

3216 Chip antenna

For Bluetooth / WLAN Applicationsd

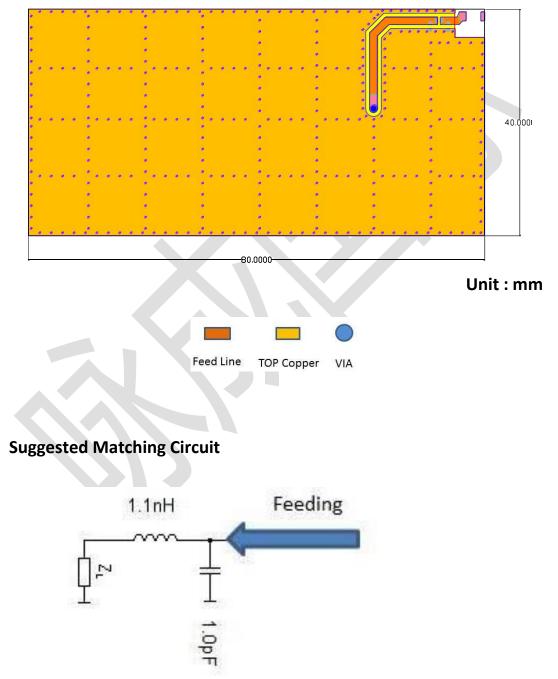
Part Number Information

RANT	<u>3216</u>	<u> </u>	<u>245</u>	G	<u>2</u>
Α	В	С	D	E	F

Α	Product Series	Antenna		
B	Dimension L x W	3.2X1.6mm (+-0.2mm)		
C	Material	High K material		
D	Working Frequency	2.4 ~ 2.5GHz		
E	Feeding mode	de Monopole & Single Feeding		
F	Antenna type	Type=02		

1. Electrical Specification

Specification					
Part Number	RANT3216F245M02				
Central Frequency	2450	MHz			
Bandwidth	100 (Min.)	MHz			
Return Loss	-6.5 (Max)	dB			
Peak Gain	3	dBi			
Impedance	50	Ohm			
Operating Temperature	-40 ~ +85	°C			
Maximum Power	4	W			
Resistance to Soldering Heats	10 (@ 260°C)	sec.			
Polarization	Linear				
Azimuth Beamwidth	Omni-directional				
Termination	Cu / Sn (Leadless)				


Remark : Bandwidth & Peak Gain was measured under evaluation board of next page 咏成國際科技有限公司 RAIN International Technology Co., Ltd

第2页共10页

2. Recommended PCB Pattern

Evaluation Board Dimension

咏成國際科技有限公司 RAIN International Technology Co., Ltd

第3页共10页

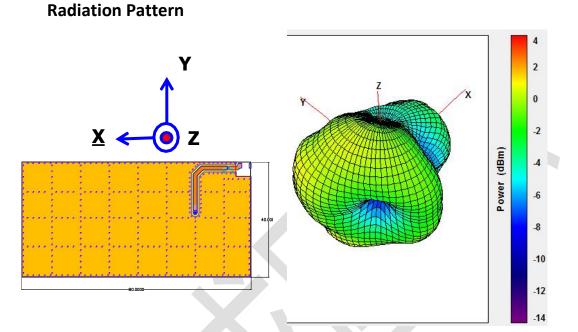
50 ohm transmission Line 5.2000 0.7000 1.2000 -1.6000 2.6000-5.0000 2.9000 2.2500 Matching Circuit FootPrint (Unit : mm) 2.6000-1.6000 0.7000 -1.2000 -

Layout Dimensions in Clearance area(Size=5.2*5.0mm)

RAIN

咏成國際科技有限公司 RAIN International Technology Co., Ltd

第4页共10页

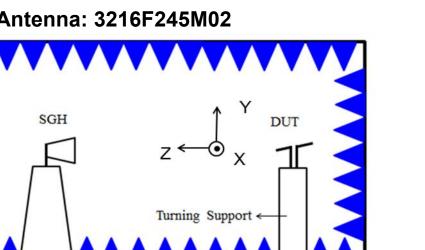

3. Measurement Results

Incl S22 dB Mag 10 dB / Ref 0 dB 1 1 1 1 Cal 1 2.40000 GHz 2.45000 GHz 2.50000 GHz -10.070 dB <mark>S22</mark> 1 2 • 3 -20 267 dB 20--11. 039 dB 10-0--10 2 -20-- -30--40 -50 -60 Pwr -10 dBm Start 2 GHz Stop 3 GHz Ch1

Return Loss

咏成國際科技有限公司 RAIN International Technology Co., Ltd

第5页共10页


RAIN

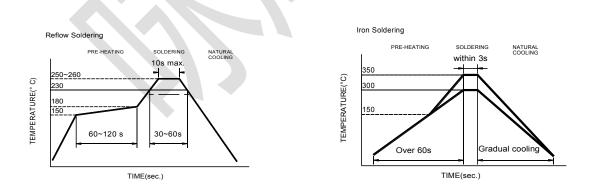
Efficiency Peak Gain Directivity 2400MHz 55.21 % 1.45 dBi 5.32 dBi 2450MHz 66.45 % 3 dBi 5.21 dBi 2500MHz 57.53 % 1.98 dBi 5.29 dBi

Chamber Coordinate System

咏成國際科技有限公司 RAIN International Technology Co., Ltd

第6页共10页

4. Reliability and Test Condictions


ITEM	REQUIREMENTS	TEST CONDITION		
Solderability	1. Wetting shall exceed 90% coverage 2. No visible mechanical damage TEMP (°C) 230°C 4±1 sec. 150°C 60sec	Pre-heating temperature:150°C/60sec. Solder temperature:230±5°C Duration:4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin		
Solder heat Resistance	1. No visible mechanical damage 2. Central Freq. change :within ± 6% TEMP (°C) 260°C 150°C 150°C 60sec	Pre-heating temperature:150°C/60sec. Solder temperature:260±5°C Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin		
Component Adhesion (Push test)	1. No visible mechanical damage	The device should be reflow soldered(230±5°C for 10sec.) to a tinned copper substrate A dynometer force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the termination attached to component.		
Component Adhesion (Pull test)	1. No visible mechanical damage	Insert 10cm wire into the remaining open eye bend ,the ends of even wire lengths upward and wind together. Terminal shall not be remarkably damaged.		

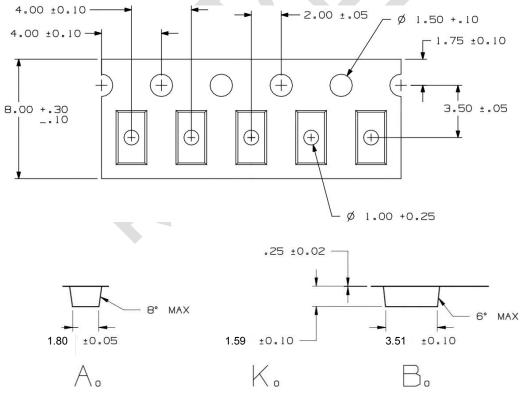
Thermal shock	1. No visible mechanical damage <u>2. Central Freq. change within +6%</u>			+85°C=>30±3min -40°C=>30±3min
	Phase 1 2 3 4	Temperature(°C) +85±5°C Room Temperature -40±2°C Room Temperature	Time(min) 30±3 Within 3sec 30±3 Within 3sec	Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to High Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 		n ±6%	Temperature: $85\pm5^{\circ}$ C Duration: 1000 \pm 12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to Low Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 		n ±6%	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Humidity	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 		n ±6%	Temperature: $40\pm2^{\circ}$ CHumidity: 90% to 95% RHDuration: 1000 ± 12 hrsThe chip shall be stabilized at normalcondition for 2~3 hours beforemeasuring.

2

5. Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Recommended temperature profiles for re-flow soldering in Figure 1.

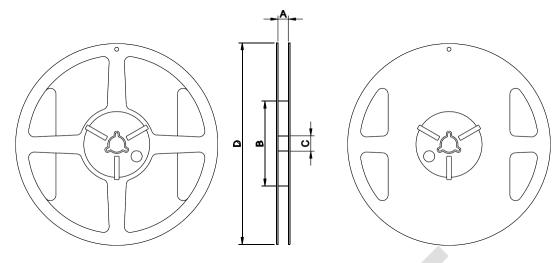

RAIN International Technology Co., Ltd

第8页共10页

- Preheat circuit and products to 150°C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.

6. Packaging Information

Tape Specification:



• Reel Specification: (7", Φ180 mm)

咏成國際科技有限公司 RAIN International Technology Co., Ltd

第9页共10页

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	5000

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40°C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

咏成國際科技有限公司 RAIN International Technology Co., Ltd