Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3355	2016.07.03	2017.07.02
Substitution Antenna	SCHWARZBECK	VULB9160	9168-494	2016.07.03	2017.07.02
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	2016.07.03	2017.07.02
RF Cable	SCHWARZBECK	AK9515E	96221	2016.07.03	2017.07.02
3m Anechoic Chamber	CHENGYU	966	PTS-001	2016.06.03	2017.06.02
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	2016.06.03	2017.06.02
Spectrum analyzer	Agilent	E4407B	MY46185649	2016.06.03	2017.06.02
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	2016.06.03	2017.06.02
Substitution ANTENNA	EM	EM-AH-10180	67	2016.06.03	2017.06.02
Modulation Domain Analyzer	HP	53310A	3121A02467	2016.06.03	2017.06.02
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	2016.06.03	2017.06.02
RF Cable	SCHWARZBECK	AK9515E	96222	2016.06.03	2017.06.02
Shielded Room	CHENGYU	843	PTS-002	2016.06.03	2017.06.02

Note: 8920B can generate audio modulation frequency.

Page 12 of 43

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (Walkie Talkie) has been tested under normal operating condition. (GMRS TX, FRS TX) are chosen for testing at each channel separation.

No.	TEST MODES	CHANNEL SEPARATION
1	GMRS TX	12.5 KHz
2	FRS TX	12.5 KHz

Note: Only the result of the worst case was recorded in the report.

Page 13 of 43

5. FREQUENCY TOLERANCE

5.1 PROVISIONS APPLICABLE

Standard Applicable [Part 95.621(b), Part 95.626(b)] The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

FCC Part 95.621(b), Part 95.626(b)

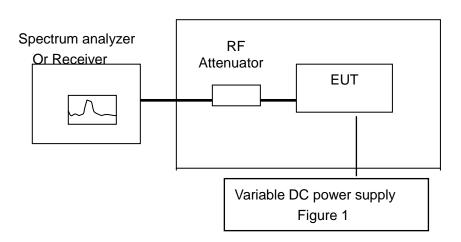
GMRS: The carrier frequency tolerance shall be better than ±5 ppm.

FRS: The carrier frequency tolerance shall be better than ±2.5 ppm.

5.2 MEASUREMENT PROCEDURE

5.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50 °C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.


5.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15° C to 25° C. Otherwise, an environment chamber set for a temperature of 20° C shall be used. The EUT shall be powered by DC 3.6V.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

Report No.: AGC07629170501FE10 Page 14 of 43

5.3 TEST SETUP BLOCK DIAGRAM

Temperature Chamber

Report No.: AGC07629170501FE10 Page 15 of 43

5.4 TEST RESULT

(1) Frequency stability versus input voltage (Supply nominal voltage is 3.60V)

Environment	Power	R	Reference Frequency				
Temperature(°C)	(V)	462.5625MHz	467.6375MHz	462.7250MHz	ppm		
50	DC	0.715	0.652	0.454			
40	DC	0.686	0.649	0.879			
30	DC	0.529	0.536	0.723	±5 for		
20	DC	0.851	0.575	0.662	GMRS		
10	DC	0.763	0.449	0.715	and		
0	DC	0.727	0.586	0.796	±2.5for		
-10	DC	0.826	0.726	0.515	FRS		
-20	DC	0.886	0.861	0.781			
-30	DC	0.692	0.575	0.563			
Result		·	Pass	·			

(2) Frequency stability versus input voltage (Battery limiting voltage is 3.06V)

Environment	Power	R	Reference Frequency				
Temperature(°C)	(V)	462.5625MHz	467.6375MHz	462.7250MHz	ppm		
50	DC 3.06	0.815	0.651	0.926			
40	DC 3.06	0.698	0.662	0.958			
30	DC 3.06	0.886	1.074	0.962	±5 for		
20	DC 3.06	0.836	0.859	0.875	GMRS		
10	DC 3.06	0.778	0.874	0.816	and		
0	DC 3.06	0.858	0.875	0.995	±2.5for		
-10	DC 3.06	0.874	0.685	1.048	FRS		
-20	DC 3.06	0.786	0.886	0.925			
-30	DC 3.06	0.419	0.952	0.856			
Result			Pass				

(3) Frequency stability versus input voltage (Battery Fully Charged voltage is 4.14V)

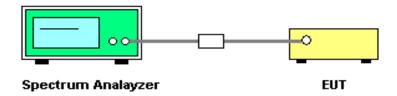
They stability versus input voltage (battery raily enlarged voltage is 4.144)					
Environment	Power	R	eference Freque	ncy	Limit:
Temperature(°C)	(V)	462.5625MHz	467.6375MHz	462.7250MHz	ppm
50	DC 4.14	0.875	0.762	0.625	
40	DC 4.14	0.784	0.884	0.732	
30	DC 4.14	0.889	0.686	0.748	±5 for
20	DC 4.14	0.655	0.819	0.825	GMRS
10	DC 4.14	0.568	0.783	0.896	and
0	DC 4.14	0.579	0.651	0.915	±2.5for
-10	DC 4.14	0.874	0.676	0.649	FRS
-20	DC 4.14	0.758	0.884	0.516	
-30	DC 4.14	0.526	0.759	0.952	
Result		_	Pass		

Page 16 of 43

6. EMISSION BANDWIDTH

6.1 PROVISIONS APPLICABLE

95.633(a): GMRS: The authorized bandwidth for emission types H1D, J1D, R1D, H3E, J3E and R3E is 4 kHz; for emission typesA1D and A3E, it is 8 kHz; and for emission types F1D, G1D, F3E, G3E and F2D, it is 20 kHz.

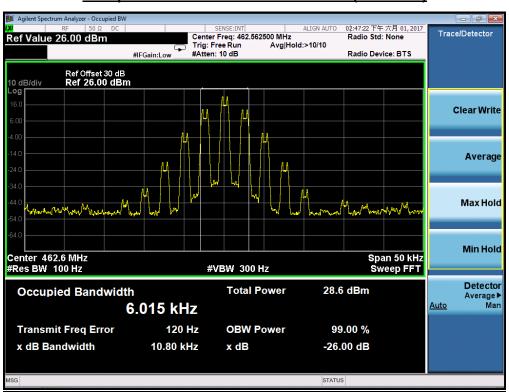

FCC Part 95.633(c): FRS: The authorized bandwidth for an FRS unit is 12.5 kHz.

Occupied Bandwidth (Section 2.1049, 95.633(c)): The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

6.2 MEASUREMENT PROCEDURE

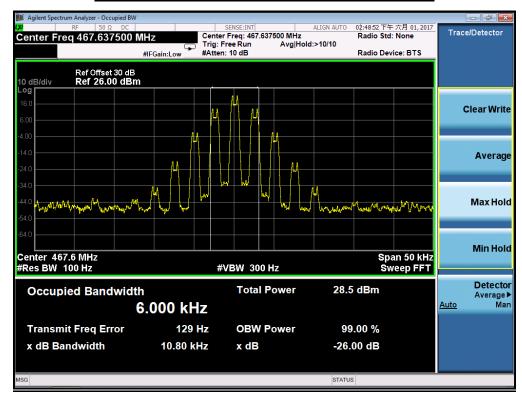
- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
 - 3). Set SPA Center Frequency = fundamental frequency, RBW=100Hz.VBW= 300 Hz, Span =50 KHz.
 - 4). Set SPA Max hold. Mark peak, -26 dB.

6.3 TEST SETUP BLOCK DIAGRAM

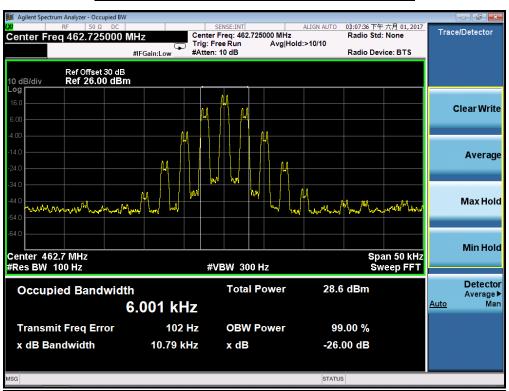


Page 17 of 43

6.4 MEASUREMENT RESULT


26 dB Bandwidth Measurement Result						
Operating Frequency	12.5 KHz Channel Separation					
Operating Frequency	Test Data Limits					
462.5625MHz	10.80KHz	20.00 KHz	Pass			
467.6375MHz	10.80KHz	11.25 KHz	Pass			
462.7250MHz	10.79KHz					

Occupied bandwidth of Bottom Channel (Maximum)



Page 18 of 43

Occupied bandwidth of Middle Channel (Maximum)

Occupied bandwidth of Top Channel (Maximum)

Page 19 of 43

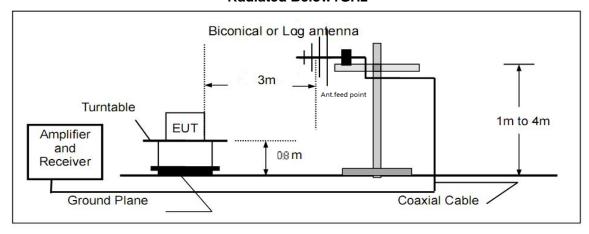
7. UNWANTED RADIATION

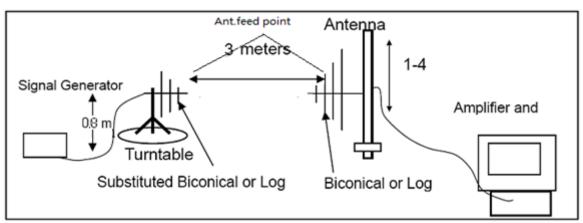
7.1 PROVISIONS APPLICABLE

Standard Applicable [FCC Part 95.635(b7)]

According to FCC section 95.635(b7), the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB.

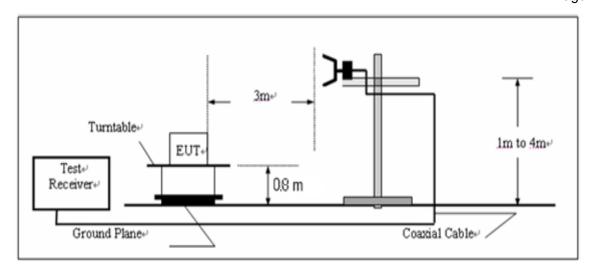
7.2 MEASUREMENT PROCEDURE

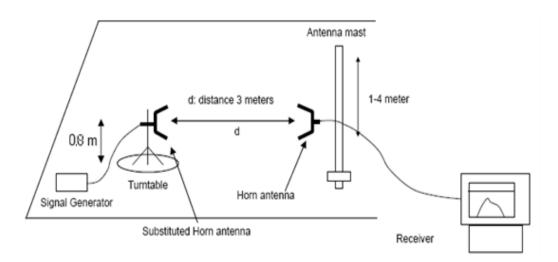

- (1)On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- (2)The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- (3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- (4) The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- (5) The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- (6)The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- (7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- (8) The maximum signal level detected by the measuring receiver shall be noted.
- (9) The measurement shall be repeated with the test antenna set to horizontal polarization.
- (10) Replace the antenna with a proper Antenna (substitution antenna).
- (11)The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- (12) The substitution antenna shall be connected to a calibrated signal generator.
- (13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- (14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- (15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- (16)The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- (17)The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.


Page 20 of 43

7.3 TEST SETUP BLOCK DIAGRAM

SUBSTITUTION METHOD: (Radiated Emissions)


Radiated Below1GHz



Radiated Above 1 GHz

Page 21 of 43

7.4 MEASUREMENT RESULTS:

the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB

Limit: At least 43+10 log (P) =43+10log (0.5) =40 (dB)

Page 22 of 43

Measurement Result for 12.5 KHz Channel Separation @ 462.5625MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
462.563	Н	0		pass
925.125	Н	68.56	40	pass
1387.69	Н	69.32	40	pass
1850.250	Н	71.96	40	pass
2312.813	Н	72.15	40	pass
2775.375	Н	73.25	40	pass
3237.938	Н	74.78	40	pass
3700.500	Н	80.31	40	pass
4163.063	Н	81.58	40	pass
4625.625	Н	82.69	40	pass

Emission Frequency (MHz)	Ant. Polarity(H/H)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
462.563	V	0		pass
925.125	V	69.16	40	pass
1387.69	V	70.32	40	pass
1850.250	V	72.69	40	pass
2312.813	V	70.52	40	pass
2775.375	V	73.86	40	pass
3237.938	V	75.15	40	pass
3700.500	V	77.36	40	pass
4163.063	V	78.68	40	pass
4625.625	V	80.26	40	pass

Measurement Result for 12.5 KHz Channel Separation @ 467.6375MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
467.638	Н	0		pass
935.275	Н	69.26	40	pass
1402.913	Н	70.19	40	pass
1870.550	Н	72.26	40	pass
2338.188	Н	73.85	40	pass
2805.825	Н	75.47	40	pass
3273.463	Н	77.36	40	pass
3741.100	Н	79.15	40	pass
4208.738	Н	82.67	40	pass
4676.375	Н	80.26	40	pass

Page 23 of 43

Emission Frequency (MHz)	Ant. Polarity(H/H)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
467.638	V	0		pass
935.275	V	67.29	40	pass
1402.913	V	69.35	40	pass
1870.550	V	70.65	40	pass
2338.188	V	74.81	40	pass
2805.825	V	75.62	40	pass
3273.463	V	77.92	40	pass
3741.100	V	78.62	40	pass
4208.738	V	80.15	40	pass
4676.375	V	80.95	40	pass

Measurement Result for 12.5 KHz Channel Separation @ 462.7250MHz

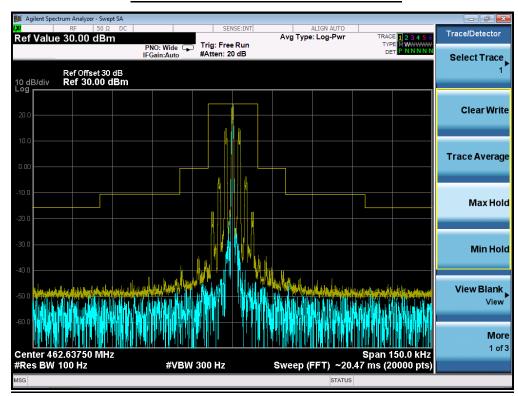
Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
462.725	Н	0		pass
925.450	Н	70.15	40	pass
1388.175	Н	70.39	40	pass
1850.900	Н	72.52	40	pass
2313.625	Н	75.57	40	pass
2776.350	Н	75.36	40	pass
3239.075	Н	78.85	40	pass
3701.800	Н	78.49	40	pass
4164.525	Н	79.53	40	pass
4627.250	Н	82.75	40	pass

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
462.725	V	0		pass
925.450	V	71.29	40	pass
1388.175	V	70.51	40	pass
1850.900	V	73.93	40	pass
2313.625	V	74.25	40	pass
2776.350	V	75.75	40	pass
3239.075	V	77.48	40	pass
3701.800	V	78.36	40	pass
4164.525	V	79.74	40	pass
4627.250	V	81.29	40	pass

Page 24 of 43

7.5 EMISSION MASK PLOT

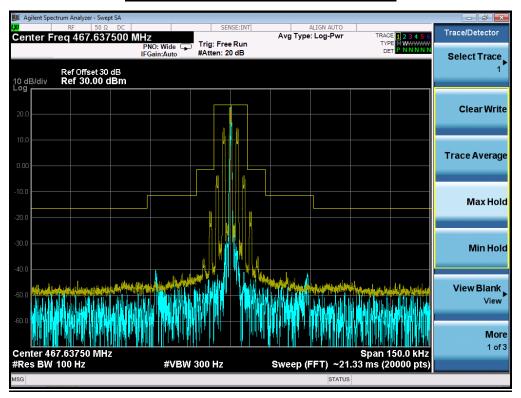
Standard Applicable [FCC Part 95.635(b)(1)(3)(7)]GMRS&FRS: Unwanted emissions shall be attenuated below the unmodulated carrier power in accordance with the following:


- (1) At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50 %up to and including 100% of the authorized bandwidth.
- (2) At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100 % up to and including 250 % of the authorized bandwidth.
- (3) At least 43 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250 %.

The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz.

CHANNEL 4:


The Worst Emission Mask for channel 4

Report No.: AGC07629170501FE10 Page 25 of 43

CHANNEL 11:

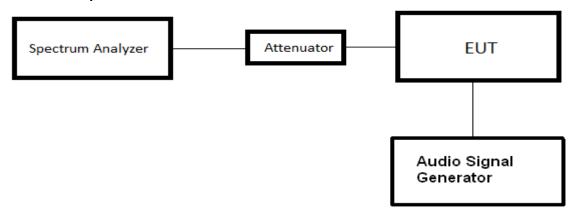
The Worst Emission Mask for channel 11

Page 26 of 43

8. MAXIMUMN TRANSMITTER POWER 8.1 PROVISIONS APPLICABLE

Per FCC §2.1046 and §95.639(h): Maximum ERP is dependent upon the station's antenna HAAT and required service area.

FCC Part 95.639(a) A GMRS transmitter may transmit with a maximum power of 5.0 W e.r.p.

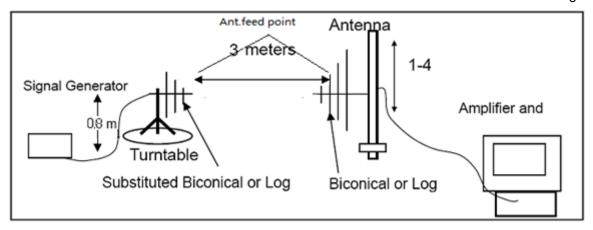

FCC Part 95.639(d) For FRS, the maximum permissible transmitter output power under any operating conditions is 0.5W effective radiated power (e.r.p.).

8.2 TEST PROCEDURE

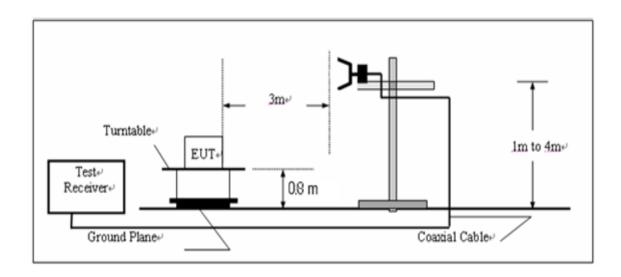
The RF output of Two-way Radio was conducted to a spectrum analyzer through an appropriate attenuator.

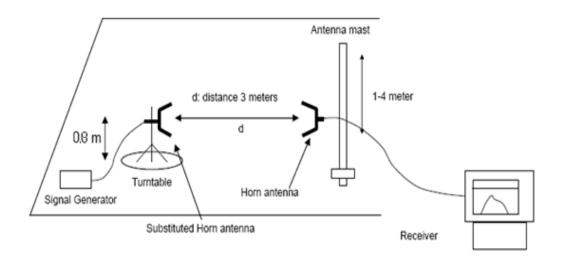
8.3 TEST CONFIGURATION

Conducted Output Power:



Effective Radiated Power


Radiated Below1GHz



Page 27 of 43

Radiated Above 1 GHz

Page 28 of 43

8.4 TEST RESULT

The maximum Conducted Power (CP) for UHF is Analog: 0.5W for 12.5 KHz Channel Separation

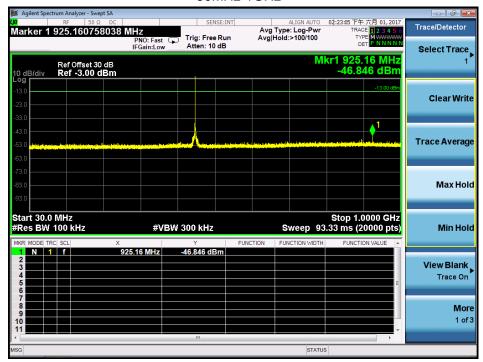
Calculation Formula: CP = R + A + L

* Note:

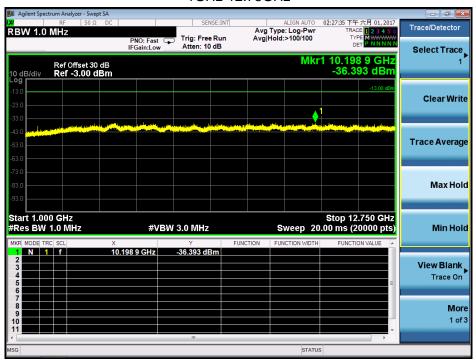
CP: The final Conducted Power

R: The reading value from spectrum analyzer A: The attenuation value of the used attenuator

L: The loss of all connection cables

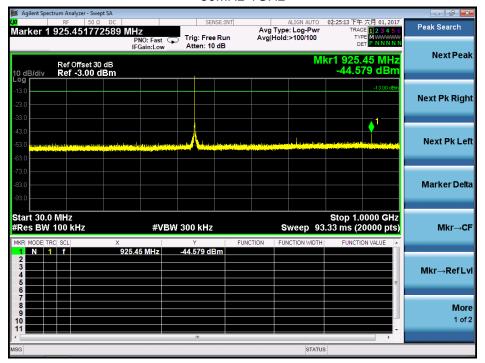

Conducted Power Measurement Results				
Channel Seneration	Channel	Measurement Result (dBm)		
Channel Separation	Channel	For 26.99dBm(0.5W)		
12.5 KHz	Bottom(462.5625MHz)	25.36		
	Middle(467.6375MHz)	25.56		
	Top (462.7250MHz)	25.46		

Radiated Power Measurement Results			
Channel Separation Channel Measurement Result (
Channel Separation	Channel	For 26.99dBm(0.5W)	
	Bottom(462.5625MHz)	25.41	
12.5 KHz	Middle(467.6375MHz)	25.36	
	Top (462.7250MHz)	25.19	


Page 29 of 43

8.5 CONDUCT SPURIOUS PLOT

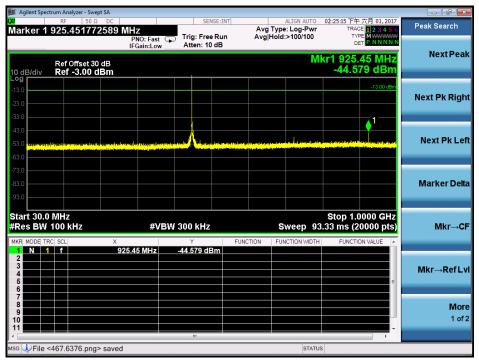
Conducted Spurious Emission (worst) @462.5625MHz With 12.5 KHz Channel Separation-5W 30MHz-1GHz


Conduct Spurious Emission (worst) @ 462.5625MHz With 12.5 KHz Channel Separation-1GHz-12.75GHz

Page 30 of 43

Conducted Spurious Emission (worst) @ 467.6375MHz With 12.5 KHz Channel Separation

30MHz-1GHz


Conduct Spurious Emission (worst) @ 467.6375MHz With 12.5 KHz Channel Separation 1GHz-12.75GHz

Page 31 of 43

Conducted Spurious Emission (worst) @462.7250MHz With 12.5 KHz Channel Separation

30MHz-1GHz

Conduct Spurious Emission (worst) @ 462.7250MHz With 12.5 KHz Channel Separation 1GHz-12.75GHz

Page 32 of 43

9. MODULATION CHARACTERISTICS

9.1 PROVISIONS APPLICABLE

According to [FCC Part 95.637(a)(b), Part 2.1047(a)], for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

- Part 95.637(a) A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus orminus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.
- Part 95.637(b) Each GMRS transmitter, except a mobile station transmitter with a power output of 2.5 W or less, mustautomatically prevent a greater than normal audio level from causing over-modulation. The transmitter also must includeaudio frequency low pass filtering, unless it complies with the applicable paragraphs of § 95.631 (without filtering.) Thefilter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz)between 3 and 20 kHz, the filter must have an attenuation of at least 60 log10 (f/3) dB greater than the attenuation at 1kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.
- Part 2.1047(a) A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing thefrequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shallbe submitted.

9.2 MEASUREMENT METHOD

9.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

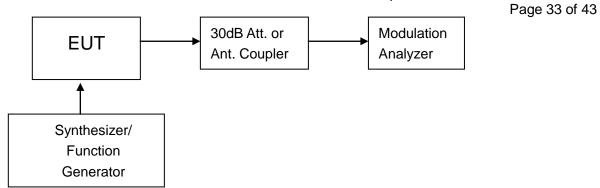
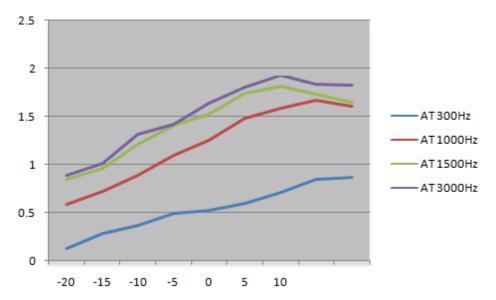


Figure 1: Modulation characteristic measurement configuration


9.3 MEASUREMENT RESULT

TEST CHANNEL: 4 (A). MODULATION LIMIT:

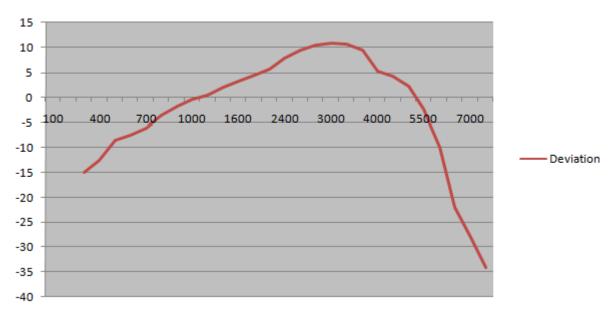
Bottom Channel @ 12.5 KHz Channel Separations

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.12	0.58	0.84	0.89
-15	0.28	0.72	0.96	1.02
-10	0.36	0.88	1.21	1.32
-5	0.49	1.09	1.41	1.42
0	0.52	1.25	1.52	1.64
+5	0.60	1.48	1.75	1.81
+10	0.71	1.59	1.82	1.93
+15	0.85	1.67	1.74	1.84
+20	0.87	1.61	1.65	1.83

Report No.: AGC07629170501FE10 Page 34 of 43

Note: All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 43

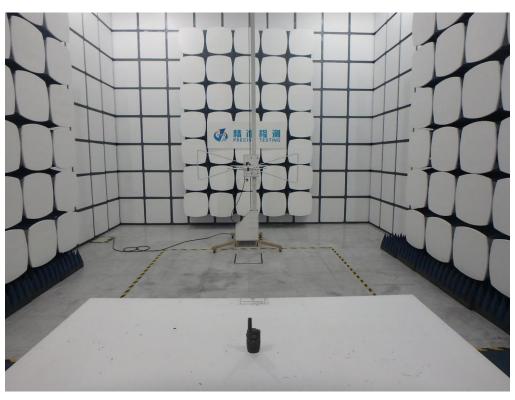

(B). AUDIO FREQUENCY RESPONSE:

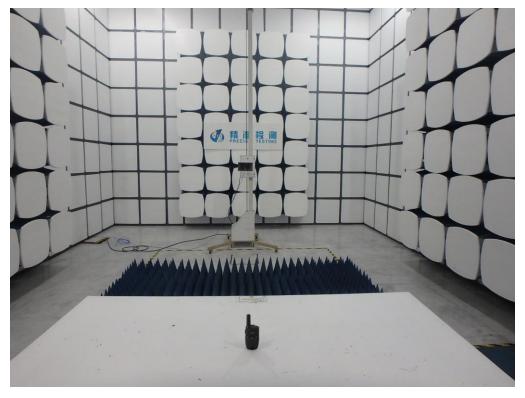
Bottom Channel @ 12.5 KHz Channel Separations

Audio Frequency			
Frequency (Hz)	Deviation (KHz)	Response(dB)	
100			
200			
300	0.09	-14.89	
400	0.12	-12.40	
500	0.19	-8.40	
600	0.21	-7.54	
700	0.25	-6.02	
800	0.33	-3.61	
900	0.41	-1.72	
1000	0.48	-0.35	
1200	0.52	0.34	
1400	0.63	2.01	
1600	0.73	3.29	
1800	0.73	4.40	
2000	0.95	5.58	
2400	1.24	7.89	
2500	1.48	9.43	
2800	1.66	10.42	
3000	1.74	10.83	
3200	1.72	10.73	
3600	1.48	9.43	
4000	0.92	5.30	
4500	0.81	4.19	
5000	0.64	2.14	
5500	0.38	-2.38	
6000	0.16	-9.90	
6500	0.04	-21.94	
7000	0.02	-27.96	
7500	0.01	-14.89	
9000			
10000			
14000			
18000			
20000			
30000			

Page 36 of 43

Frequency Response of Bottom Channel




Note: All the modes had been tested, but only the worst data recorded in the report.

Page 37 of 43

APPENDIX I: PHOTOGRAPHS OF SETUP

RADIATED EMISSION TEST SETUP

Page 38 of 43

APPENDIX II: EXTERNAL VIEW OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT

Report No.: AGC07629170501FE10 Page 39 of 43

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

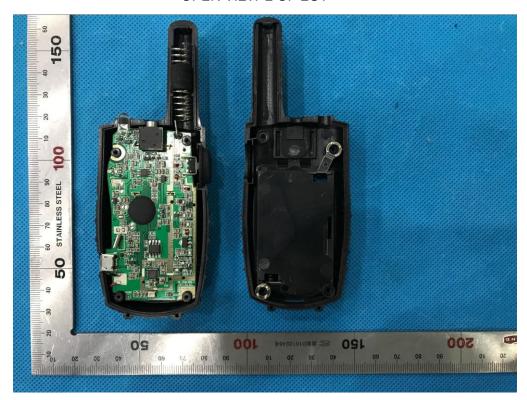
Report No.: AGC07629170501FE10 Page 40 of 43

BACK VIEW OF EUT

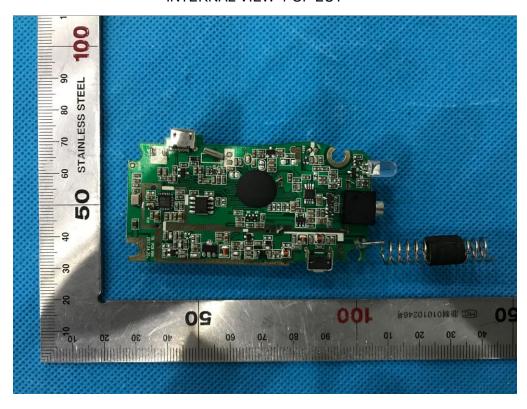
LEFT VIEW OF EUT

Report No.: AGC07629170501FE10 Page 41 of 43

RIGHT VIEW OF EUT

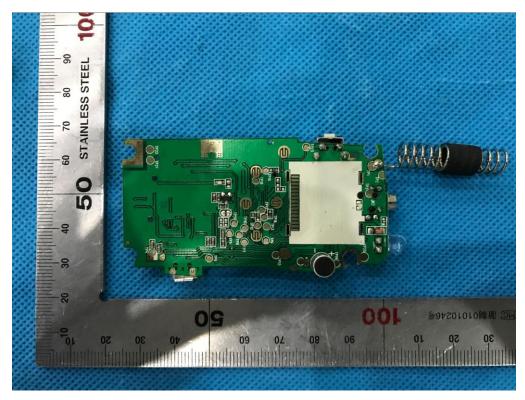


OPEN VIEW-1 OF EUT



Report No.: AGC07629170501FE10 Page 42 of 43

OPEN VIEW-2 OF EUT



INTERNAL VIEW-1 OF EUT

Page 43 of 43

INTERNAL VIEW-2 OF EUT

----END OF REPORT----