User Manual

Version V1.0-20180525

User Manual For David GNSS Receiver

©2018 Tersus GNSS Inc. All rights reserved.

sales@tersus-gnss.com & support@tersus-gnss.com More details, please visit www.tersus-gnss.com

Table of Content

1.		Ove	erview	8
	1.1	Intro	oduction	. 8
	1.2	Rece	eiver Features	. 8
	1.3	Brie	f Introduction of GNSS and RTK	. 9
2.		Dev	rices in David Package	11
	2.1 Ro	ve Ki	t Mobile Mode	12
	2.1.	.1	David Receiver	14
	2.1.	.2	GNSS Antenna	14
	2.1.	.3	The 2pin-USB Power Cable	15
	2.1.	.4	COMM1-bluetooth Module	16
	2.1.	.5	Bracket for Rover	16
	2.1.	.6	GNSS Antenna Connector	17
	2.1.	.7	COMM2-7pin-USB & DB9 Data Cable	17
	2.1.	.8	Other accessories	18
	2.2	Rove	er Kit with 1W Radio Station	20
	2.2.	.1	RS900C 1W/915MHz Radio	22
	2.3	Rove	er Kit with 2W Radio Station	22
	2.3.	.1	RS400L2 2W/460MHz Radio	24
	2.3.	.2	COMM2-7pin-USB & 5pin Cable	26
	2.4	Base	e Kit Mobile Mode	26
	2.4.	.1	Bracket for Base	28
	2.4.	.2	Tape Meter	28
	2.5	Base	E Kit with 1W Radio Station	29
	2.6	Base	e Kit with 2W Radio Station	30
	2.7	Base	e Kit with 30W Radio Station	31
	2.7.	.1	30W Radio	33
	2.7.	.2	Other cables	34
3.		Ger	neral operation	36
	3.1 Install the GNSS antenna			36
	3.2 Po	wer (on David	36

	3.3 Communication between Android phone and David			
	3.3.	1 With Wires	38	
	3.3.	2 With an External Bluetooth	40	
	3.4 FW	/ Upgrade & Auth code	41	
	3.4.	1 Firmware Updates	42	
	3.4.	2 Auth Code	45	
	3.5 Do	wnload Files from Internal eMMC Card	46	
	3.6	Input command directly to the GNSS board	49	
4.		Introduction of Nuwa [®]	51	
5.		Specification	53	
	5.1 Da	vid Receiver	53	
	5.2 AN	ITENNA AX3702 (HG)	56	
	5.3 1V	V Radio RS900C	57	
	5.4 2V	V Radio RS400L2	59	
	5.5 30	W Radio RS400L30	61	
6.		Typical operating	64	
	6.1	David as a Rover to receive corrections from Internet	64	
	6.2	David as a Base to transmit corrections to Internet	67	
	6.3	Radios Transmit RTK Corrections between Two Davids	70	
	6.4	Data Collection for Post Processing	72	
7.		Terminology	75	

List of Figures

Figure 1 Outlook of David GNSS receiver	8
Figure 2 Outline of David System	9
Figure 3 Corrections transmitted via Internet	10
Figure 4 Corrections transmitted with radios	10
Figure 5 David in the box	11
Figure 6 Field photo 1 - 1	12
Figure 7 Field photo 1 - 2	13
Figure 8 David Receiver	14
Figure 9 AX3702 (HG) antenna	15
Figure 10 RF cable	15
Figure 11 2pin-USB Power Cable	
Figure 12 Bluetooth Module	16
Figure 13 Bracket for Rover	
Figure 14 GNSS Antenna Connector	17
Figure 15 COMM2-7pin-USB & DB9 Data Cable	18
Figure 16 USB Type A Male to DB9 Male cable	18
Figure 17 USB Type A Male to USB Type A Male cable	19
Figure 18 USB Type A Female to USB (Micro + Type C) OTG cable	19
Figure 19 Height Measure Accessory	19
Figure 20 Battery Bank	20
Figure 21 Field Photo 2 - 1	20
Figure 22 Field Photo 2-2	21
Figure 23 RS900C 1W Radio Station	
Figure 24 Field Photo 3 - 1	
Figure 25 Field Photo 3 - 2	
Figure 26 2W /460MHz Radio	25
Figure 27 COMM2-7pin-USB & 5pin Cable	26
Figure 28 Field Photo 4	27
Figure 29 Bracket for Base	28
Figure 30 Tape Meter	29
Figure 31 Field Photo 5	29
Figure 32 Field Photo 7 - 1	31
Figure 33 Field Photo 7 - 2	32
Figure 34 30W Radio Station	33
Figure 35 Power cable for 30W radio	34
Figure 36 COMM cable for 30W radio	35
Figure 37 David GNSS receiver installation hook	35
Figure 38 Outline of Android phone to David with Wires	38
Figure 39 Outline of Android phone to David with Bluetooth	40
Figure 40 Outline of David connected to a Computer	41
Figure 41 Download file from eMMC card	46
Figure 42 Booting up page	51
Figure 43 Four Main Windows of Nuwa	52

Figure 44 Panel of David	.54
Figure 45 Pin Definition of the COMM1/COMM2/DC ports	.55
Figure 46 Outline of Android phone to David with Wire	.65
Figure 47 Outline of Android phone to David with Wire	.67
Figure 48 Outline of Base/Rover with Radios	.70
Figure 49 Outline of Static Data Collection	.73

List of Tables

Table 1 The document / software used in this user manual	6
Table 2 Seven David Variants	11
Table 3 Devices in rover mobile mode	13
Table 4 Definition of LEDs	14
Table 5 Functions of COMM2-7pin-USB & DB9 Data Cable	18
Table 6 Rover Kit with 1W Radio Station	21
Table 7 LED Definition	22
Table 8 Rover Kit with 2W Radio Station	24
Table 9 Button Manual	25
Table 10 LED Definition	26
Table 11 Base Kit Mobile Mode	27
Table 12 Base Kit with 1W Radio Station	30
Table 13 Base Kit with 30W Radio Station	32
Table 14 The Definition of the Control Buttons	33
Table 15 Definition of LEDs	34
Table 16 Detailed steps	39
Table 17 Detailed steps	40
Table 18 Preparation for FW update	42
Table 19 Detailed Steps for FW update	43
Table 20 Detailed Steps to download files from eMMC card	46
Table 21 Input commands to the BX306 directly	49
Table 22 David GNSS Performance	53
Table 23 Pin Definition	55
Table 24 Antenna AX3702 (HG)	56
Table 25 Specification for RS900C	57
Table 26 Specification for RS400L2	59
Table 27 RS400L30 Radio Specification	61
Table 28 Detailed steps for rover receive corrections from Internet	65
Table 29 Detailed steps for Base transmit corrections to Internet	68
Table 30 Detailed steps for David with Radios	70
Table 31 Detailed Steps for Static Data Collection	73
Table 32 List of terminology	75

Notices

The following notices apply to DAVID receiver.

Changes or modifications to this equipment not expressly approved by Tersus could void the user's authority to operate this equipment or even has risk to damage the DAVID.

Conventions

The following conventions are used in this manual:

! Information that supplements or clarifies text.

A caution that actions, operation or configuration may lead to incorrect or improper use of the hardware.

A warning that actions, operation or configuration may result in regulatory noncompliance, safety issues or equipment damage.

NUWA is Tersus survey app, four tabs (Project, Device, Survey and Tools) are provided in the Nuwa® main window. So, in chapter 0, all the operations in the Survey software will start from these four tabs.

In all the figures, a line with two arrows at the two sides means it's a cable. A line with one arrow gives the installation direction.

Table 1 The document / software used in this user manual

Name	Description	Link
Log & Command document	Document giving all the loggings output from David and all the commands to David	https://www.tersus-gnss.com/ass ets/upload/file/20180420120508 17.pdf
Tersus GNSS Center	Graphical tool to communicate with David	https://www.tersus-gnss.com/ass ets/upload/file/20180418153351 742.zip
Nuwa	Survey application running in the Android platform, David can be configured with Nuwa.	
Tersus Geomatics Office	Post processing tool for static data	https://www.tersus-gnss.com/ass ets/upload/file/20180418153011 5.rar

Support

If you have a problem and cannot find the information you need in the product documentation, request technical support using the Tersus website at

www.tersus-gnss.com, or mail to support@tersus-gnss.com

1. Overview

1.1 Introduction

Tersus DAVID is a cost-efficient, palm-sized GNSS receiver, mainly for the mass survey market, but also for UAV/AGV/Agriculture application.

Nuwa, a survey App on Android system, is working with David, which can communicate with an Android platform such as a phone or tablet via USB cable or an external Bluetooth module. The David can work as a base or a rover, it can support real-time RTK positioning as well as saving data for PPK application. Up to 4GB on-board EMMC card makes it easy to save data for PPK.

The RS-232 serial port, IP67 standard and the external Bluetooth module can remove most of the inconvenience for field workers. All the operating can be done in the App Nuwa except downloading raw measurement data file, which will be done with Tersus GNSS Center, see Table 1 and section 3.5 Download Files from Internal eMMC Card for detail.

Figure 1 Outlook of David GNSS receiver

1.2 Receiver Features

- Supports GPS L1/L2, BDS B1/B2 and GLONASS G1/G2.
- Support RTCM2.3/3.x, CMR, CMR+ corrections.

- Easy to connect an external powerful radio for longer range.
- Solution rate can be 5Hz.
- 20Hz raw measurements output for post processing.
- The accuracy of carrier phase can be 1mm.
- On-board 4GB eMMC card for data collection
- Static post-processing for mm-level accuracy.
- Bluetooth module makes wireless connection.
- Input power range is 5 12V, connect to battery bank directly.
- IP67 for water & dust proof, work reliably in harsh condition
- The Lemo connectors support mis-installation avoidance.

1.3Brief Introduction of GNSS and RTK

Tersus BX306 GNSS receiver is integrated in David, the board is receiving the GNSS signals from satellites and RTK corrections from the base, and is outputting cm-level position, velocity and time. Figure 2 shows David system; see https://www.tersus-gnss.com/product/bx306-oem-board for more about BX306 receiver.

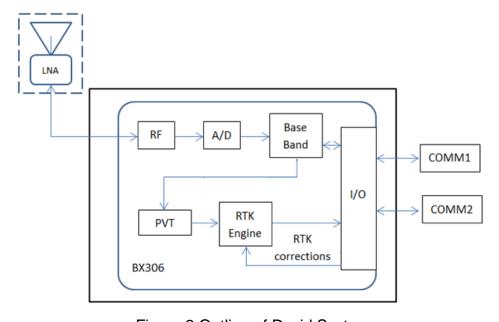


Figure 2 Outline of David System

The RTK corrections are transmitted from a base, which can be a CORS station or a David receiver. The RTK corrections can be transmitted to the rover via Internet or with external radios.

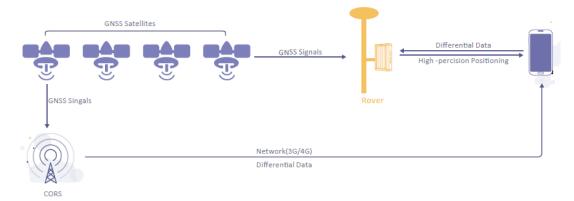


Figure 3 Corrections transmitted via Internet

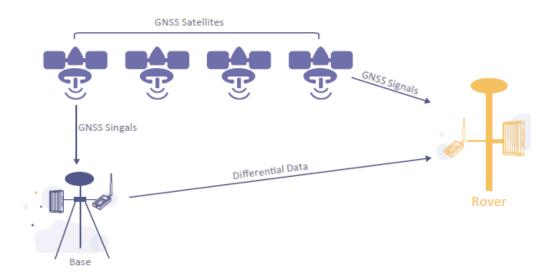


Figure 4 Corrections transmitted with radios

If RTK corrections are transmitted via Internet, an Android phone will be included in the RTK system to transmit/receive the RTK corrections, see section 6.1 and section 6.2 for detailed operating.

2. Devices in David Package

This chapter will give detailed introduction about all the devices in the package.

David has seven variants, which are convenient for customers to select per their application. Different accessories are included in each variant. Table 2 gives a brief description of the seven variants. For more about them, refer to section 2.1 to section 2.7.

All the seven variants are shipped in a plastic box in Figure 5.

Figure 5 David in the box

Table 2 Seven David Variants

David variants	Description		
Rover Kit Mobile	The David receiver will receive RTK corrections from a		
Mode	NTRIP caster or a TCP server.		
Rover Kit with 1W	The David receiver will receive RTK corrections from an		
Radio Station	external 1W 915Mhz radios.		
Rover Kit with 2W	The David receiver will receive RTK corrections from an		
Radio Station	external 2W 460MHz radios.		
Base Kit Mobile	The David receiver will output RTK corrections to a		
Mode	NTRIP caster or a TCP server.		
Base Kit with 1W	The David receiver will output RTK corrections to an		
Radio Station	external 1W 915Mhz radio.		

Base Kit with 2W	The David receiver will output RTK corrections to an
Radio Station	external 2W 460MHz radio.
Base Kit with 30W	The David receiver will output RTK corrections to an
Radio Station	external 30W 460MHz radio.

<u>!</u>	1.	Rover Kit Mobile Mode and Base Kit Mobile Mode can work		
		independently.		
	2.	Rover Kit with 1W Radio Station must work with Base Kit with 1W		
		Radio Station.		
	3.	Rover Kit with 2W Radio Station must work with Base Kit with 2W		
	Radio Station or Base Kit with 30W Radio Station.			

2.1 Rove Kit Mobile Mode

In this variant, the David will be connected to an Android phone with Bluetooth module or with cables. Tersus Survey Nuwa® App will run in the Android phone to receive RTK corrections from a NTRIP caster or a TCP server.

Refer to section 6.1 for detailed operation.

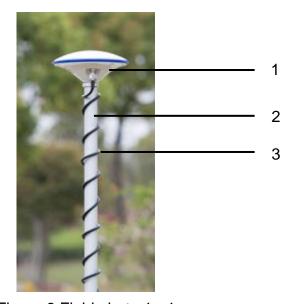


Figure 6 Field photo 1 - 1

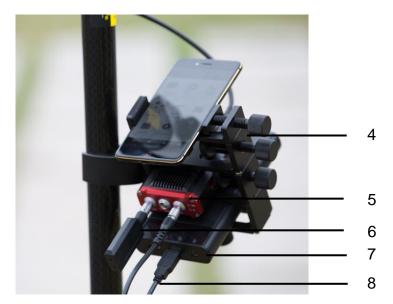


Figure 7 Field photo 1 - 2

Table 3 Devices in rover mobile mode

Table 3 Devices in Tover mobile mode				
Devices	Number	Items in the field photos		
David GNSS receiver	1	5		
GNSS antenna	1	1		
GNSS antenna connector	1	Not in the field photo, refer		
GNOS antenna connector		to section 2.1.6 for detail.		
GNSS antenna cable	1	3		
2pin-USB power cable	1	8		
COMM1-bluetooth module	1	6, refer to 2.1.4		
COMM2 7nin LISB & DB0 Data cable	1	Not in the field photo, refer		
COMM2-7pin-USB & DB9 Data cable		to section 2.1.7		
USB Type A Male to USB Type A	1	Not in the field photo, refer		
Male cable		to Figure 17		
USB Type A Female to USB(Micro +	1	Not in the field photo, refer		
Type C) OTG cable		to Figure 18		
LISB Type A Male to DB0 Male cable	1	Not in the field photo, refer		
USB Type A Male to DB9 Male cable		to Figure 16		
Ranging pole	1	2		
Hoight moasure accessory	1	Not in the field photo, See		
Height measure accessory		Figure 19.		
Bracket for rover	1	4, see section 2.1.5		
Rattory bank	1	7, see Figure 20 and 3.2		
Battery bank		Power on David		

2.1.1 David Receiver

David has four interfaces, see Figure 8 David Receiver.

Figure 8 David Receiver

David's DC is for power input, COMM1 port is for COM1 and CAN ports, and COMM2 port is for COM2 and USB ports, see chapter 5 for detail.

Table 4 Definition of LEDs

LED	Colour	Description	
PWR	RED	ON: the David is power on.	
	GREEN	ON: David in RTK solution.	
PV		Blink: David in Float solution	
		OFF: David in other position types.	

Please see section 3.2 Power on David for more about the booting up procedure.

Refer to Chapter 5 for the specification of David receiver and the detailed definition of COMM1, COMM2 and DC ports.

2.1.2 GNSS Antenna

GNSS antenna is used to receive the RF signal from the satellites. AX3702 (HG) is provided in the package, which must be connected to the David with the RF cable in the package.

Figure 9 AX3702 (HG) antenna

 \triangle

If an antenna from other companies will be used, contact Tersus to get permission, or the David may not work as it's expected.

Figure 10 RF cable

2.1.3 The 2pin-USB Power Cable

The power cable is used to connect a battery bank to the DC port of David.

Figure 11 2pin-USB Power Cable

2.1.4 COMM1-bluetooth Module

This Bluetooth module will use the COM1 port of David.

Figure 12 Bluetooth Module

The Bluetooth can only be installed to the COMM1 port of David.

The SSID for this Bluetooth module is BT420A-xxxxx, where xxxxx is the last 5 digits of the Bluetooth serial number, which is printed on the Bluetooth module. No password is needed to pair with it.

2.1.5 Bracket for Rover

Bracket for rover is used to fix all the devices on the ranging pole, which bring much convenience to field staffs.

Figure 13 Bracket for Rover

2.1.6 GNSS Antenna Connector

The GNSS antenna connector is used to install the GNSS antenna or the 30W radio station antenna to a tripod.

Figure 14 GNSS Antenna Connector

2.1.7 COMM2-7pin-USB & DB9 Data Cable

The COMM2-7pin-USB & DB9 Data Cable has three functions:

Table 5 Functions of COMM2-7pin-USB & DB9 Data Cable

- 1. Connect to an external 1W radio module.
- Connect to USB Type A Male to DB9 Male cable (see Figure 16) to download file saved on the internal eMMC card, refer to section 3.5 Download Files from Internal eMMC Card;
- 3. Connect to USB Type A Male to USB Type A Male cable (see Figure 17) and USB Type A Female to USB (Micro +Type C) OTG cable (see Figure 18) to connect the Android phone with David, refer to section 3.3.1.

Figure 15 COMM2-7pin-USB & DB9 Data Cable

The COMM2-7pin-USB cable can only be installed into the COMM2 port of David.

2.1.8 Other accessories

USB Type A Male to DB9 Male cable, USB Type A Male to USB Type A Male cable, USB Type A Female to USB (Micro + Type C) OTG cable and Height Measure Accessory are included in this variant.

Figure 16 USB Type A Male to DB9 Male cable

The driver for the cable above can be downloaded

https://www.ugreen.com/drivers/list-USB_To_RS232_Driver-en.html

Figure 17 USB Type A Male to USB Type A Male cable

Figure 18 USB Type A Female to USB (Micro + Type C) OTG cable

The height measure accessory is used to determine the height of the antenna with higher accuracy.

Figure 19 Height Measure Accessory

A battery bank is used to power on the David, it's not included in the package, and has to be provided by the customers, see section 3.2 Power on David for

more detail.

Figure 20 Battery Bank

2.2 Rover Kit with 1W Radio Station

In this variant, the David will be connected to an external 1W radio to receive RTK corrections from a base. With an external Bluetooth or with cables, the David will be connected to an Android phone, which is running Tersus Survey Nuwa® to configure the David.

- Rover Kit with 1W Radio Station must work with Base Kit with 1W Radio Station.
 - Pover Kit with 1W Radio Station can support Rover mobile mode.

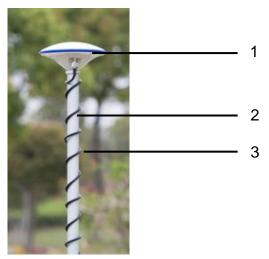


Figure 21 Field Photo 2 - 1

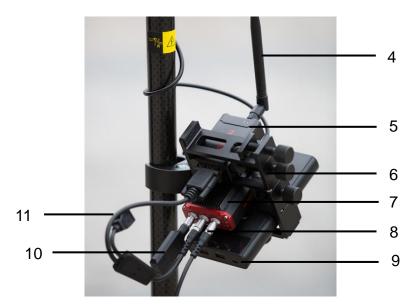


Figure 22 Field Photo 2-2

Table 6 Rover Kit with 1W Radio Station

Devices	Number	Items in the field photos
David GNSS receiver	1	7
GNSS antenna	1	1
GNSS antenna connector	1	Not in the field photo, refer
GNOS antenna connector		to section 2.1.6 for detail.
GNSS antenna cable	1	3
2pin-USB power cable	1	8
COMM1-Bluetooth module	1	10, refer to 2.1.4.
COMM2-7pin-USB & DB9 data cable	1	11, refer to section 2.1.7.
USB Type A Male to USB Type A Male	1	Not in the field photo, refer
cable	'	to Figure 17
USB Type A Female to USB(Micro +	1	Not in the field photo, refer
Type C) OTG cable	'	to Figure 18
USB Type A Male to DB9 Male cable	1	Not in the field photo, refer
OOD Type / Wale to DBS Wale sable	'	to Figure 16
RS900C 1W/915MHz radio	1	5, refer to section 2.2.1.
RS900C radio antenna	1	4
Ranging pole	1	2
Height measure accessory	1	Not in the field photo, See
Treight measure accessory		Figure 19.
Bracket for rover	1	6, see section 2.1.5
Battery bank	1	9, see Figure 20 and 3.2
Dattery Darik		Power on David

2.2.1 RS900C 1W/915MHz Radio

This radio can work at 915MHz frequency only, the output power of this radio is 1W and the typical range is 3km. Refer to chapter 5 for detailed specification.

Figure 23 RS900C 1W Radio Station

Table 7 LED Definition

LED	Description
	When power on, this LED will blink RED once and keep off.
	If data is transmitting, this LED will blink RED.
	If data is receiving, this LED will blink GREEN.

2.3 Rover Kit with 2W Radio Station

In this variant, the David will be connected to an external 2W radio to receive RTK corrections from a base. With an external Bluetooth or with cables, the David will be connected to an Android phone, which is running Tersus Survey Nuwa[®] to configure the David.

<u>!</u>	Rover Kit with 2W Radio Station can work with Base Kit with 2W Radio
	Station or Base Kit with 30W Radio Station.

Prover Kit with 2W Radio Station can support Rover mobile mode.

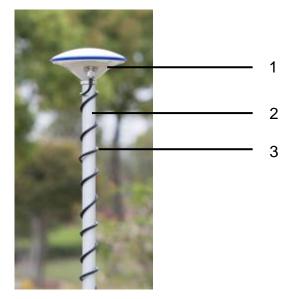


Figure 24 Field Photo 3 - 1

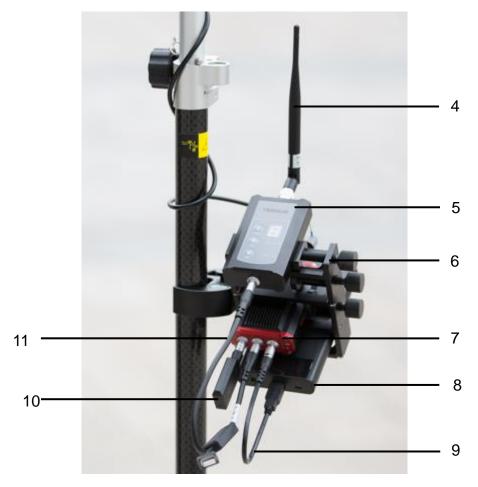


Figure 25 Field Photo 3 - 2

Table 8 Rover Kit with 2W Radio Station

David variants	Number	Items in field photos
David GNSS receiver	1	7
GNSS antenna	1	1
	1	Not in the field photo,
GNSS antenna connector		refer to section 2.1.6 for
		detail.
GNSS antenna cable	1	3
2 Pin-USB power cable	1	9
COMM1-bluetooth module	1	10, refer to 2.1.4
COMM2-7pin-USB & DB9 Data	1	Not in the field photo,
cable		refer to section 2.1.7.
USB Type A Male to USB Type	1	Not in the field photo,
A Male cable	ı	refer to Figure 17
USB Type A Female to		Not in the field photo,
USB(Micro + Type C) OTG	1	refer to Figure 18
cable		
USB Type A Male to DB9 Male	1	Not in the field photo,
cable	'	refer to Figure 16
COMM2-7pin-USB & 5pin cable		11, refer to 2.3.2
(0.35m)		
RS400L2 2W/460MHz radio	1	5, refer to 2.3.1
2W/460MHz radio antenna	1	4
Ranging pole	1	2
Hoight moasure accessory	1	Not in the field photo, See
Height measure accessory		Figure 19.
Bracket for rover	1	6, see section 2.1.5
Pattory bank	1	8, see Figure 20 and 3.2
Battery bank		Power on David

2.3.1 RS400L2 2W/460MHz Radio

This radio can work at 460MHz frequency, the max. output power of this radio is 2W and the typical range is 5km. Refer to chapter 5 for detail specification.

Figure 26 2W /460MHz Radio

Table 9 Button Manual

Button	Description
Channel Button	Press once, the current channel will be shown. Press again, the current channel will increase 1, 0~ 9 channels are for use.
Power Button	Press once to select the output power, which can be 1W or 2W.
Protocol Button	Protocol button is pressed to switch the protocol between TP (Transparent EOT protocol) , TT (TT450S protocol) and TS (Tersus protocol)

I Two 2W radios must have the same protocol and the same channel frequency before they can communicate each other.

Table 10 LED Definition

LED	Description
H/L	RED: 2W output is selected,
II/L	GREEN: 1W output is selected.
T/R	Blink RED: data is transmitting.
1/K	Blink GREEN: data is receiving.
	BLUE: Transparent protocol is selected.
TP/TT/TS	RED: TT450S protocol is selected.
	BLUE&RED: Tersus protocol is selected.
ON	Is solid on after the power is on.

2.3.2 COMM2-7pin-USB & 5pin Cable

The COMM2-7pin-USB & 5pin Cable is used to connect the David to the 2W radio station & an Android phone, or connect the David to the 30W radio station & an Android phone. The cable's length can be 0.35m or 1m in different variants.

Figure 27 COMM2-7pin-USB & 5pin Cable

COMM2-7pin-USB & 5pin Cable can only be installed into the COMM2 port of David.

2.4 Base Kit Mobile Mode

In this variant, the David, working as a base, will transmit RTK corrections to a NTRIP caster or a TCP sever.

The David will be connected to an Android phone with an external Bluetooth or with cables. Tersus Survey Nuwa[®] is running in the Android phone to configure the David.

Base Kit Mobile Mode can work independently or work with Rover Kit Mobile Mode.

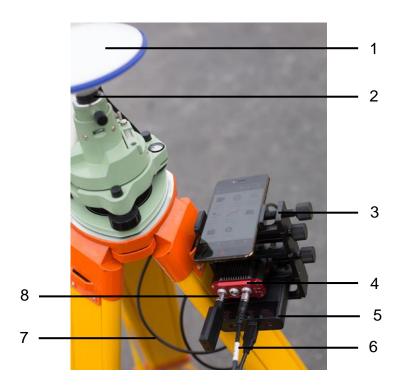


Figure 28 Field Photo 4

! The tripod, the battery bank and the tribrach are not included in the package.

Table 11 Base Kit Mobile Mode

Devices	Number	Items in field photo
David GNSS receiver	1	4
GNSS antenna	1	1
GNSS antenna connector	1	2
GNSS antenna cable	1	7
2 Pin-USB power cable	1	6
COMM1-bluetooth module	1	8, refer to 2.1.4
COMM2-7pin-USB & DB9 Data	1	Not in the field photo, refer
cable		to section 2.1.7.
USB Type A Male to USB Type A	1	Not in the field photo, refer
Male cable	_	to Figure 17
USB Type A Female to USB(Micro +	1	Not in the field photo, refer
Type C) OTG cable	-	to Figure 18
LISP Type A Male to DR0 Male cable	1	Not in the field photo, refer
USB Type A Male to DB9 Male cable		to Figure 16

Tape meter	1	See Figure 30
Hoight manaura agaggary	1	Not in the field photo, See
Height measure accessory		Figure 19.
Bracket for base	1	3, see Figure 29
Pottony bonk	1	5, see Figure 20 and 3.2
Battery bank		Power on David

2.4.1 Bracket for Base

This bracket is hooked on the tripod and all the devices in the field (an Android phone, a radio, a David and a battery bank) can be installed on it, which brings much convenience for field job.

Figure 29 Bracket for Base

2.4.2 Tape Meter

Working with height measure accessory, the tape meter can give position of a point on ground with mm-level accuracy.

Figure 30 Tape Meter

2.5 Base Kit with 1W Radio Station

In this variant, the David, working as a base, will transmit RTK corrections to an external 1W radio.

The David will be connected to an Android phone with cables or with the Bluetooth module. Tersus Survey Nuwa® is running in the Android phone to configure the David.

- Base Kit with 1W Radio Station can work with Rover Kit with 1W Radio Station only.
- Base Kit with 1W Radio Station can support Base mobile mode.

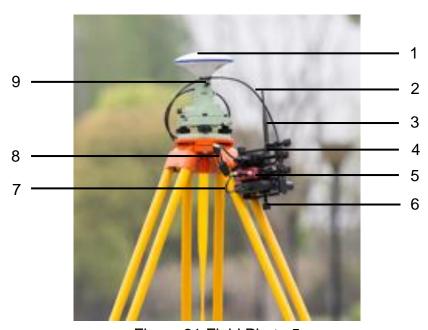


Figure 31 Field Photo 5

! The tripod, the tribrach and the battery bank are not included in the package.

Table 12 Base Kit with 1W Radio Station

Devices	Number	Items in field photo
David GNSS receiver	1	5
GNSS antenna	1	1
GNSS antenna connector	1	9
GNSS antenna cable	1	2
2 Pin-USB power cable	1	7
COMM1-bluetooth module	1	Not in the field photo, refer to 2.1.4
COMM2-7pin-USB & DB9 Data Cable	1	8
USB Type A Male to USB Type A Male cable	1	Not in the field photo, refer to Figure 17
USB Type A Female to USB(Micro + Type C) OTG cable	1	Not in the field photo, refer to Figure 18
USB Type A Male to DB9 Male cable	1	Not in the field photo, refer to Figure 16
RS900C 1W/915MHz radio	1	4
1W/915MHz radio antenna	1	3
Tape meter	1	See Figure 30 Tape Meter
Height measure accessory	1	Not in the field photo, See Figure 19.
Bracket for base	1	6
Battery bank	1	see Figure 20 and 3.2 Power on David

2.6 Base Kit with 2W Radio Station

TBD

2.7 Base Kit with 30W Radio Station

In this variant, the David, working as a base, will transmit RTK corrections to an external 30W radio.

The David will be connected to an Android phone with cables or with the Bluetooth module. Tersus Survey Nuwa[®] is running in the Android phone to configure the David.

- Base Kit with 30W Radio Station can work with Rover Kit with 2W Radio Station only.
- Base Kit with 30W Radio Station can support Base mobile mode.

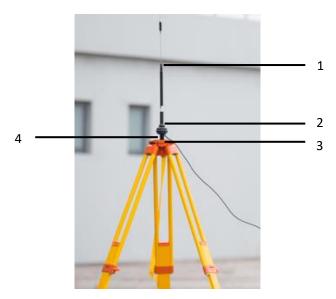


Figure 32 Field Photo 7 - 1

Figure 33 Field Photo 7 - 2

! The two tripods and the tribrach in Figure 32 and Figure 33 are not included in the package.

Table 13 Base Kit with 30W Radio Station

Devices	Number	Items in field photos
David GNSS receiver	1	12
GNSS antenna	1	5
GNSS antenna cable	1	7
GNSS antenna connector	2	4
COMM1-bluetooth module	1	Not in the field photo, refer to 2.1.4
COMM2-7pin-USB & DB9 Data Cable	1	Not in the field photo, refer to section 2.1.7.
USB Type A Male to USB Type A Male cable	1	Not in the field photo, refer to Figure 17.
USB Type A Female to USB(Micro + Type C) OTG cable	1	Not in the field photo, refer to Figure 18
USB Type A Male to DB9 Male cable	1	Not in the field photo, refer to Figure 16.
COMM2-7pin-USB & 5pin Cable (1m)	1	10, refer to Figure 27.
Power cable for 30W radio	1	9, refer to Figure 35
COMM cable for 30W radio	1	11, refer to Figure 36
RS400L30 30W radio	1	8
30W radio antenna	1	1, see Figure 34

Metal plate for radio antenna	1	3
Telescopic pole for radio antenna	1	2
	1	Not in the field photo,
Tape meter		See Figure 30 Tape
		Meter
Height measure accessory	1	Not in the field photo,
Height measure accessory		See Figure 19.
David GNSS receiver installation hook	1	13, see Figure 37
2nin LISP Rower Coble	1	Not in the field photo,
2pin-USB Power Cable		see Figure 11

2.7.1 30W Radio

The 30W radio is used when a longer baseline is required. The typical range is 15km, see chapter 5 for detail specification.

Figure 34 30W Radio Station

Table 14 and Table 15 give the definition of the control buttons and the LED, respectively.

Table 14 The Definition of the Control Buttons

Buttons	Function	
ON/OFF	Press 3s to power on or power off the radio station.	
ARROW UP/DOWN	To select the channel	
RF PWR	Press 3s to select the RF output power	

Table 15 Definition of LEDs

LEDs	Description		
	RED: the input voltage is normal.		
ON/OFF	Blink RED: the input voltage is out of the		
	limits.		
TX/RX	Blink RED: the radio is transmitting.		
IA/NA	Blink GREEN if the radio is receiving.		
Channel	Show the current channel		
BAT CAP	Show the battery left.		
	Show the current RF output power:		
	OFF: 30W		
RF PWR	BLUE: 20W		
	RED: 10W		
	RED+BLUE: 5W		

2.7.2 Other cables

Figure 35 Power cable for 30W radio

Figure 36 COMM cable for 30W radio

Figure 37 David GNSS receiver installation hook

3. General operation

The general operation of David is related to the Tersus Survey Nuwa® software, which will be introduced in the software manual. This chapter only describes how to do the hardware connection.

- To make David work, the customer must provide qualified power to David (refer to chapter 5 for requirement), power to the 30W radio (if 30W radio is used, refer to chapter 5 for detail) and an Android phone to run Tersus Survey Nuwa® software.
- David may be damaged if devices from other companies are used to replace the ones in the package. And the warranty may be void if that happen.

3.1 Install the GNSS antenna

Connect the antenna to David with the RF cable. Please ensure the connectivity is reliable.

! The ideal place for a GNSS antenna is a point without GNSS signals blockage from horizon to horizon and is far away from any potential interfering source.

3.2 Power on David

The input voltage to David is 5 - 12 VDC.

It's highly recommended to power on David with an USB port (5VDC and 2A or more current output) from a battery bank with the power cable in the package, or the David may not boot up successfully.

After power on, the PV LED will be ON for 3 to 5 seconds, then it will be OFF, which means the David is booting up successfully. If the PV LED is NOT acting as the above, it means the David is NOT booting up successfully.

If other power than a battery bank is used to power on David, the customer has to make a power cable themselves and take all the risks involved.

The working time of David depends on the capacity of the battery bank.

The following formula can be used to estimate the operating time (assume the output voltage is 5V):

If no radio or an external 30W radio is connected to the David:

Time (hour) = capacity (mA.Hour) *5 / (1000 * 3.2)

If 1W radio is connected to the David:

Time (hour) = capacity (mA.Hour) *5 / (1000 * (3.0+3.2))

If 2W radio is connected to the David:

Time (hour) = capacity (mA.Hour) *5 / (1000 * (6.5+3.2))

- 1) It's highly recommended the capacity of the battery bank is 10,000mA.H or more.
 - 2) The working time above are only theoretical values at 25C temperature. But according to our experience, the real working time may be 2/3 of even less of above values.

3.3 Communication between Android phone and David

David can communicate with an Android phone with wires or with Bluetooth.

3.3.1 With Wires

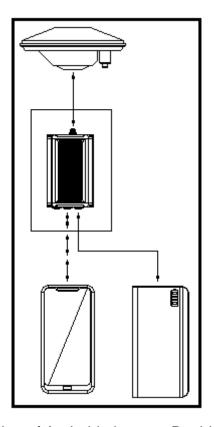
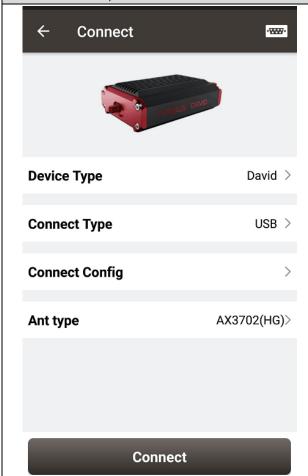



Figure 38 Outline of Android phone to David with Wires

- ! Three cables are used to connect the COMM2 port of David to the USB port of the Android phone. They are:
 - COMM2-7pin-USB & DB9 Data Cable or COMM2-7pin-USB & 5pin cable.
 - USB Type A Male to USB Type A Male cable
 - USB Type A Female to USB (Micro + Type C) OTG cable
- ! The Android phone will NOT be charged when it's connected to David with wires.

Table 16 Detailed steps

- 1. Connect the David's COMM2 port to the USB port of the Android phone with cables.
- 2. Connect the antenna to David with the RF cable (optional).
- 3. Power on the David with a battery bank.
- 4. Run Nuwa, Device -> Device Connect

- 5. Connect Type "USB"
- 6. Press Connect Config to update accordingly.
- 7. Press Connect to enable the communication with the David.

3.3.2 With an External Bluetooth

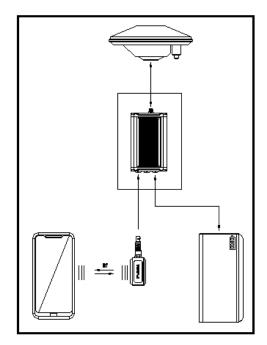
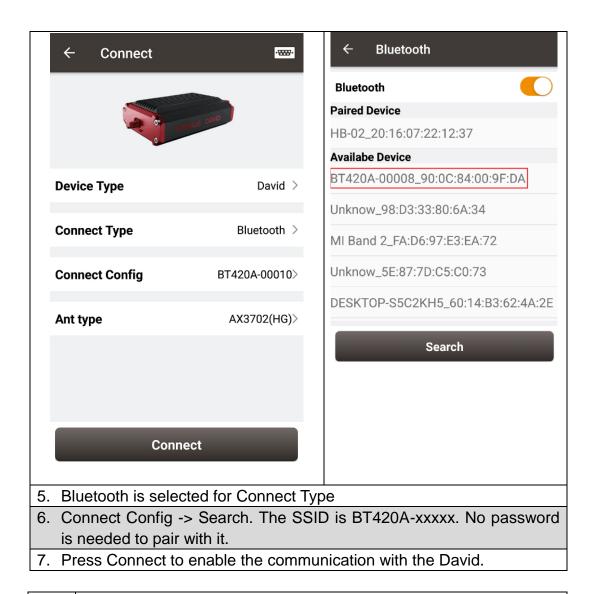



Figure 39 Outline of Android phone to David with Bluetooth

! All the seven variants can support connection with Bluetooth as well as with cables.

Table 17 Detailed steps

- 1. Install the Bluetooth module to the David's COMM1 port.
- 2. Connect the antenna to David with the RF cable (optional).
- 3. Power on the David with a battery bank.
- 4. Run Nuwa, Device -> Device Connect

You can remove a Bluetooth device from the Available Device list by pressing it for several seconds.

3.4 FW Upgrade & Auth code

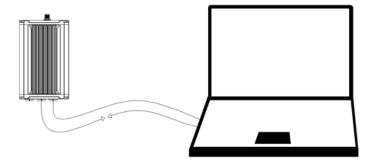
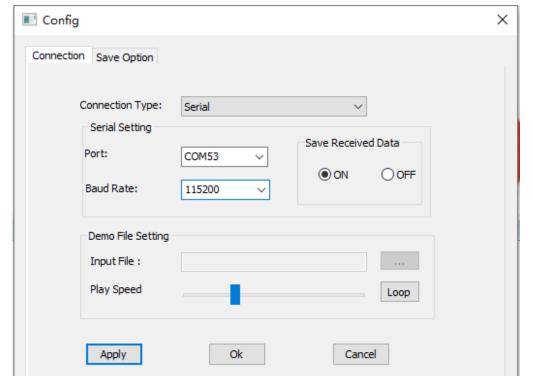



Figure 40 Outline of David connected to a Computer

Table 18 Preparation for FW update

Hardware Installation

- 1. Install the USB Type A Male to DB9 Male cable to a computer's USB port. The cable will be mapped to a serial port, check the port number in the Device Manager of the computer.
- 2. Install the COMM2-USB + DB9 cable to the COMM2 port of the David.
- 3. Connect the two cables together.
- 4. Power on the David with the computer's USB port or with an external battery bank.
- 5. Run Tersus GNSS Center, fill the parameters in the Config page, press OK to communicate with the David.

The default baud rate for the serial port is 115200, which will change to 921600 temporarily during FW updates by Tersus GNSS Center, see section 3.4.1 Firmware Updates for detail.

3.4.1 Firmware Updates

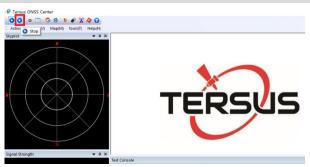
If a new firmware update is released, it will be available on the Tersus web site https://www.tersus-gnss.com/software, or you can get the updates from Tersus support.

The FW version of David receiver can be updated in field. Connect the David with Tersus GNSS Center, and input 'LOG VERSION', the following information will be output:

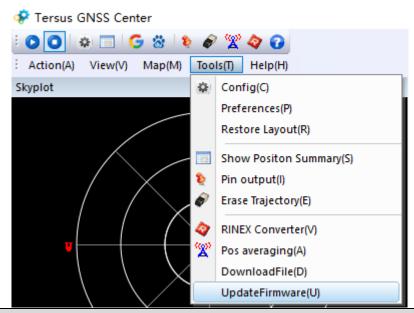
VERSION COM2 0 0.0 UNKNOWN -1 0.000 00000000 0 20161214

- < 1
- < BX306 G2SB2G2 008001174910000171 0021 20161123 3.0 Apr 24 2018 12:23:48

0021 is the FW version. See 'VERSION' in Tersus GNSS Log & Command Reference document for more detail about this log.

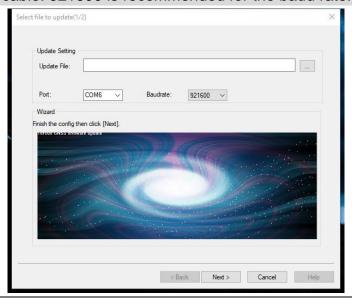

Table 19 Detailed Steps for FW update

Hardware Installation Follow Figure 40 and the

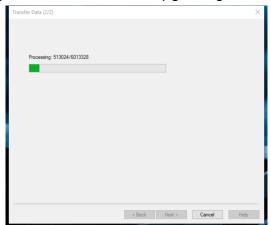

Follow Figure 40 and the detailed steps in Table 18 to create communication between a David receiver and Tersus GNSS Center.

Software Configure

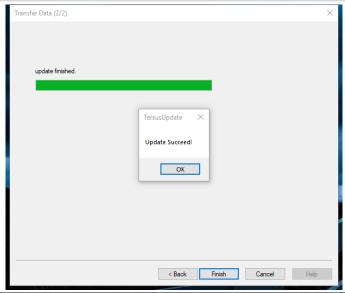
1. Press Stop button to stop the communication between the computer and the receiver.



2. Select Tools -> UpdateFirmware



3. Select the upgrade file, when a file is selected, the file will be shown in the


Update File bar. PORT is the PC's serial port for the USB Type A Male to DB9 Male cable. 921600 is recommended for the baud rate. Press Next

4. The following figure shows the FW is upgrading

5. After the FW is upgraded successfully, The following show

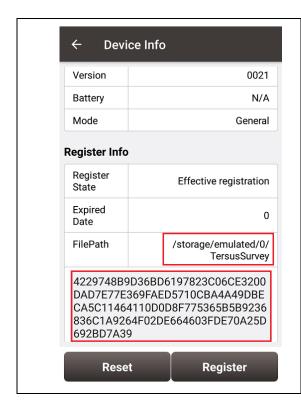
6. Press OK and Finish buttons to close the FW update window. Power cycle

the receiver.

7. After the board is booted, the FW version can be confirmed by connecting to the receiver and input 'LOG VERSION' and check the FW version.

After the FW is updated successfully, the David receiver must be power off for 5 seconds and power on again, or the David will not work.

3.4.2 Auth Code


An auth code is used to determine the features and valid time for a David receiver. If the auth code is expired, the receiver will not work. And a license requirement is output from all the ports.

Before you contact Tersus for new auth code, please:

- 1) Follow Figure 40 and the detailed steps in Table 18 to create communication between a David receiver and Tersus GNSS Center.
- 2) Input:

LOG VERSION //get the version info LOG AUTHLIST //get the auth list info

to the David receiver, and send all the output info to Tersus support. If the auth code application is approved by Tersus, you will get a reg.txt file, in which AUTHCODE command with the code will be given, copy all of them and input them to the David receiver in the console window of Tersus GNSS Center, or

- Connect the David with Nuwa App, go to Device -> Device Info, the right window will be shown
- 4) Confirm the reg.txt file is copied to the FilePath.
- 5) The auth code will be given in the window below, press Register to input the new auth code.

3.5 Download Files from Internal eMMC Card

The files saved on David's internal eMMC card can be copied to the computer via a serial port.

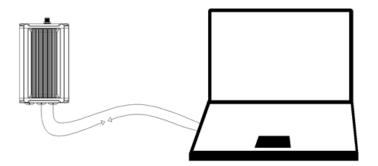
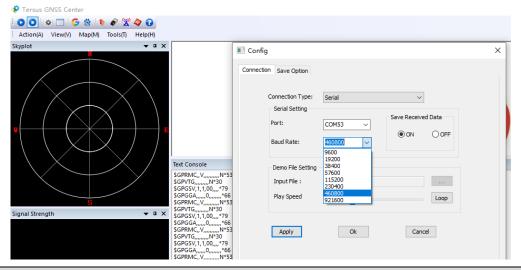


Figure 41 Download file from eMMC card

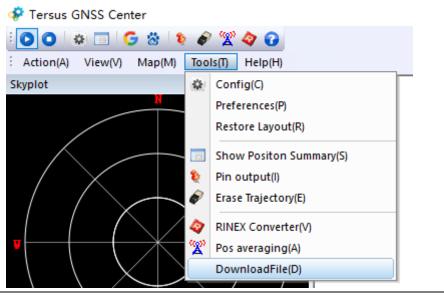

Table 20 Detailed Steps to download files from eMMC card

Hardware Installation

1. Follow Figure 40 and steps 1-5 in Table 18 to create communication between a David receiver and Tersus GNSS Center.

Software Configure

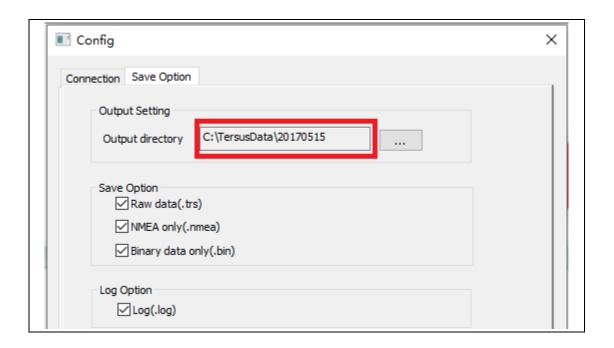
- Communicate the receiver with Tersus GNSS Center, input:
 COM COM2 460800 // Configure baud rate of COM2 to 460800
- 3. Stop communicate with the David, re-communicate with it with 460800


4. Input LOGFILE CLOSE

//close data collection

5. Input UNLOGALL loggings


//Stop outputting all the


6. Press Tools -> Downloadfile

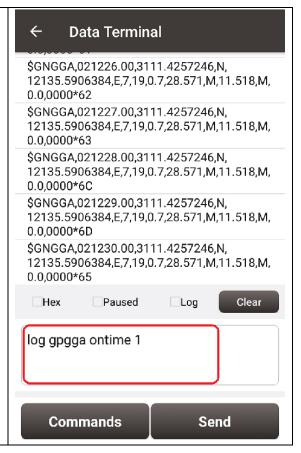
7. All the files on the eMMC card will be shown; the files can be deleted in this page.

Select the file to be downloaded, press Download button, the following window will be shown.

! The downloading rate is about 2M/min, the downloading time can be estimated based on it.

3.6 Input command directly to the GNSS board

Users can input commands to the BX306 board inside the David directly, the steps are given in Table 21.


Table 21 Input commands to the BX306 directly

Hardware Installation

Follow section 3.3.1 and section 3.3.2 to connect the Android phone to the David.

Software Configure

- Run Nuwa and go to Device -> Data Terminal
- The page at the right will be shown; users can input all the commands in the Log & Command document in the window.
- 3) Then press Send button, the command will be input to the BX306 board.

4. Introduction of Nuwa®

Nuwa® is the Tersus survey app, which is running in the Android phone. All the configure commands for the David are input with Nuwa®, and all the operation of David are done with Nuwa®. Four tabs menus are provided in the main window. They are Project, Device, Survey and Tools. See the Nuwa® user manual for detail.

Figure 42 Booting up page

! Tersus Survey Nuwa[®] is supporting Android system; no IOS version is available now.

The minimal requirements for Android phone:

- 1) The phone must support OTG, otherwise, it can't be connected to David with cables, but only with Bluetooth.
- 2) The Android system is 6.0 or later version.
- There are lots of Android versions in market, so an Android phone meeting the minimal requirements above may still have problems to run Nuwa.
 - 2) Nuwa is tested with: Huawei Mate 7/Honor 7, Oppo A57, Vivo X9 and Samsung S8.
 - 3) It's highly recommended that an Android phone with better hardware performance than those above is used to run Nuwa.

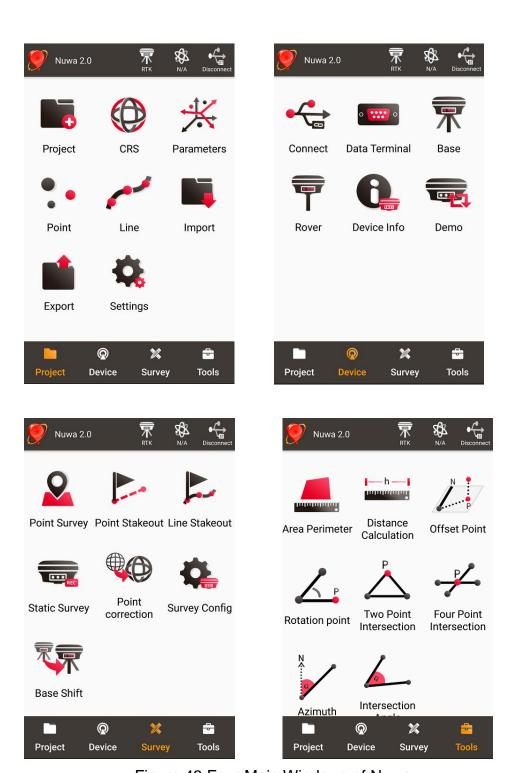
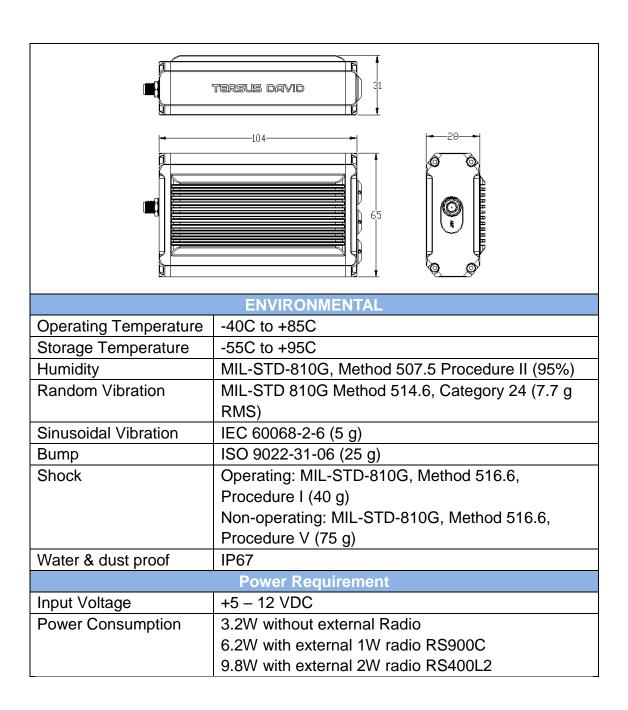


Figure 43 Four Main Windows of Nuwa


APPENDIX A

5. Specification

5.1 David Receiver

Table 22 David GNSS Performance

Table 22 David GIVOOT G	GNSS Performance	
Position Assurage	Single positioning	1.5m RMS (Horizontal)
		3.0m RMC (Vertical)
	RTK Positioning	10mm+1ppm (Horizontal)
Position Accuracy		15mm+1ppm (Vertical)
	Ctatic post processing	3mm+0.5ppm (Horizontal)
	Static post processing	5mm+0.5ppm (Vertical)
Time to First Fix	Cold Start: <50s	
THITIE TO THIST TIX	Warm Start: <30s	
Reacquisition	0.5 s L1 (typical)	
reacquisition	1.0 s L2 (typical)	
Data Rate	Measurements	20Hz
Data Nate	Position	5Hz
Time Accuracy	20ns RMS	
Velocity Accuracy	0.03m/s RMS	
	C/A Code	10cm
Measurement Precision	P Code(zenith direction)	10cm
Weasurement Precision	Carrier Phase(zenith	1mm
	direction)	
Physical Description		
Size	104*65*31 mm ³ (David only)	
Weight	250g (David only)	
Mechanical Drawing		

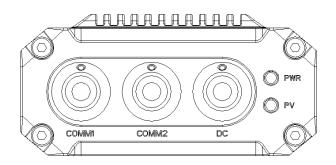


Figure 44 Panel of David

Table 23 Pin Definition

Connector Pin No.	COMM1 LVTTL	COMM2 RS-232	DC
1	PWR	PWR	PWR
2	GND	GND	GND
3	TXD1	TXD2	
4	RXD1	RXD2	
5	GND	GND	
6	CAN_H/PPS ¹	USB D+	
7	CAN_L/EVENT ¹	USB D-	

Note 1: The default configure for pin6 and pin7 in COMM1 port are CAN_H and CAN_L. The two signals are multiplexed with PPS and EVENT. This feature is related to FW release, contact support@tersus-gnss.com for confirmation.

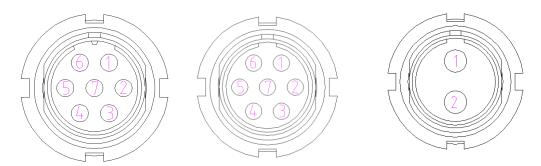
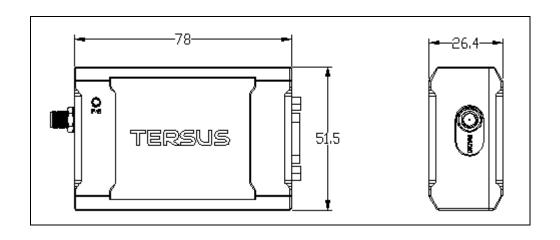


Figure 45 Pin Definition of the COMM1/COMM2/DC ports

5.2 ANTENNA AX3702 (HG)


Table 24 Antenna AX3702 (HG)

24 Antenna AX3702 (HG	,
Ante	enna Specification
Tracking signals	GPS L1/L2/L5; BDS B1/B2/B3;
	GLONASS L1/L2
Impedance	50 Ohm
Polarization	RHCP
Axial Ratio	≤ 3dB
Azimuth Coverage	360°
Output VSWR	≤ 2.0
Peak Gain	5.5dBi
Phase Center Error	± 2mm
LN	NA Specification
LNA Gain	40±2dB
Noise Figure	≤ 2.0dB
VSWR	≤ 2.0
Input Voltage	3.3~12V DC
Operating Current	≤ 45mA
Ripple	± 2dB
Differential	≤ 5ns
transmission delay	≥ 5HS
Phy	sical Description
Dimension	Ф150*63.7mm
Signal Connector	TNC Female
Installation connector	5/8" x 11
	Environment
Operating temperature	-40C - +85C
Storage temperature	-55C - +85C
Damp	45% - 95%
Me	chanical Drawing
	150
*	
	11 2
- 15	
	5,0
% /	

5.3 1W Radio RS900C

Table 25 Specification for RS900C

General Spe		
Working Frequency	915MHz	
Data level	RS-232	
Serial port baud rate	115200	
Data interface	DB-9 male	
Size	78 * 51.5 * 26.4 mm ³	
Operating Temperature	-40 - +85℃	
Antenna impedance	50Ω	
Input voltage	DC 5V – 12V	
Power consumption	3.0W (transmitting)	
Fower consumption	180mW (receiving)	
Receiver Specification		
Sensitivity	-123dBm (20kbps)	
Spurious response immunity	≥ 65dB	
Intermodulation immunity	≥ 60dB	
Stand by current	≤ 65mA	
saturation	≥ 90dB	
Distortion	≤ 5%	
Error rate	≤ 0.001%	
Transmission :	specification	
Modulation	QPSK/BPSK	
Transmission power	>1000mW	
Modulation distortion	≤ 3%	
Maximum frequency deviation	≤ 5KHz	
Transmission current	≤ 1000mA/DC 5V	
Carrier frequency tolerance	≤ 5*10-6	
Spurious frequency components	≤ -65dB	
Sleep current	≤ 5uA	
Working range	>2km (@1Mbps)	
	>5Km (@20Kbps)	
Mechanica	Drawing	

5.4 2W Radio RS400L2

Table 26 Specification for RS400L2

Communication Interface			
	9 6khps in the air		
Interface	Lemo connector, RS-232, baud rate 38400		
	Voltage and P		
Input voltage	DC 5 – 12V		
Power	6.5W (DC 12V, transmitting power 2W)		
consumption in	4W (DC 12V, transmitting power 1W)		
transmitting			
Power			
consumption in	<400mW (DC 5V)		
receiving			
	External Ante	enna	
Impedance	50 Ohm		
VSMR	≤ 1.5		
Interface	MCX female		
Modulation & Demodulation			
Modulation	GMSK		
Data rate in air	9600bps@25KHz		
RF sensitivity	Better than 13dB@-119dBm		
Code sensitivity	-116 dBm BER 10E-5@9600bps		
Protocol Transparent EOT, TT450S and Tersus			
	RF Specifica		
Frequency range	10MHz (457MH:	z – 467MHz)	
Channel width	25KHz		
Frequency	±1.5 ppm(25C)		
stability			
Channel number	10 configurable	channels	
Adjacent channel selectivity	≥ 60dB		
	High power		
Transmission	(2W)	33.5 ± 0.5dBm@DC5.5V	
power	Low power		
	(1W)	30.0 ± 0.5dBm@DC5.5V	
	(100)		
Environment			
Temperature	-30C - +60C (op		
Tomporataro	-40C - +85C (storage)		
Mechanical Mechanical			
Size	107 * 62 * 26.6		

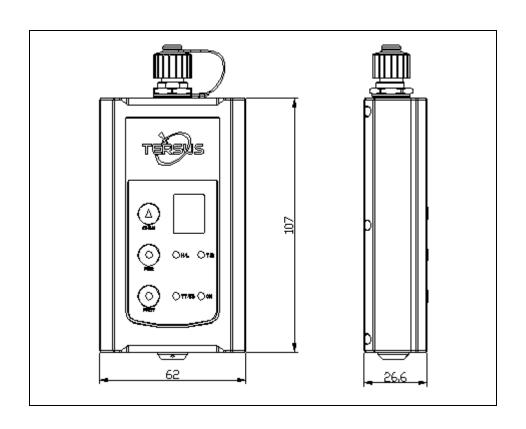
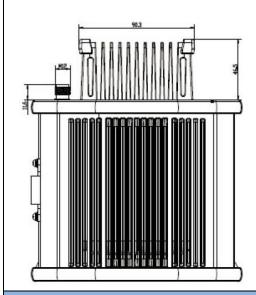
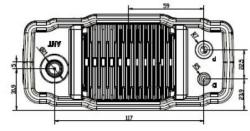



Table 27 RS400L30 Radio Specification


able 27 RS400L30 Radio S	specification		
C	ommunication Interf	ace	
DTE-DCE Interface	9.6kbps in the air		
	Serial port: RS-232, Band rate 38400		
	Interaction		
	High (about 30W)	PWR LED: OFF	
Power level	2 nd high (about 20W)	PWR LED: BLUE	
	Middle (about 10W)	PWR LED: RED	
	Low (about 5W)	PWR LED: RED&BLUE blink	
Charging Alarm	DC 11.60 ± 0.2V		
	B4 DC 13.00 ± 0.2V		
Dettem: Meniter	B3	DC 12.50 ± 0.2V	
Battery Monitor	B2	DC 12.00 ± 0.2V	
	B1	DC 11.60 ± 0.2V	
	Power In/Out		
Input voltage	DC 1	0.5 – 15.0V	
Power in transmitting (typical)	85W (DC 12.8V, 30W output) 65W (DC 12.8V, 20W output) 46W (DC 12.8V, 10W output)		
Transmitting probibition	33W (DC 12.8V, 5W output)		
Transmitting prohibition voltage	DC 11.40 ± 0.2V (default) DC 10.50 – 11.5V (configure range)		
Power in receiving (typical)	<3W (Input voltage DC 12.8V)		
	Antenna		
Input Impedance	50 Ohm		
VSWR	≤ 1.5		
Interface	TNC female		
M	odulation/Demodula	tion	
Modulation	GMSK		
Data rate in air	9600bps@25KHz		
RF sensitivity	Better than 13dB@-119dBm		
Decode sensitivity	-116 dBm BER 10E-5@9600bps		
Protocol	Transparent EOT, SOUTH		
Radio			
Frequency range	457 – 467MHz		
Channel width	25KHz		
Stability	±1.5ppm (25C)		
			

Channel number Adjacent channel	116 (channel 00 – 15 are configurable, channel 16 – 116 are fixed)		
selectivity	≥60dB		
Environment			
Temperature	Operating	-30 – +60C	
	Storage	-40 – 85C	
Dust proof and	IP68		
waterproof			
	Physical Description	on	
Size	165 * 74 * 185.5 mm ³ with plastic protector		
Weight	About 1.75Kg		
Data port	LEMO EGA.0B.305		
Power input port	LEMO EGG.1B.302		
Installation	Hook		
	Mechanical Drawir	ng	

Mechanical Drawing

Signal definition

Data Port

Pin 1: GND

Pin 2: GND

Pin 3: Output power (3A, same voltage as the input)

Pin 4: RXD Pin 5: TXD Power input port

Pin 1: GND
Pin2: PWR input

6. Typical operating

- The LEMO connectors in the David system support mis-installation avoidance. But it's highly recommended to double check the module/cable before they are installed to the correct ports.
- Mis-installation with force can damage the David.
- ! The following may be used for David system:
 - A battery bank for David
 - An Android phone
 - An external large capacity power if a base kit with 30W or with 2W radio station is used.
 - A tripod (optional).
 - A tribrach (optional)

It's highly recommended that a David base variant is installed on a tripod.

6.1 David as a Rover to receive corrections from Internet

! From section 6.1 to section 6.4, David and Android phone are connected with cables; refer to section 3.3.2 for the connection with Bluetooth.

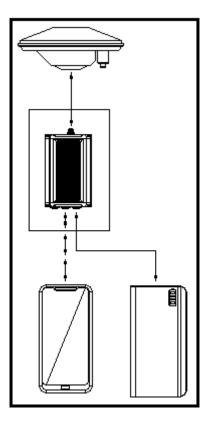
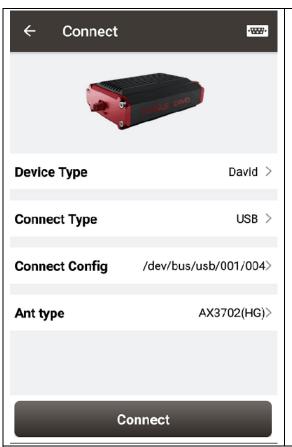


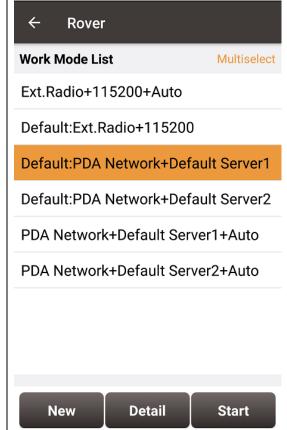
Figure 46 Outline of Android phone to David with Wire

- ! Three cables are used to connect the COMM2 port of David to the USB port of the Android phone. They are:
 - COMM2-7pin-USB & DB9 Data Cable or COMM2-7pin-USB & 5pin cable.
 - USB Type A Male to USB Type A Male cable
 - USB Type A Female to USB (Micro + Type C) OTG cable

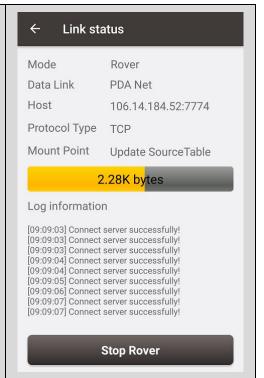

Table 28 Detailed steps for rover receive corrections from Internet

Hardware Installation

- 1. Install the GNSS antenna on a tripod or on a ranging pole at a point interested.
- 2. Connect the antenna to David with the RF cable.
- 3. Connect the David's COMM2 port to the USB port of the Android phone with cables.
- 4. Power on the David with a battery bank.


Software Configure

5. Run Nuwa, Device -> Device Connect


- 6. Connect Type "USB"
- 7. Press Connect Config to update accordingly.
- 8. Press Connect to enable the communication with the David.

9. Go back to: Device -> Rover Station

- Select PDA Network+Default Server1, then press Detail to configure the parameters about the Network.
- 11. Select Network for Data Link
- If Ntrip is selected for Protocol type, please input: IP, Port, Username, Password and Mount Point.
- 13. If TCP is selected for Protocol type, please input: IP and Port.
- 14. Go back to the Rover Station page and press "Start".
- 15. If all the configure above are correct, the right page will show the rover is receiving RTK corrections.

6.2 David as a Base to transmit corrections to Internet

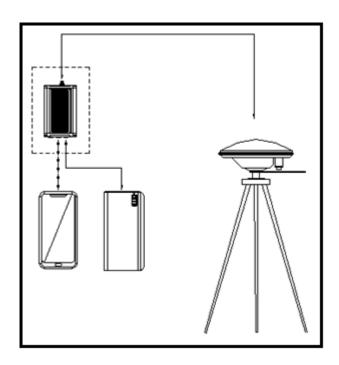
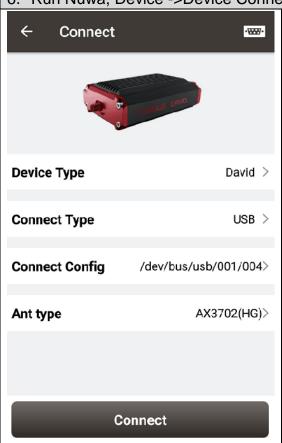


Figure 47 Outline of Android phone to David with Wire

! Three cables are used to connect the COMM2 port of David to the USB

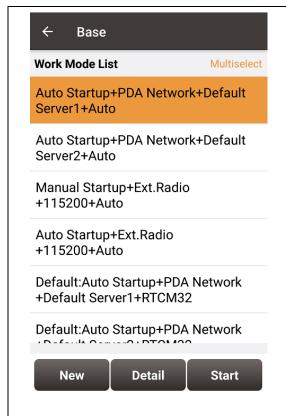
port of the Android phone. They are:

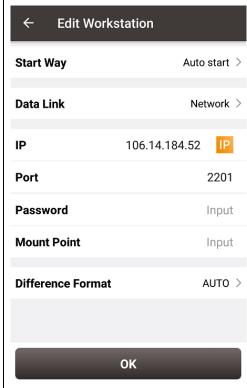
- COMM2-7pin-USB & DB9 Data Cable or COMM2-7pin-USB & 5pin cable.
- USB Type A Male to USB Type A Male cable
- USB Type A Female to USB (Micro + Type C) OTG cable
- ! It's highly recommended that a base David is installed on a tripod.

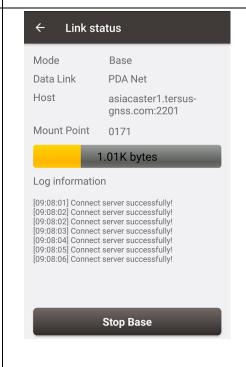

Table 29 Detailed steps for Base transmit corrections to Internet

Hardware Installation

- 1. Install the tripod at a point interested.
- 2. Install a tribrach on the tripod, adjust it to horizontal level and install the GNSS antenna and the antenna connector on it.
- 3. Connect the antenna to David with the RF cable.
- 4. Connect the David's COMM2 port to the USB port of the Android phone with cables.
- 5. Power on the David with a battery bank.


Software Configure


6. Run Nuwa, Device -> Device Connect


- 7. Connect Type "USB"
- 8. Press Connect Config to update accordingly.
- Press Connect to enable the communication with the David.

10. Go back to: Device -> Base Station

- 11. Select Auto Startup+PDA Network+Default Server1+Auto, then press Detail to configure the parameters about the Networ
- 12. If Auto Start is selected for Start Way, go to Step 14.
- If Manual Start is selected for Start Way, input the base's position manually.
- If Ntrip protocol is selected, please input: IP, Port, Username, Password and Mount Point.
- 15. If TCP is selected for Data Link, please input: IP and Port.
- 16. Go back to the Base Station page and press "Start"
- 17. If all the configure above are correct, the right page will show the base is transmitting RTK corrections.

- ! 1W base must work with 1W rover.
 - 2W base must be work with 2W rover.
 - 30W base must work with 2W rover.

Only 30W base and 2W rover are given in this section since the other two configure are very simple.

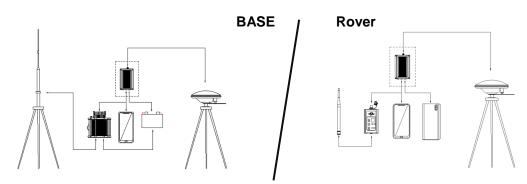
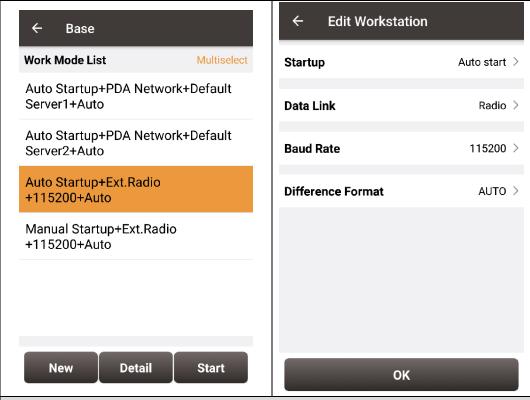


Figure 48 Outline of Base/Rover with Radios

Table 30 Detailed steps for David with Radios

Hardware Installation for the 30W Base

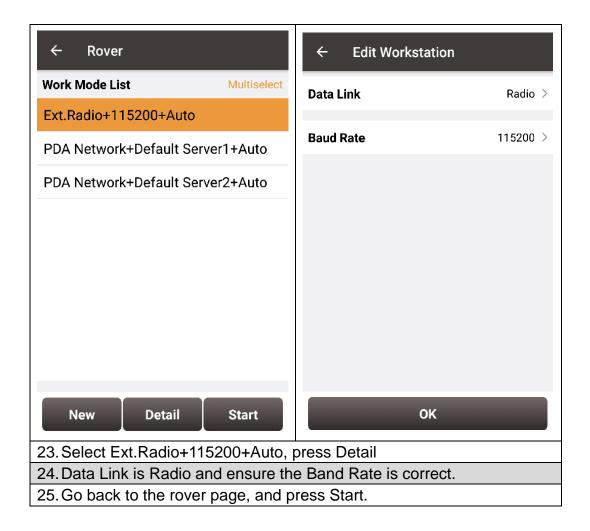
- 1. Install the two tripods at the points interested.
- 2. Install the 30W radio antenna with the telescopic pole for radio antenna.
- 3. Refer to Figure 32, install the metal plate, the GNSS antenna connector and the 30W radio antenna on one tripod.
- 4. Install a tribrach on the other tripod, adjust it to horizontal level and install the GNSS antenna and the antenna connector on it.
- 5. Connect the antenna to the base David with the RF cable.
- 6. Connect the David's COMM2 port to the USB port of the Android phone with cables.
- 7. Install the RF cable from the telescopic pole to the 30W radio station.
- 8. Connect the COMM cable to 30W radio, and to the base Daivd's DC port, respectively. Then connect it to the power cable for 30W radio.
- 9. Double check the cables above and connect the power cable to the external battery.


Hardware Installation for the 2W Rover

- 10. Install a tripod at the point interested.
- 11. Install a tribrach on the tripod, adjust it to horizontal level and install the GNSS antenna and the antenna connector on it.

- 12. Connect the rover antenna to the rover David with the RF cable.
- 13. Install the COMM2-7pin-USB & 5pin cable to the COMM2 port of the rover David, and connect the other two connectors to the USB port of the Android phone with cables and to the 2W radio station, respectively.
- 14. Power on the David with an external battery bank.

Software Configure for the 30W Base


- 15. Refer to 3.3.1 to communicate the Android phone with the base David.
- 16. In Survey Nuwa, go to: Device -> Base Station

- 17. Select Auto Startup+Ex.Radio+115200+Auto, press Detail
- 18. If Auto Start is selected for Start Way, go to Step 20.
- 19. If Manual Start is selected in for Start Way, input the base's position manually.
- 20. Press OK to go back to the Base page, press Start.

Software Configure for the 2W Rover

- 21. Refer to 3.3.1 to communicate the Android phone with the rover David.
- 22. Go back to: Device -> Rover Station

6.4 Data Collection for Post Processing

! The size of the logging:

Collect raw measurements at 1Hz (about 110KByte/min if 20 satellites are tracked, about 165KByte/min if 30 satellites are tracked)

If the collection frequency increased, the data size will be increased proportionately.

David provides up to 4GB internal eMMC card for data collection, before data collection, estimate whether the free space is enough for the data collection. Refer to Table 20 to delete the files on eMMC card to get more free space.

During data collection, the antenna must be installed on a tripod.

- ! Rules for the file name & update time in the internal eMMC card:
 - 1) Name: file name is the 00..00xx..xx.dat, totally 8 digits, in which xxxx is the working time (seconds/100) of the David. For example, the David has worked 500 hours 40min, (500*3600 + 40*60)/100 = 18024, the file name will be 00018024.dat.
 - 2) Update time: if the David hasn't gotten the GNSS time, the update time of the files will be19800000 0:0 (YYYYMMDD HH:MM). If the David has gotten the GNSS time, the update time will be the UTC time.

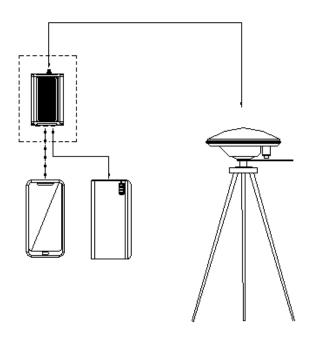
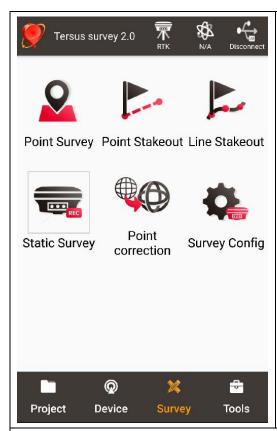
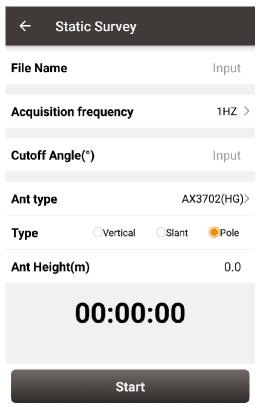


Figure 49 Outline of Static Data Collection


Table 31 Detailed Steps for Static Data Collection


Hardware Installation

- 1. Install a tripod at a point interested.
- 2. Install a tribrach on the tripod, adjust it to horizontal level and install the GNSS antenna and the antenna connector on it.
- 3. Connect the antenna to the David with the RF cable.
- 4. Create communication between the David and the Android phone with cables, refer to section 3.3.1.

Software Configure

5. In Tersus Survey Nuwa, go to Survey->Static Survey

- 6. Ensure the necessary parameters, including file name, data frequency and cutoff angle, etc. Press Start.
- 7. Follow steps 1 6 above to collect static data at other points interested.

7. **Terminology**

Table 32 List of terminology

Abbreviation Definition	
ASCII American Standard Code for Information Interchange	
CMR Compact Measurement Record	
DC Direct Current	
ESD Electro Static Discharge	
ECEF Earth Center Earth Fixed	
GLONASS GLObal NAvigation Satellite System	
GNSS Global Navigation Satellite System	
GPS Global Positioning System	
IF Intermediate Frequency	
IMU Inertial Measurement Unit	
IO Input/Output	
LED Light Emitting Diode	
LNA Low Noise Amplifier	
MPU Micro Processing Unit	
NMEA National Marine Electronics Association	
PC Personal Computer	
PPS Pulse Per Second	
RF Radio Frequency	
RINEX Receiver Independent Exchange format	
RMS Root Mean Squares	
RTK Real-Time Kinematic	
RTCM Radio Technical Commission for Maritime Services	
SMA Sub-Miniature-A interface	
TTFF Time to First Fix	
TTL Transistor-Transistor Logic level	
UART Universal Asynchronous Receiver/Transmitter	
USB Universal Serial BUS	
WGS84 Word Geodetic System 1984	

FCC Caution.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.