

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Bluetooth Sleeping Mask Headphone

Model No.: EM-001, IAHB33G

Trademark: N/A

FCC ID: 2AMD8EM-001

Report No.: E01A22110801F00101

Issue Date: December 15, 2022

Prepared for

Shenzhen Ground Enterprises Co.,Ltd Room607, Building F, MingYueHuaDu, Gonghe industrial Rd., XiXiang, Bao An District, Shenzhen, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R001-3A-BT TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

VERIFICATION OF COMPLIANCE

Applicant:	Shenzhen Ground Enterprises Co.,Ltd Room607, Building F, MingYueHuaDu, Gonghe industrial Rd., XiXiang, Bao An District, Shenzhen, China			
Manufacturer:	Shenzhen Ground Enterprises Co.,Ltd Room607, Building F, MingYueHuaDu, Gonghe industrial Rd., XiXiang, Bao An District, Shenzhen, China			
Product Description:	Bluetooth Sleeping Mask Headphone			
Trade Mark:	N/A			
Model Number:	EM-001, IAHB33G			

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2021).

Prepared by :

Reviewer & Authorized Signer :

November 30, 2022 to December 02, 2022

Duke Lid/Follor

Tiger Xu/ Supervisor

Page 3 of 97 Report No.: E01A22110801F00101

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	1	E01A22110801F00101

Table of Contents

1.	GENERAL INFORMATION	6
1.1	PRODUCT DESCRIPTION	6
1.2	TEST METHODOLOGY	6
1.3	TEST FACILITY	7
2.	SYSTEM TEST CONFIGURATION	8
2.1	EUT CONFIGURATION	8
2.2	EUT EXERCISE	8
2.3	TEST PROCEDURE	8
2.4	CONFIGURATION OF TESTED SYSTEM	9
3.	SUMMARY OF TEST RESULTS	10
4.	DESCRIPTION OF TEST MODES	11
5.	TEST SYSTEM UNCERTAINTY	12
6.	CONDUCTED EMISSIONS TEST	13
6.1	MEASUREMENT PROCEDURE:	13
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
6.3	MEASUREMENT EQUIPMENT USED:	13
6.4	MEASUREMENT RESULT:	14
6.5	CONDUCTED MEASUREMENT PHOTOS:	16
7.	RADIATED EMISSION TEST	17
7.1	MEASUREMENT PROCEDURE	17
7.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	19
7.3	MEASUREMENT EQUIPMENT USED:	20
74	RADIATED EMISSION LIMIT	21
7.5	MEASUREMENT RESULT	
7.5	RADIATED MEASUREMENT PHOTOS:	28
8.	CHANNEL SEPARATION TEST	29
8.1	MEASUREMENT PROCEDURE	29
8.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	29
8.3	MEASUREMENT EQUIPMENT USED:	29
8.4	MEASUREMENT RESULTS:	29
9.	20DB BANDWIDTH TEST	36
9.1	MEASUREMENT PROCEDURE	36
9.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	36
9.3	MEASUREMENT EQUIPMENT USED:	36
9.4	MEASUREMENT RESULTS:	37
10.	QUANTITY OF HOPPING CHANNEL TEST	43
10.1	1 MEASUREMENT PROCEDURE	43
10.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	43
10.3	MEASUREMENT EQUIPMENT USED:	43
10.4	4 MEASUREMENT RESULTS:	44

11. 1	TIME OF OCCUPANCY (DWELL TIME) TEST	45
11.1 TE	ST DESCRIPTION	45
11.2 TE	ST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	45
11.3 Mı	EASUREMENT EQUIPMENT USED:	45
11.4 TE	ST REQUIREMENTS / LIMITS	46
11.5 TE	ST RESULT	47
12. N	MAXIMUM PEAK OUTPUT POWER TEST	57
12.1 Mi	EASUREMENT PROCEDURE	57
12.2 TE	ST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	57
	EASUREMENT EQUIPMENT USED:	
12.4	MEASUREMENT RESULTS:	58
13. E	BAND EDGE TEST	64
13.1	MEASUREMENT PROCEDURE	64
13.2 TE	ST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	65
13.3 Mı	EASUREMENT EQUIPMENT USED:	65
13.4 Mı	EASUREMENT RESULTS:	66
14. <i>A</i>	ANTENNA PORT EMISSION	80
14.1	TEST EQUIPMENT	80
14.2	MEASURING INSTRUMENTS AND SETTING	80
14.3	TEST PROCEDURES	80
14.4	BLOCK DIAGRAM OF TEST SETUP	80
14.5	TEST RESULT	80
15. <i>A</i>	ANTENNA APPLICATION	90
15.1 An	NTENNA REQUIREMENT	90
15 2 R	FSULT	90

1. **GENERAL INFORMATION**

1.1 Product Description

Characteristics	Description
Product Name	Bluetooth Sleeping Mask Headphone
Model number	EM-001, IAHB33G (There is no difference except the name of the model. All tests are made with the EM-001 model)
Input rating	DC 5V, DC 3.7V
Power Supply	DC 5V from adapter and battery 3.7V
Kind of Device Bluetooth V5.2+BR+EDR	
Modulation	GFSK, π/4-DQPSK, 8DPSK
Operating Frequency Range	2402-2480MHz
Number of Channels	79
Transmit Power Max(PK)	2.02dBm(0.001589W)
Antenna Type	Internal PCB Antenna
Antenna Gain	-0.58dBi
Sample Received Date	December 02, 2022

1.2Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10-2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

Page 7 of 97 Report No.: E01A22110801F00101

1.3 Test Facility

Site Description

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.

Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,

Lake Hi-tech Industrial Development Zone, Dongguan City,

Guangdong Pr., China.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of EUT was fixed in a particular direction according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Bluetooth Sleeping Mask Headphone	N/A	EM-001	2AMD8EM-001	EUT
2.	Adapter	MI	Model:MDY-08-EH Input: AC 100-240V, 50/60Hz Output: DC 5V/2.5A,DC 9/2A	N/A	Support EUT

Note:

(1) Unless otherwise denoted as EUT in <code>[Remark]</code> column , device(s) used in tested system is a support equipment.

3. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207	AC Power Conducted Emission	Compliant
§15.247(d),§15.209, §15.205	Radiated Emission	Compliant
§15.247(a)(1)	Channel Separation test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)(iii)	Time of Occupancy(Dwell Time)	Compliant
§15.247(b)	Max Peak output Power test	Compliant
§15.247(d)	Band edge test	Compliant
§15.203	Antenna Requirement	Compliant

4. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed. EUT is connected by com port, and transimit the control instruction via test software(JL FCC Assist V2.4.exe). The test software power value is set to the maximum.

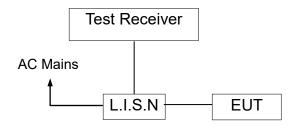
This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, π /4-DQPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test(150KHz-30MHz)	±2.0dB
Radiated Emission Test (30MHz-1000MHz)	±2.0dB
Radiated Emission Test (1GHz-18GHz)	±2.5dB
Radiated Emission Test (18GHz-25GHz)	±3.2dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%


Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

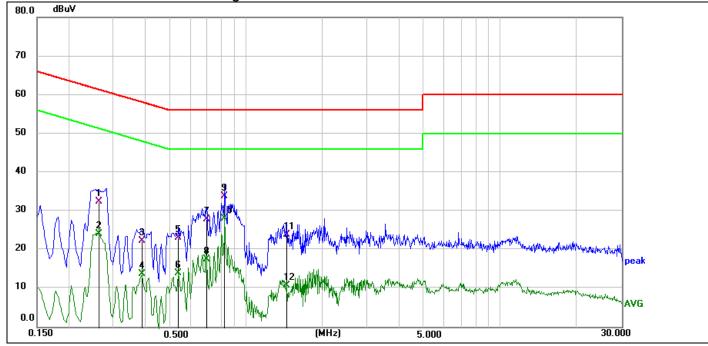
6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

Item	Instr.Code	Kind of	Manufacturer	Type No.	Serial No.	Calibrated until
		Equipment				unu
1	AN-E024	EMI Test Receiver	ROHDE&SCHWARZ	ESPI	101144	2023-10-07
2	AN-E025	LISN	ROHDE&SCHWARZ	ENV216	101413	2023-10-07
3	AN-E029	RF Cable	N/A	ZT06S-NJ-NJ-2.5M	19044022	2023-05-12
4	AN-E044	2# Shielded Room	chengyu	8m*4m*3m	N/A	2024-11-11
5	AN-E046	Test Software	Farad	EZ-EMC (Ver.ANCI-3A1)	N/A	N/A

Measurement Result:

Operation Mode: TX Test Date: December01, 2022

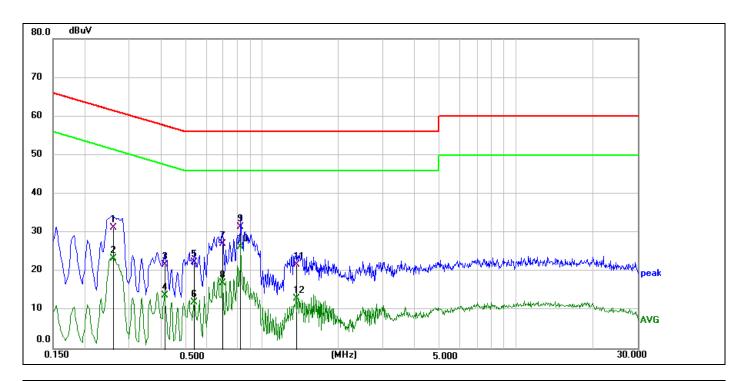

Frequency Range: $0.15 \text{MHz} \sim 30 \text{MHz}$ Temperature: $26 \,^{\circ}\mathbb{C}$ Test Result: PASS Humidity: $54 \,^{\circ}\mathbb{M}$

Test By: Sunshine

All the modulation modes were tested the data of the worst mode (Pi/4-DQPSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

Note:


Site:843Phase:LTemperature(C):26 (C)Limit:FCC Part 15 C Conduction(QP)Humidity(%):54%EUT:Bluetooth Sleeping Mask HeadphoneTest Time:2022/11/30 19:13:30

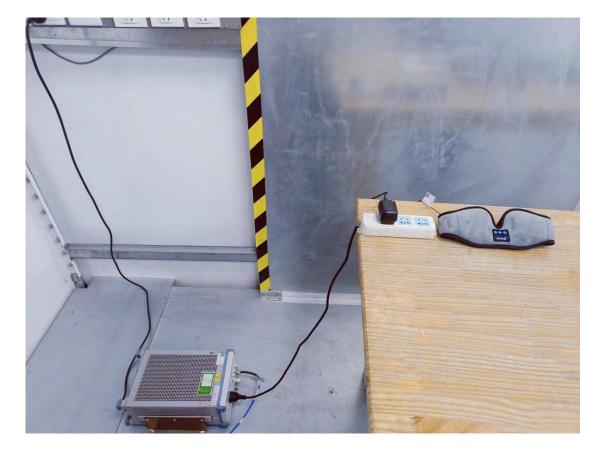
M/N.: EM-001 Power Rating: DC 5V From adapter

Mode: TX2402 Test Engineer: Sunshine

No. Frequency Reading Factor Measure-Limit Margin Detector Comment (MHz) Level(dBuV) (dB) ment(dBuV) (dBuV) (dB) OP 0.2625 9.77 32.50 61.35 -28.85 22.73 AVG 2 0.2625 14.36 9.77 24.13 51.35 -27.223 0.3885 12.51 9.78 22.29 58.10 -35.81 QP 4 0.3885 3.92 9.78 13.70 48.10 -34.40 AVG 5 0.5415 13.39 9.70 23.09 56.00 -32.91 QP 4.25 AVG 9.70 13.95 -32.05 6 0.5415 46.00 27.95 0.6990 18.34 9.61 56.00 -28.05 QP 0.6990 17.48 46.00 -28.52 AVG 8 7.87 9.61 9 0.8250 24.04 9.81 33.85 56.00 -22.15 QP 10 0.8250 9.81 28.12 46.00 AVG 18.31 -17.88 1.4415 13.81 10.02 23.83 56.00 -32.17 QP 11 ĀVG 12 1.4415 0.88 10.02 10.90 46.00 -35.10

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

Site:843Phase:NTemperature(C):26(C)Limit:FCC Part 15 C Conduction(QP)Humidity(%):54%EUT:Bluetooth Sleeping Mask HeadphoneTest Time:2022/11/30 19:16:09


M/N.: EM-001 Power Rating: DC 5V From adapter

Mode: TX2402 Test Engineer: Sunshine Note:

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	0.2580	21.51	9.76	31.27	61.50	-30.23	QP	
2	0.2580	13.51	9.76	23.27	51.50	-28.23	AVG	
3	0.4110	11.85	9.84	21.69	57.63	-35.94	QP	
4	0.4110	3.95	9.84	13.79	47.63	-33.84	AVG	
5	0.5415	12.65	9.70	22.35	56.00	-33.65	QP	
6	0.5415	2.34	9.70	12.04	46.00	-33.96	AVG	
7	0.6990	17.47	9.61	27.08	56.00	-28.92	QP	
8	0.6990	7.46	9.61	17.07	46.00	-28.93	AVG	
9	0.8250	21.63	9.81	31.44	56.00	-24.56	QP	
10	0.8250	16.45	9.81	26.26	46.00	-19.74	AVG	
11	1.3605	11.68	9.98	21.66	56.00	-34.34	QP	
12	1.3605	3.00	9.98	12.98	46.00	-33.02	AVG	

^{*:}Maximum data x:Over limit !:over margin

6.5 Conducted Measurement Photos:

Page 17 of 97 Report No.: E01A22110801F00101

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

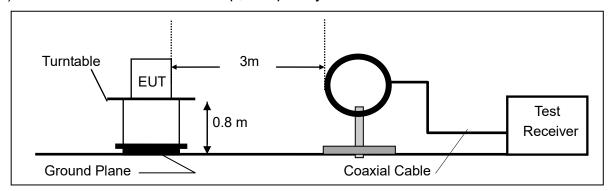
Page 18 of 97 Report No.: E01A22110801F00101

Use the following spectrum analyzer settings:

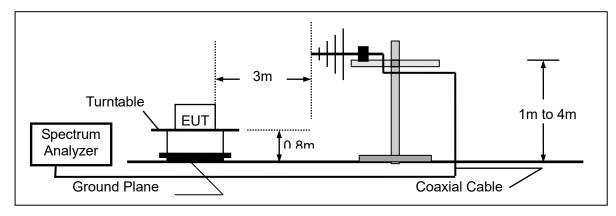
When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

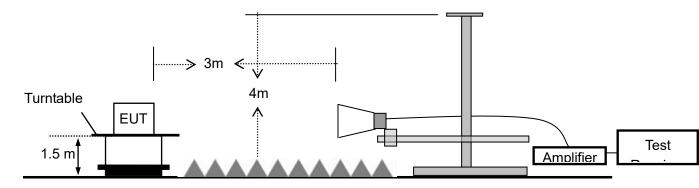
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:


EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:


EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

7.2 Test SET-UP (Block Diagram of Configuration)


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 Measurement Equipment Used:

Item	Instr.Cod e	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E060	EMI Test Receiver	Rohde & Schwarz	ESCI	100302	2023-05-12
2	AN-E061	Pre-Amplifier	Anritsu	MH648A	M57886	2023-05-12
3	AN-E076	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-1290	2023-10-07
4	AN-E063	RF Cable	N/A	ZT06S-NJ-NJ-11M	19060398	2023-05-12
5	AN-E064	RF Cable	N/A	ZT06S-NJ-NJ-0.5M	19060400	2023-05-12
6	AN-E065	RF Cable	N/A	ZT06S-NJ-NJ-2.5M	19060404	2023-05-12
7	AN-E056	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-11
8	AN-E069	Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A
9	AN-E037	Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023-10-07
10	AN-E015	Low noise Amplifiers	A-INFO	LA1018N4009	J1013130524001	2023-05-12
11	AN-E014	Horn antenna	A-INFO	LB-10180-SF	J2031090612123	2023-05-14
12	AN-E065	RF Cable	N/A	ZT26-NJ-NJ-11M	19060401	2023-05-12
13	AN-E067	RF Cable	N/A	ZT26-NJ-NJ-2.5M	19060402	2023-05-12
14	AN-E068	RF Cable	N/A	ZT26-NJ-NJ-0.5M	19060403	2023-05-12
15	AN-E056	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-12
16	AN-E069	Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A
17	AN-E037	Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023-10-07

7..4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

Page 22 of 97 Report No.: E01A22110801F00101

7.5 Measurement Result

Operation Mode: TX Test Date: December01, 2022

Test By: Sunshine Temperature: 26℃ **PASS** 54 % Test Result: Humidity:

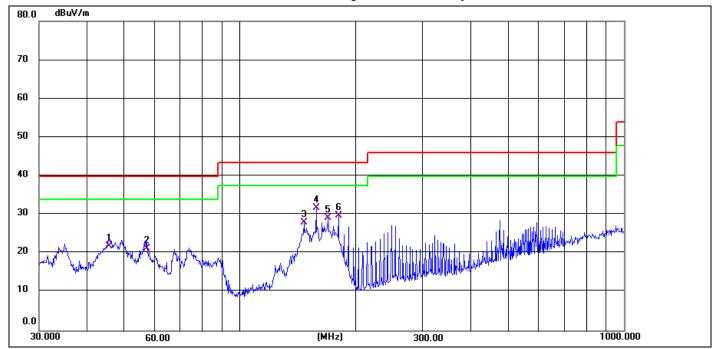
Measured Distance: 3m

Below 30MHz:

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:


Pass.

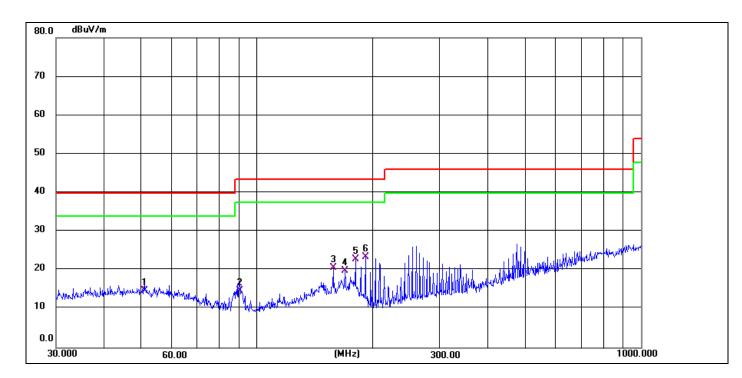
TRF No.:

01-R001-3A-BT

All the modulation modes were tested the data of the worst mode ((Pi/4-DQPSK TX 2402MHz)) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

Site: LAB Antenna::Vertical Temperature(C):24(C)


Limit: FCC Part 15 C 3m Radiation(QP) Humidity(%):53% EUT: Bluetooth Sleeping Mask Headphone Test Time: 2022/11/30 23:12:10

M/N.: EM-001 Power Rating: DC 3.7V
Mode: TX2402 Test Engineer: Sunshine

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	45.6948	35.19	-13.26	21.93	40.00	-18.07	QP
2	57.1914	34.98	-13.78	21.20	40.00	-18.80	QP
3	146.8877	61.44	-33.51	27.93	43.50	-15.57	QP
4 *	158.1123	65.38	-33.50	31.88	43.50	-11.62	QP
5	169.5990	62.81	-33.56	29.25	43.50	-14.25	QP
6	180.6488	63.49	-33.63	29.86	43.50	-13.64	QP

^{*:}Maximum data x:Over limit !:over margin

Site: LAB Antenna::Horizontal Temperature(C):24(C)

Limit: FCC Part 15C 3m Radiation(QP) Humidity(%):53% EUT: Bluetooth Sleeping Mask Headphone Test Time: 2022/11/30 23:13:33

M/N.: EM-001 Power Rating: DC 3.7V Mode: TX2402 Test Engineer: Sunshine

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	50.9420	28.13	-13.38	14.75	40.00	-25.25	QP
2	90.2205	48.17	-33.46	14.71	43.50	-28.79	QP
3	158.1123	54.28	-33.50	20.78	43.50	-22.72	QP
4	169.5990	53.45	-33.56	19.89	43.50	-23.61	QP
5	180.6488	56.41	-33.63	22.78	43.50	-20.72	QP
6 *	191.7450	57.05	-33.68	23.37	43.50	-20.13	QP

^{*:}Maximum data x:Over limit !:over margin

Above 1000MHz~10th Harmonics:

Please refer to the following data.

All modes have been tested. Only the worst mode data is displayed

Operation Mode: GFSK (CH1: 2402MHz) Test Date: December 01, 2022

Freq.	Ant. Pol.		5 • • • • • • • • • • • • • • • • • •		Emission Level(dBuV/m)		3m(dB		Margin(d	В)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	96.25	75.14	-32.3	63.95	42.84	74	54	-10.05	-11.16
7206	V	94.36	76.69	-37.25	57.11	39.44	74	54	-16.89	-14.56
9608	V	97.58	78.17	-39.8	57.78	38.37	74	54	-16.22	-15.63
12010	V	95.74	77.64	-40.5	55.24	37.14	74	54	-18.76	-16.86
14412	V	97.24	77.65	-41.7	55.54	35.95	74	54	-18.46	-18.05
16814	V	95.13	76.14	-40	55.13	36.14	74	54	-18.87	-17.86
4804	Η	95.66	74.87	-31.4	64.26	43.47	74	54	-9.74	-10.53
7206	Η	95.81	76.38	-35.5	60.31	40.88	74	54	-13.69	-13.12
9608	Η	96.14	77.25	-38.3	57.84	38.95	74	54	-16.16	-15.05
12010	Η	94.67	75.66	-39	55.67	36.66	74	54	-18.33	-17.34
14412	Н	97.36	77.68	-42	55.36	35.68	74	54	-18.64	-18.32
16814	Η	94.37	75.65	-39.3	55.07	36.35	74	54	-18.93	-17.65

Operation Mode: GFSK (CH40: 2441MHz) Test Date: December 01, 2022

(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4882	٧	96.58	75.36	-32.3	64.28	43.06	74	54	-9.72	-10.94
7323	V	98.24	78.24	-37.2	61.04	41.04	74	54	-12.96	-12.96
9764	V	97.865	77.27	-39.6	58.26	37.67	74	54	-15.74	-16.33
12205	٧	96.387	77.53	-40.5	55.88	37.03	74	54	-18.12	-16.97
14646	V	96.57	78.04	-41	55.57	37.04	74	54	-18.43	-16.96
17087	٧	96.24	77.25	-41.1	55.14	36.15	74	54	-18.86	-17.85
4882	Τ	95.37	72.67	-31.6	63.77	41.07	74	54	-10.23	-12.93
7323	Η	97.04	78.07	-35.7	61.34	42.37	74	54	-12.66	-11.63
9764	Ι	97.28	77.09	-38.3	58.98	38.79	74	54	-15.02	-15.21
12205	Ι	96.31	76.07	-39	57.31	37.07	74	54	-16.69	-16.93
14646	Н	98.36	79.14	-42	56.36	37.14	74	54	-17.64	-16.86
17087	Н	96.69	77.34	-41.5	55.19	35.84	74	54	-18.81	-18.16

Page 26 of 97 Report No.: E01A22110801F00101

Operation Mode: GFSK (CH79: 2480MHz) Test Date: December 01, 2022

Freq.	Ant.		ding	Correct		Emission		mit	Marg	in(dB)
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3m(dE	BuV/m)		
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	96.28	75.236	-32.3	63.98	42.936	74	54	-10.02	-11.06
7440	V	98.35	78.22	-37.2	61.15	41.02	74	54	-12.85	-12.98
9920	V	97.04	77.27	-39.6	57.44	37.67	74	54	-16.56	-16.33
12400	V	96.58	77.87	-40.7	55.88	37.17	74	54	-18.12	-16.83
14880	V	96.51	78.57	-41	55.51	37.57	74	54	-18.49	-16.43
17360	V	96.05	77.24	-41.1	54.95	36.14	74	54	-19.05	-17.86
4960	Н	95.14	72.74	-31.6	63.54	41.14	74	54	-10.46	-12.86
7440	Н	97.27	77.08	-35.7	61.57	41.38	74	54	-12.43	-12.62
9920	Н	97.41	77.17	-38.1	59.31	39.07	74	54	-14.69	-14.93
12400	Н	96.27	75.37	-39	57.27	36.37	74	54	-16.73	-17.63
14880	Н	98.35	78.28	-42	56.35	36.28	74	54	-17.65	-17.72
17360	Н	96.15	76.02	-41.5	54.65	34.52	74	54	-19.35	-19.48

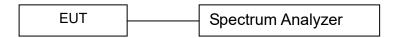
Page 27 of 97 Report No.: E01A22110801F00101

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

7.5 Radiated Measurement Photos:



8. Channel Separation test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

8.3 Measurement Equipment Used:

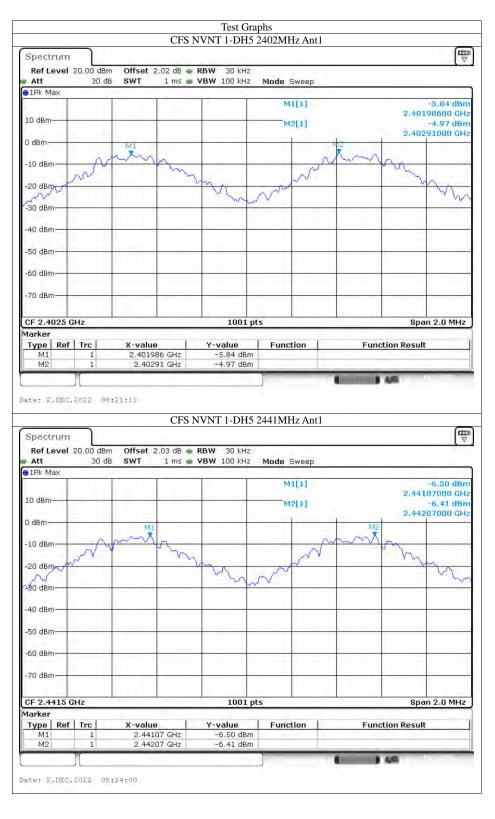
Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	1	2023-05-12

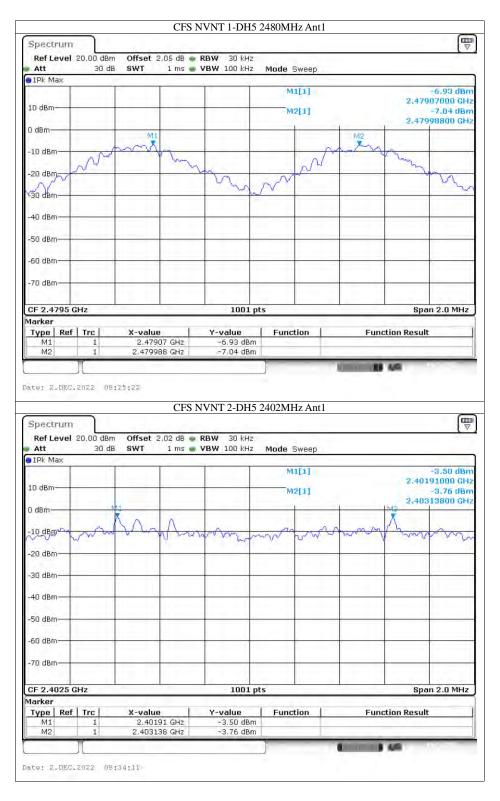
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

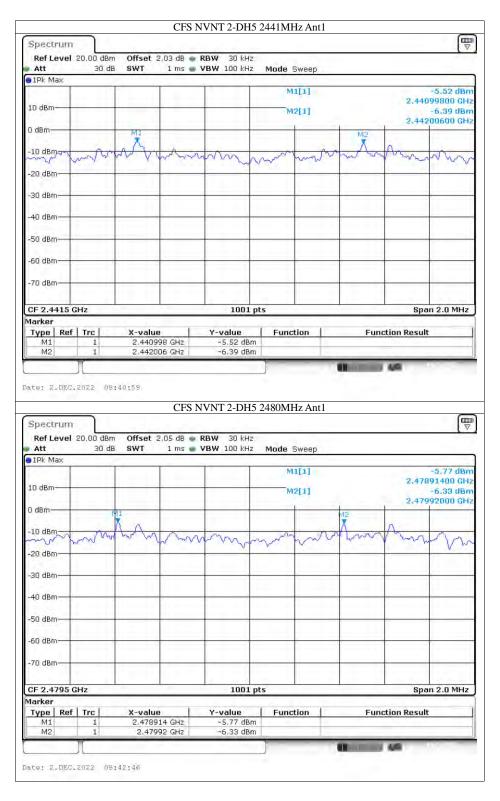
8.4 Measurement Results:

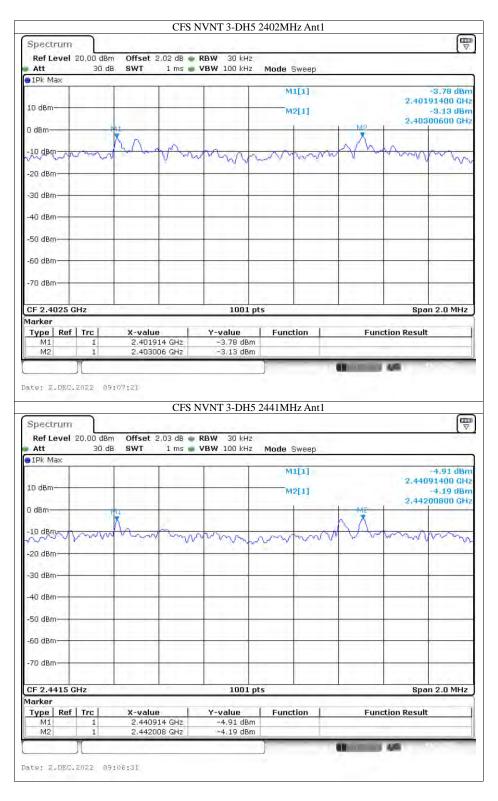
Refer to attached data chart.

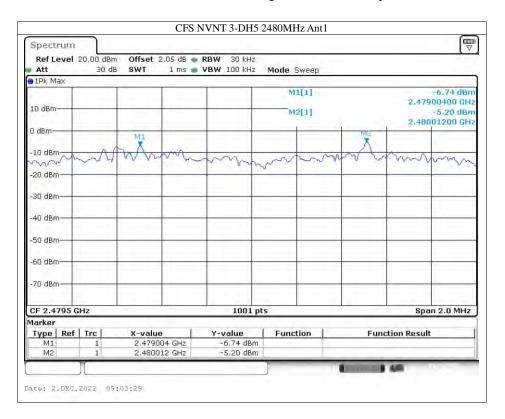
Page 30 of 97 Report No.: E01A22110801F00101


Spectrum Detector: PK Test Date : December01, 2022


Test By: Big Temperature : 24° C Test Result: PASS Humidity : 53° %


Modulation: GFSK,


П/4-DQPSK 8- DPSK


Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.986	2402.91	0.924	0.625	Pass
NVNT	1-DH5	Ant1	2441.07	2442.07	1	0.626	Pass
NVNT	1-DH5	Ant1	2479.07	2479.988	0.918	0.626	Pass
NVNT	2-DH5	Ant1	2401.91	2403.138	1.228	0.025	Pass
NVNT	2-DH5	Ant1	2440.998	2442.006	1.008	0.025	Pass
NVNT	2-DH5	Ant1	2478.914	2479.92	1.006	0.025	Pass
NVNT	3-DH5	Ant1	2401.914	2403.006	1.092	0.864	Pass
NVNT	3-DH5	Ant1	2440.914	2442.008	1.094	0.862	Pass
NVNT	3-DH5	Ant1	2479.004	2480.012	1.008	0.863	Pass

Page 36 of 97 Report No.: E01A22110801F00101

9. 20dB Bandwidth test

9.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used:

Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	1	2023-05-12

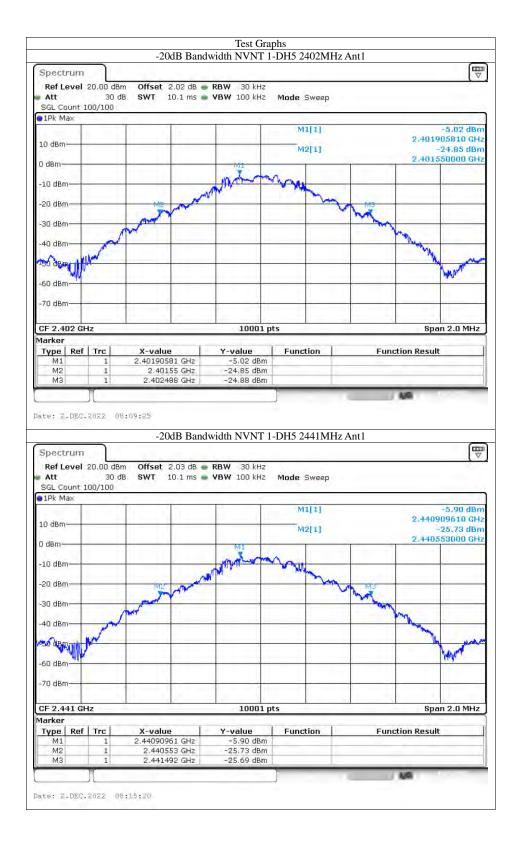
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

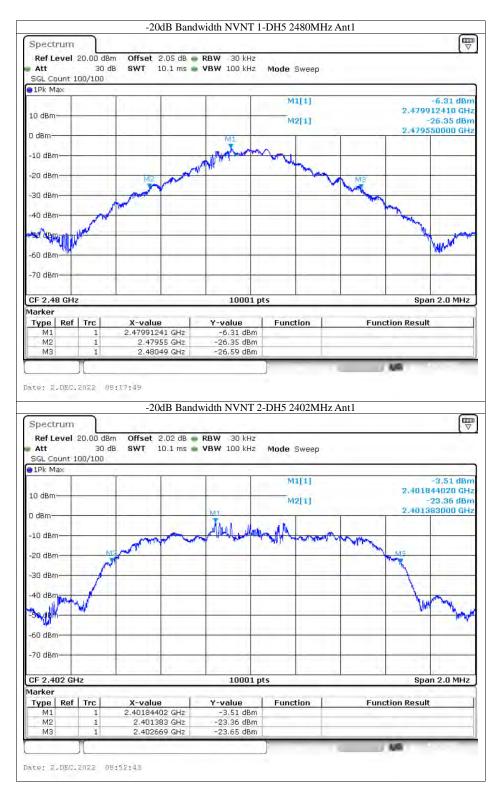
TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

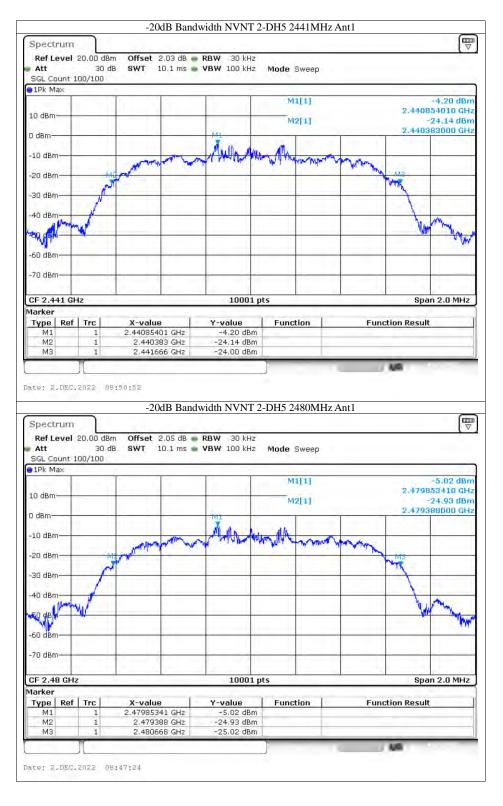
Page 37 of 97 Report No.: E01A22110801F00101

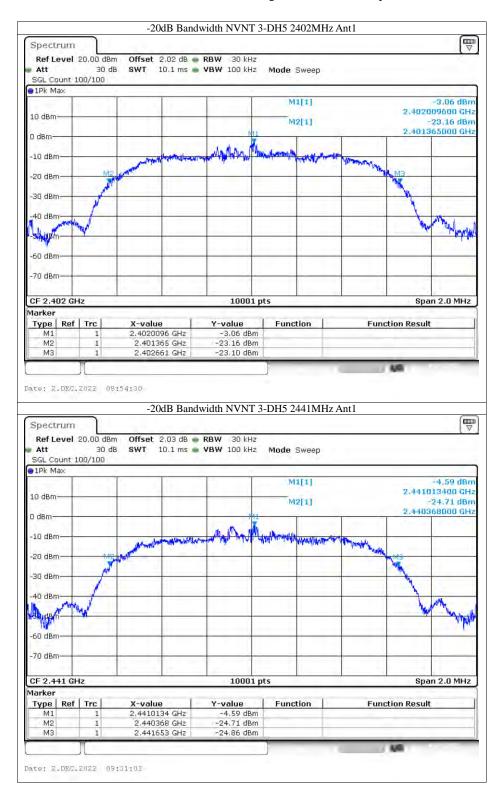
9.4 Measurement Results:

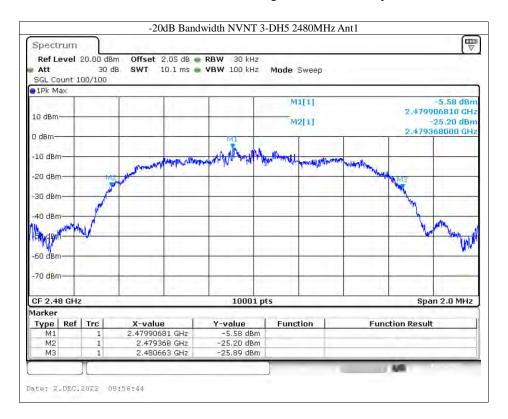
Refer to attached data chart.


Spectrum Detector: PK Test Date : December01, 2022


Test By: Big Temperature : 24° C Test Result: PASS Humidity : 53° %


Modulation: GFSK,


П/4-DQPSK 8- DPSK


Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.938	0	Pass
NVNT	1-DH5	2441	Ant1	0.939	0	Pass
NVNT	1-DH5	2480	Ant1	0.939	0	Pass
NVNT	2-DH5	2402	Ant1	1.286	0	Pass
NVNT	2-DH5	2441	Ant1	1.283	0	Pass
NVNT	2-DH5	2480	Ant1	1.28	0	Pass
NVNT	3-DH5	2402	Ant1	1.296	0	Pass
NVNT	3-DH5	2441	Ant1	1.285	0	Pass
NVNT	3-DH5	2480	Ant1	1.295	0	Pass

10. Quantity of Hopping Channel Test

10.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

10.2Test SET-UP (Block Diagram of Configuration)

10.3Measurement Equipment Used:

Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	1	2023-05-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

TRF No.: 01-R001-3A-BT

Page 44 of 97 Report No.: E01A22110801F00101

10.4 Measurement Results:

Refer to attached data chart.

Worst Test Mode GFSK Test Date: December01, 2022

Test By: Big Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

11. Time of Occupancy (Dwell Time) test

11.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6s

with:

- hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$
- hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

11.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum Analyzer
-----	--	-------------------

11.3 Measurement Equipment Used:

Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	/	2023-05-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

11.4 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

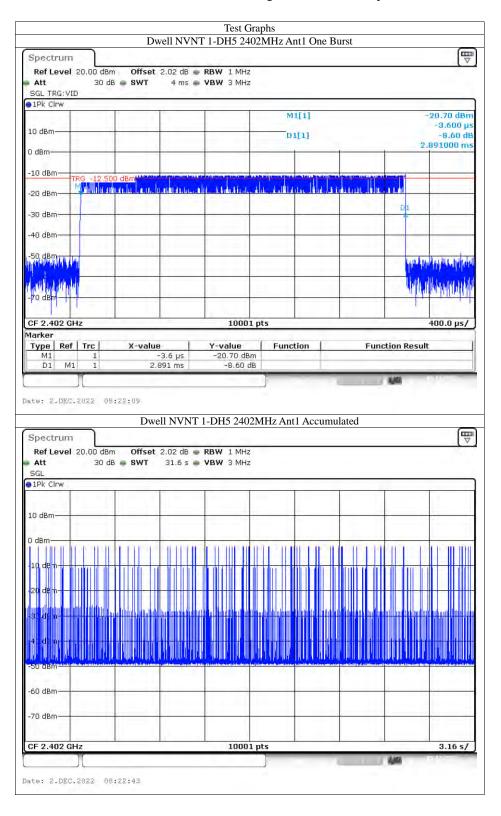
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6seconds. Refer to attached data chart.

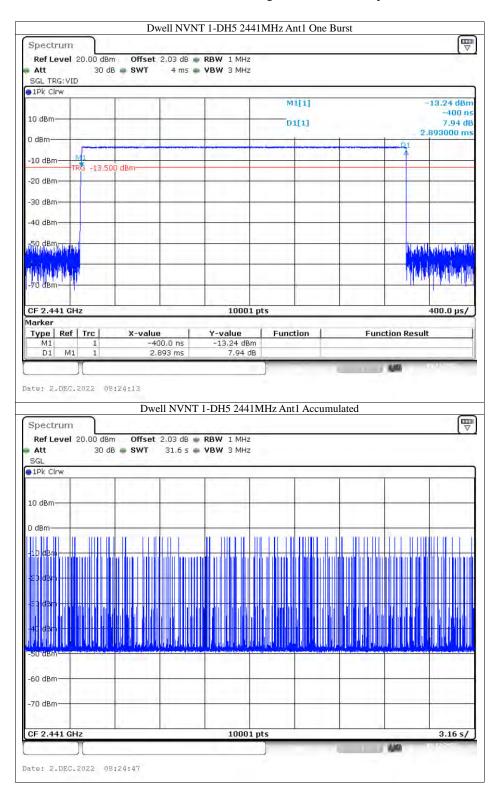
Page 47 of 97 Report No.: E01A22110801F00101

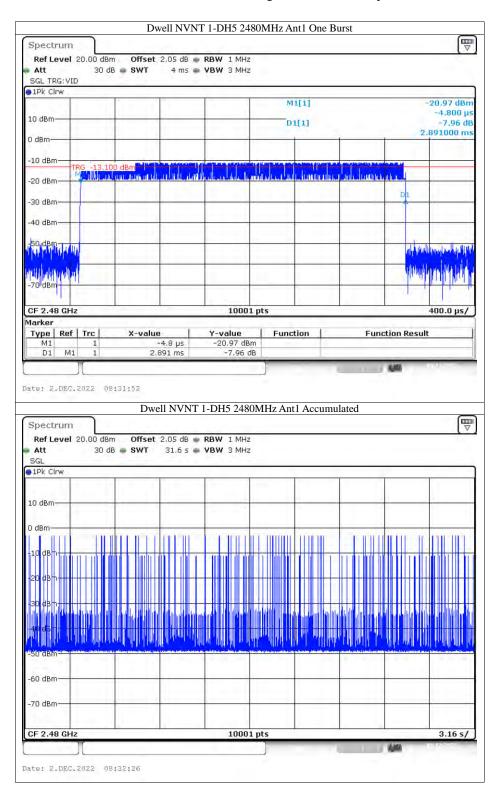
Modulation: GFSK, Test Date: December01, 2022

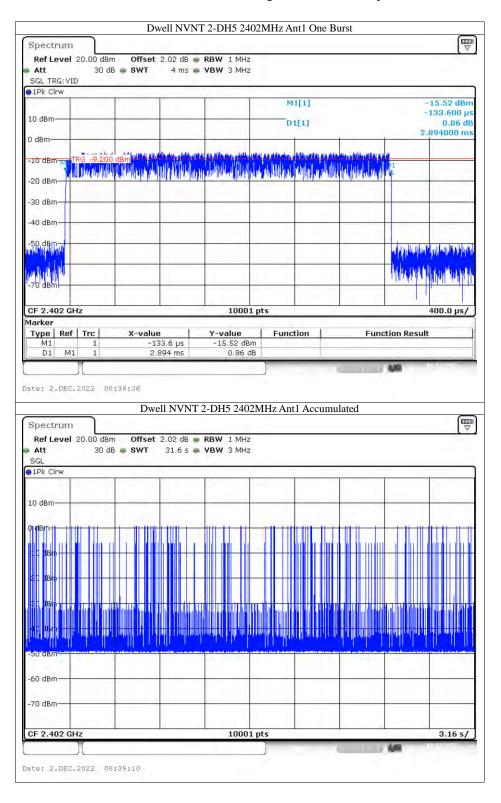
Π/4-DQPSK

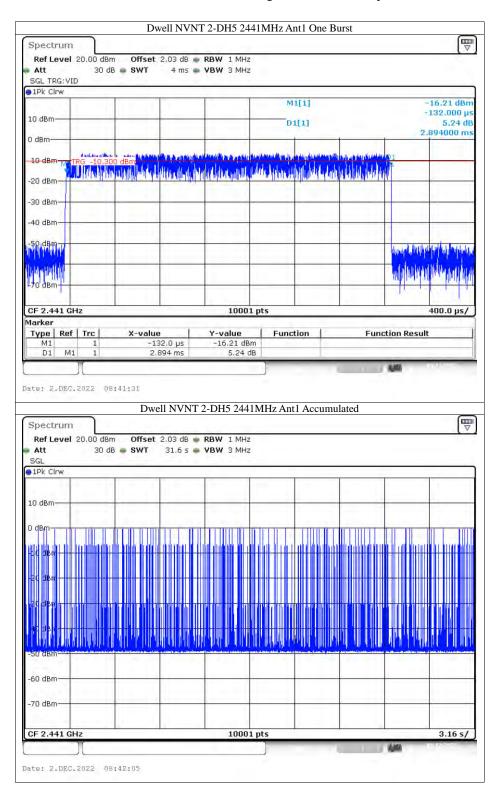
8- DPSK

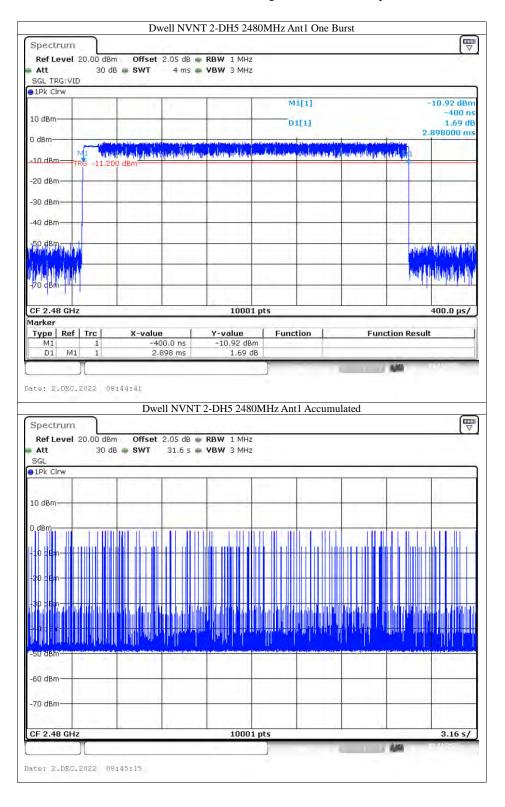

Test By: Big Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

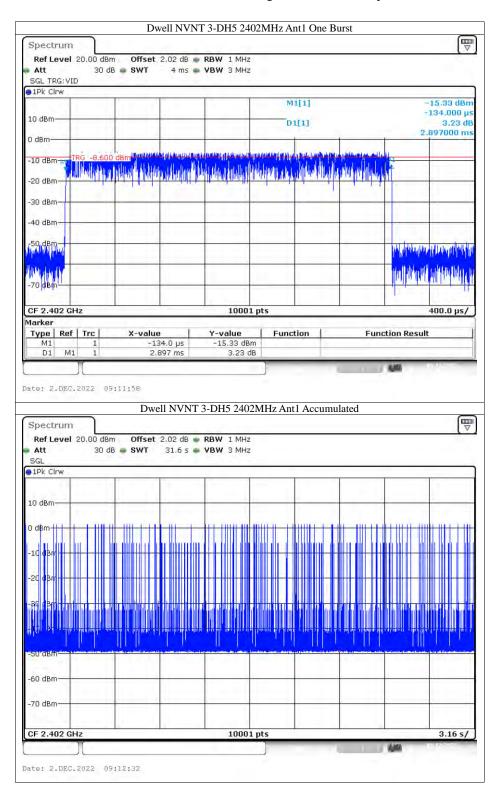

11.5 Test result

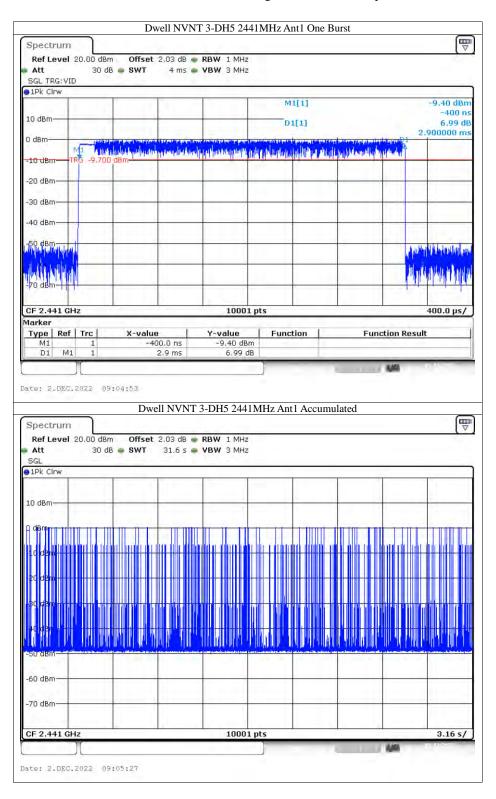

Remark: The results of worst cased was recorded.

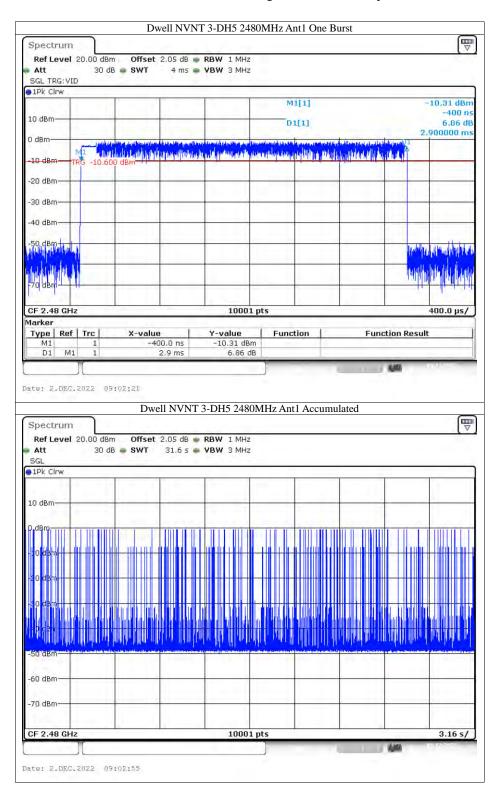

Dwell Time


Condition	Mode	Frequency	Antenna	Pulse Time	Total Dwell Time	Burst	Period Time	Limit	Verdict
		(MHz)		(ms)	(ms)	Count	(ms)	(ms)	
NVNT	1-DH5	2402	Ant1	2.891	271.754	94	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.893	324.016	112	31600	400	Pass
NVNT	1-DH5	2480	Ant1	2.891	268.863	93	31600	400	Pass
NVNT	2-DH5	2402	Ant1	2.894	277.824	96	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.894	298.082	103	31600	400	Pass
NVNT	2-DH5	2480	Ant1	2.898	278.208	96	31600	400	Pass
NVNT	3-DH5	2402	Ant1	2.897	281.009	97	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.9	310.3	107	31600	400	Pass
NVNT	3-DH5	2480	Ant1	2.9	345.1	119	31600	400	Pass









12. MAXIMUM PEAK OUTPUT POWER TEST

12.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

12.2 Test SET-UP (Block Diagram of Configuration)

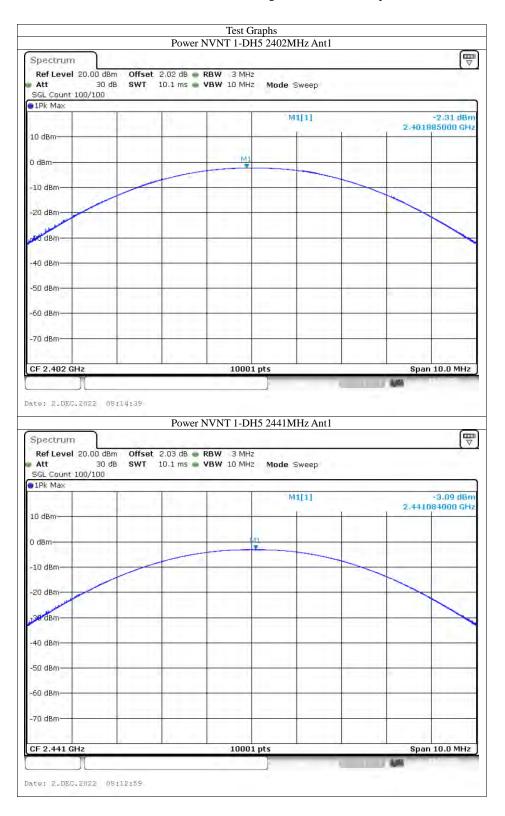
12.3 Measurement Equipment Used:

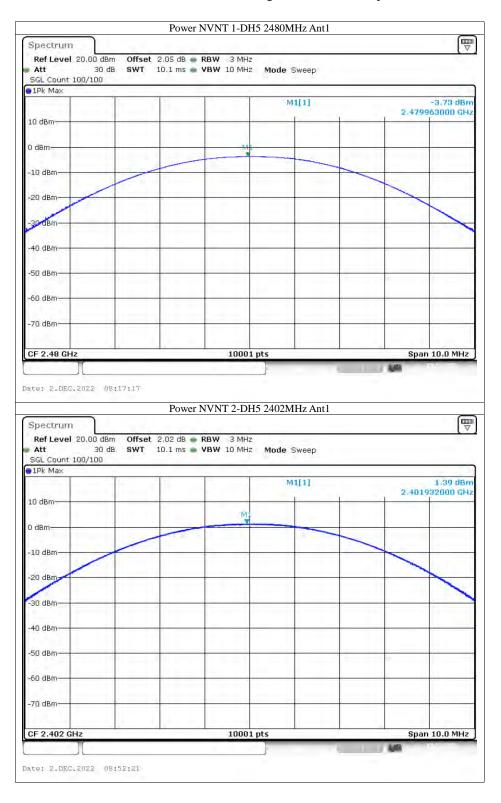
Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	Ī	2023-05-12

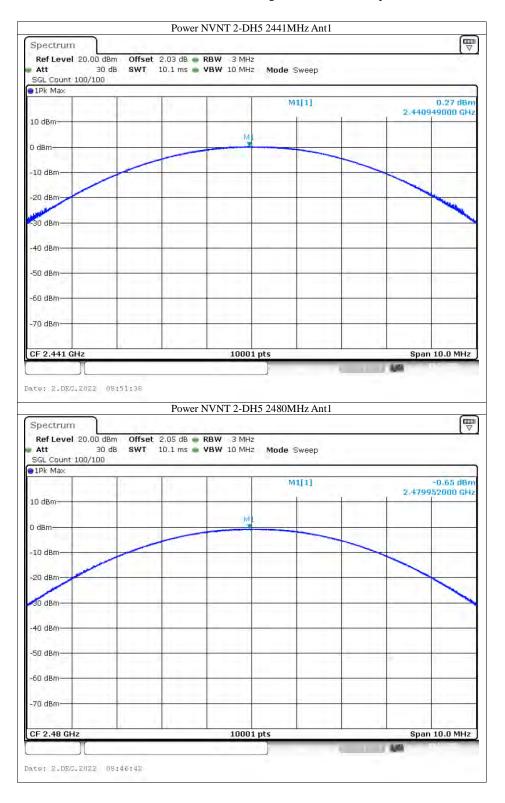
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

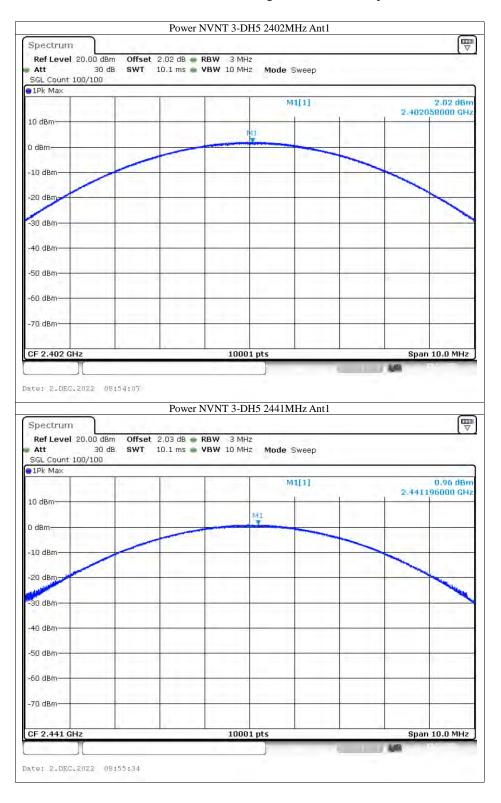
TRF No.: 01-R001-3A-BT

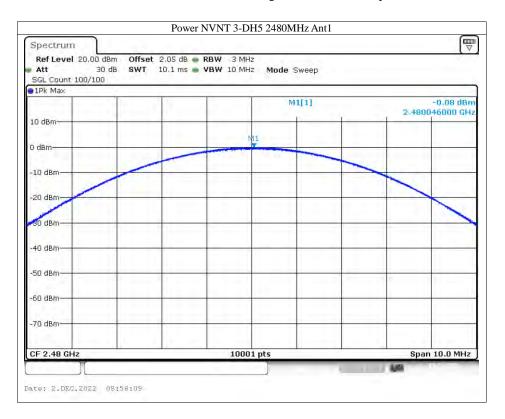
Page 58 of 97 Report No.: E01A22110801F00101


12.4Measurement Results:


Refer to attached data chart.


Spectrum Detector: PK Test Date : December01, 2022


Test By: Big Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	-2.31	0	-2.31	21	Pass
NVNT	1-DH5	2441	Ant1	-3.09	0	-3.09	21	Pass
NVNT	1-DH5	2480	Ant1	-3.73	0	-3.73	21	Pass
NVNT	2-DH5	2402	Ant1	1.39	0	1.39	21	Pass
NVNT	2-DH5	2441	Ant1	0.27	0	0.27	21	Pass
NVNT	2-DH5	2480	Ant1	-0.65	0	-0.65	21	Pass
NVNT	3-DH5	2402	Ant1	2.02	0	2.02	21	Pass
NVNT	3-DH5	2441	Ant1	0.96	0	0.96	21	Pass
NVNT	3-DH5	2480	Ant1	-0.08	0	-0.08	21	Pass

13. Band EDGE test

13.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

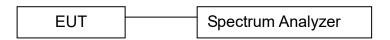
For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

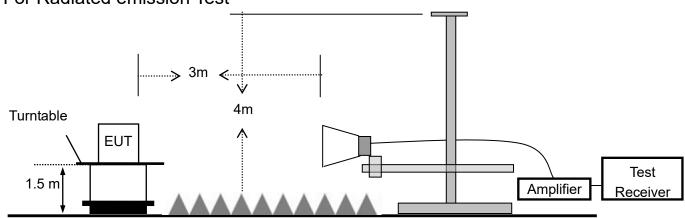
The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:


EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:


EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

13.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

For Radiated emission Test

13.3 Measurement Equipment Used:

For Conducted Test

Remark: The temporary antenna connector is soldered on the PCB board in order to

Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	1	2023-05-12

perform conducted tests and this temporary antenna connector is listed in the equipment list.

TRF No.: 01-R001-3A-BT

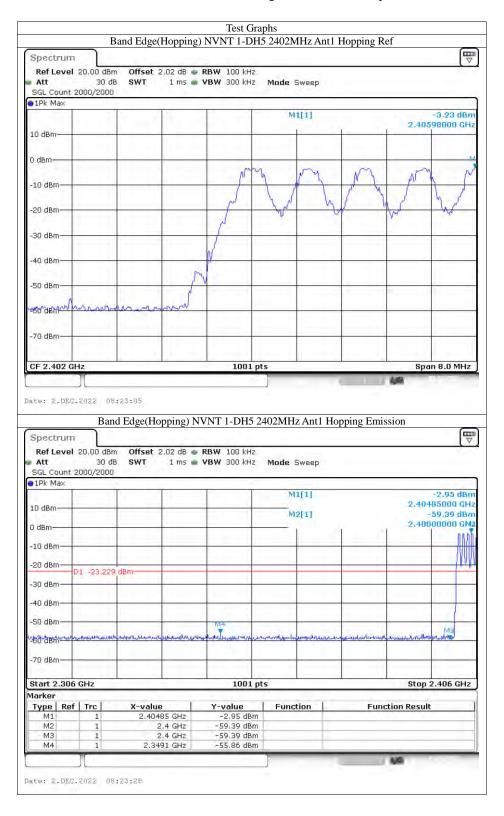
For Radiated emission Test

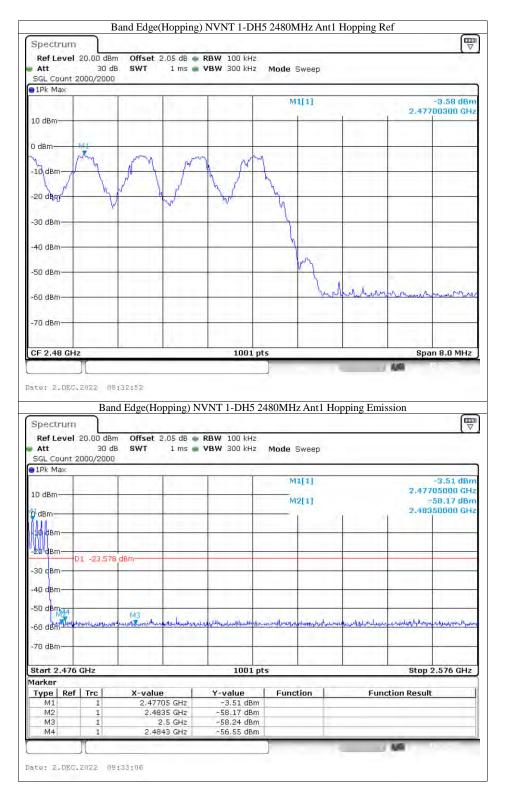
Item	Instr.Co de	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023-10-07
2	AN-E015	Low noise Amplifiers	A-INFO	LA1018N4009	J1013130524001	2023-05-12
3	AN-E014	Horn antenna	A-INFO	LB-10180-SF	J2031090612123	2023-05-14
4	AN-E065	RF Cable	N/A	ZT26-NJ-NJ-11M	19060401	2023-05-12
5	AN-E067	RF Cable	N/A	ZT26-NJ-NJ-2.5M	19060402	2023-05-12
6	AN-E068	RF Cable	N/A	ZT26-NJ-NJ-0.5M	19060403	2023-05-12
7	AN-E056	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-12
8	AN-E069	Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A

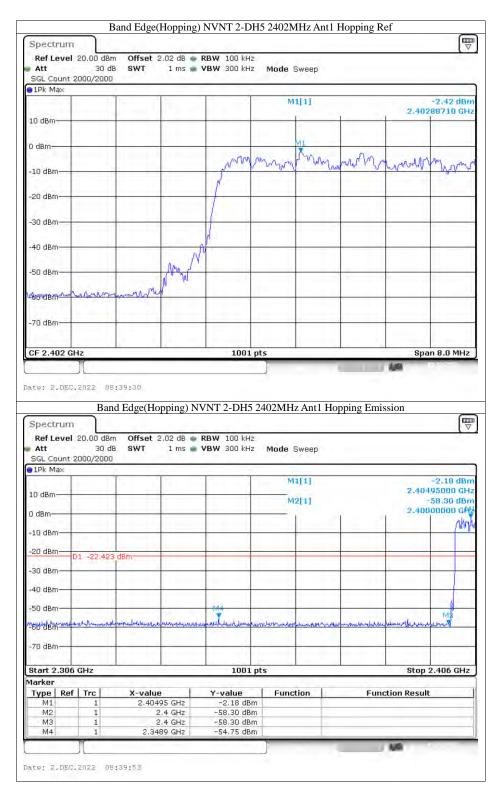
Page 67 of 97 Report No.: E01A22110801F00101

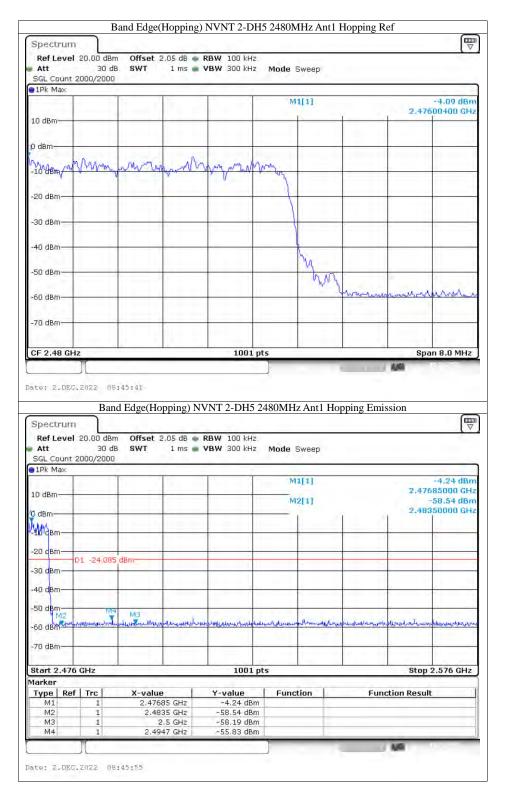
13.4 Measurement Results:

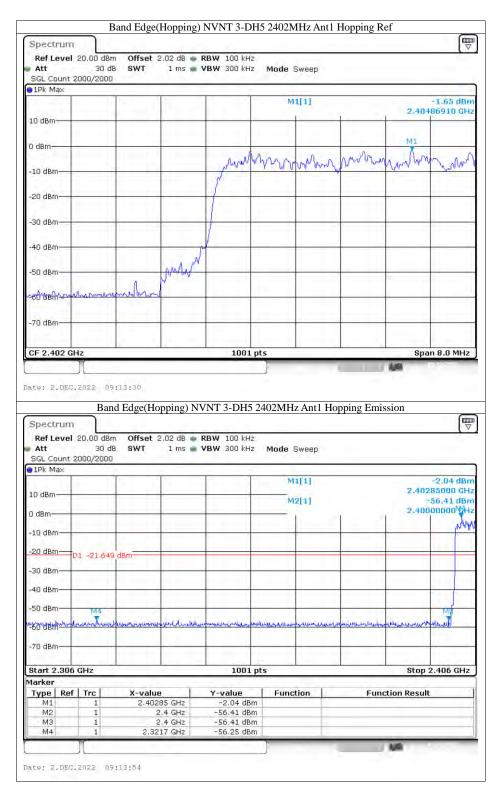
Refer to attached data chart.

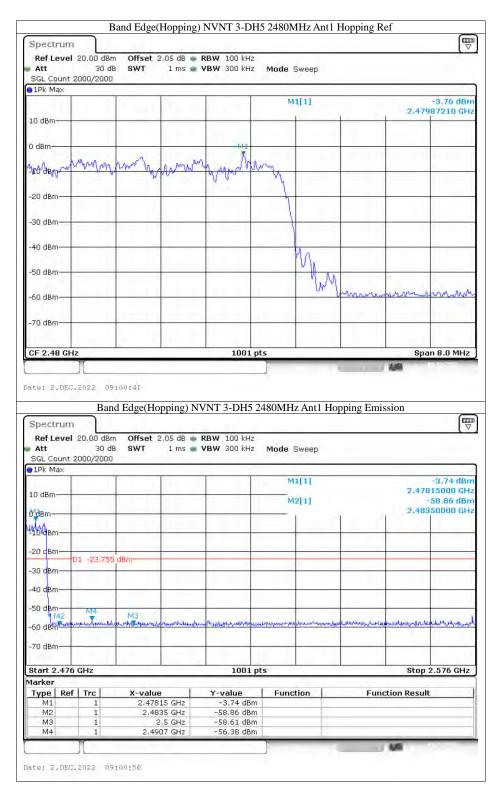

Spectrum Detector: PK Test Date : December01, 2022

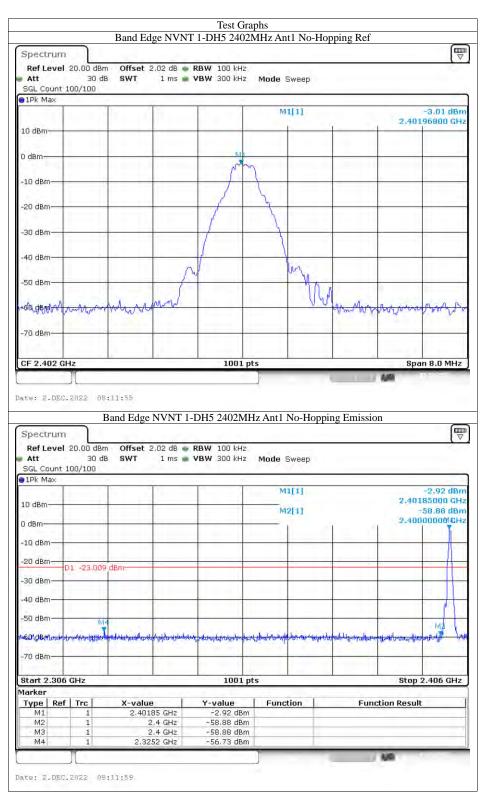

Test By: Big Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

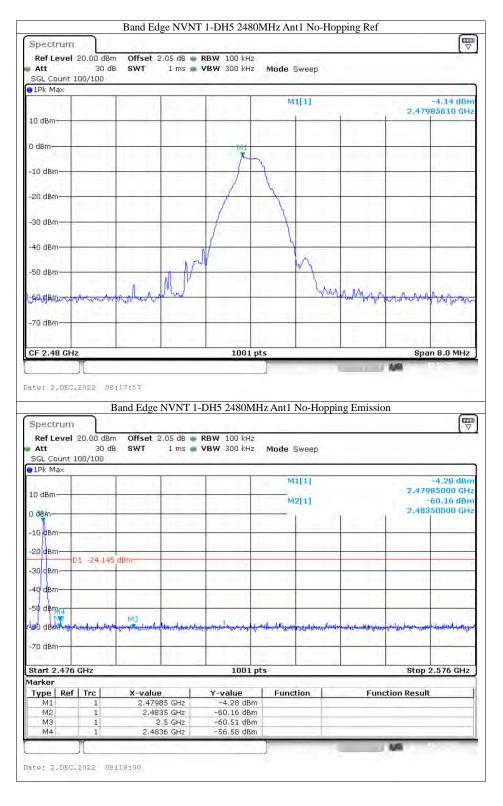

1. Conducted Test

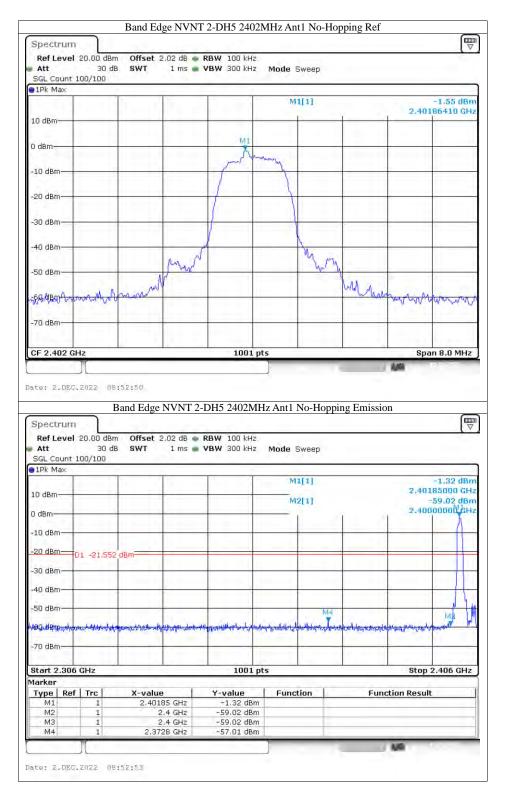

For Hopping Mode:

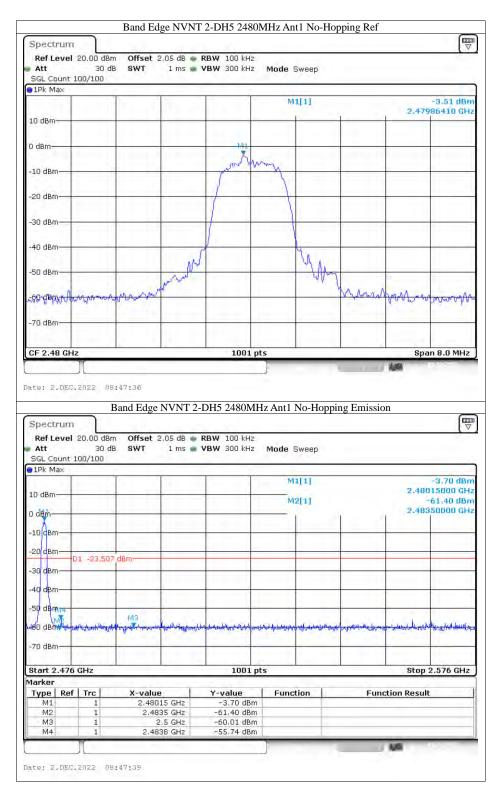

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-52.63	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-52.96	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-52.32	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-51.74	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-54.59	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-52.61	-20	Pass

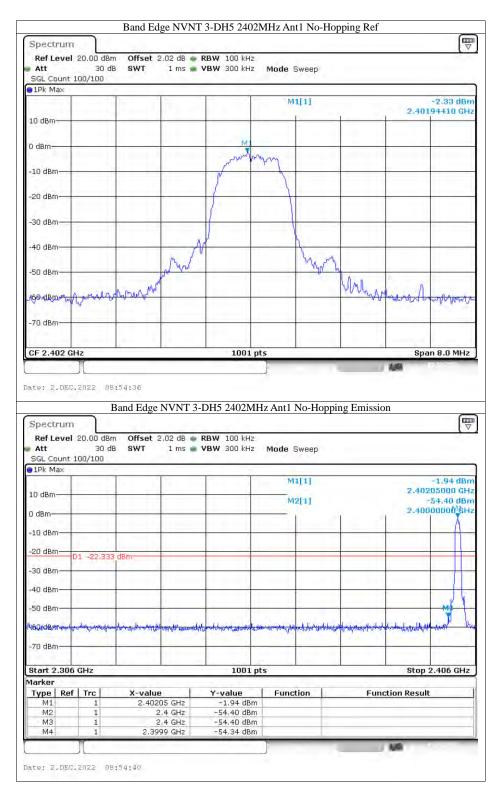


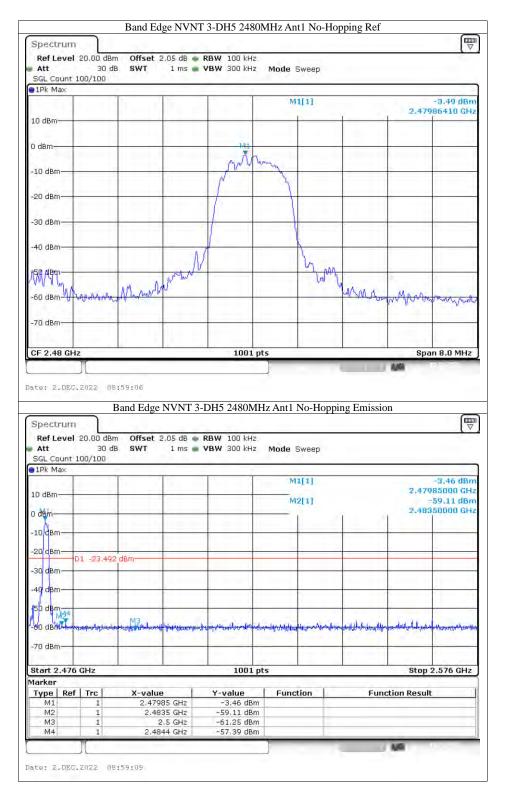







For NO-Hopping Mode:


Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-53.72	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-52.43	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-55.45	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-52.23	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-52	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-53.89	-20	Pass



Page 80 of 97 Report No.: E01A22110801F00101

14. Antenna Port Emission

14.1Test Equipment

Item	Instr.Code	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	AN-E037	Spectrum Analyzer	KEYSIGHT	N9020A	MY61250185	2023-10-07
2	AN-E040	WIDEBAND RADIO COMMUNICATION	Rohde & Schwarz	CMW500	157423	2023-10-07
3	AN-E039	MXG Vector Signal Generator	KEYSIGHT	N5182B	MY61250185	2023-10-07
4	AN-E038	EXG Analog Signal Generator	KEYSIGHT	N5173B	My61252603	2023-10-07
5	AN-E041	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO88	2023-10-07
6	AN-E042	USB RF Power sensor	RadiPower	RPR3006W	17I00015SNO89	2023-10-07
7	/	RF Test Software	MWRF-test	MTS 8310	N/A	N/A
8	AN-E092	Radio Frequency control box	MWRF-test	MW200-RFCB	MW220111ANCI	2023-05-12
9	AN-E093	Radio Frequency control box	MWRF-test	MW200-RFCB 2#	1	2023-05-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

14.2Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.

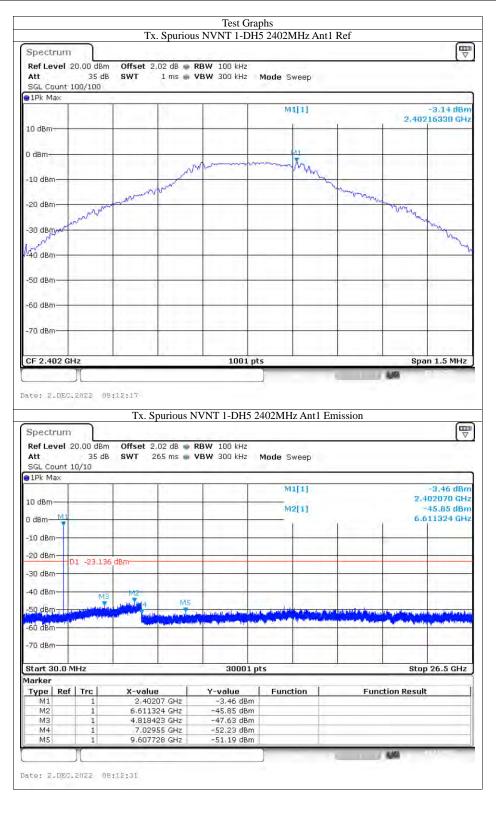
	0 1
Spectrum analyzer	Setting
Attenuation	Auto
RB	100kHz
VB	300kHz
Detector	Peak
Trace	Max hold

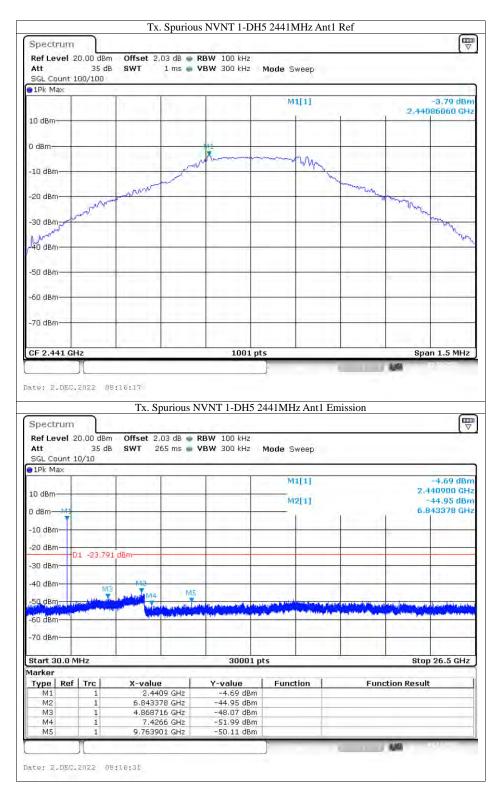
14.3Test Procedures

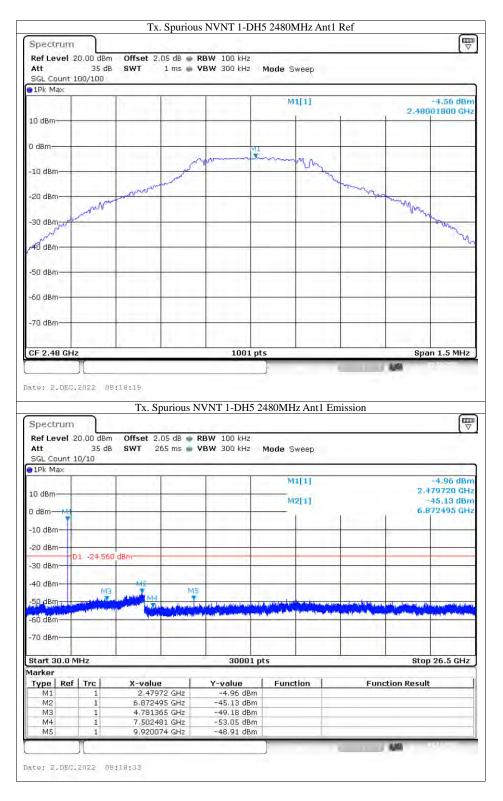
The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.

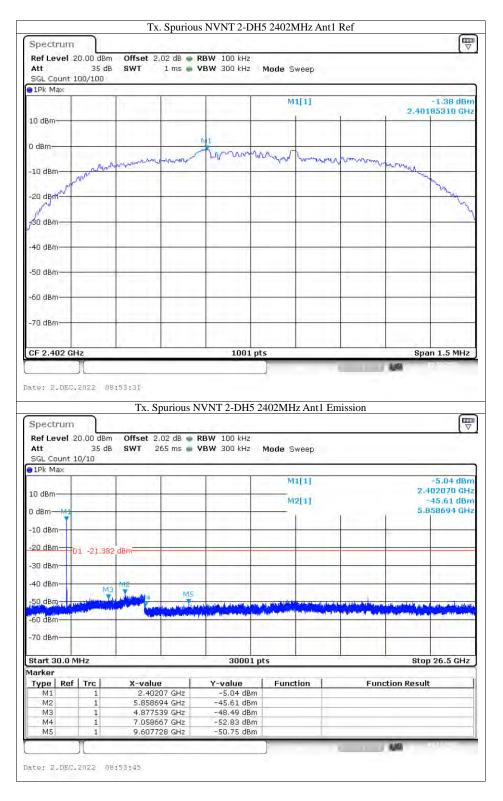
The conducted spurious emissions were measured conducted using a spectrum analyzer at low, Middle, and high channels, the limit was determined by attenuation 20dB of the RF peak power output.

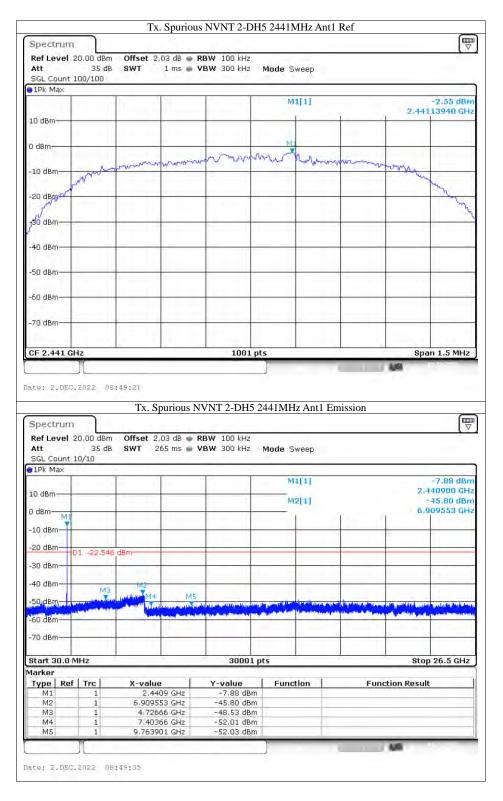
14.4Block Diagram of Test setup

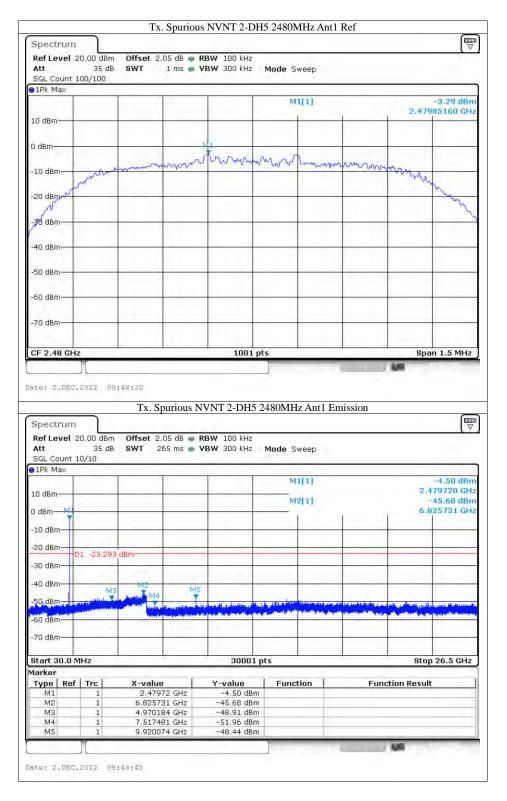

14.5Test Result

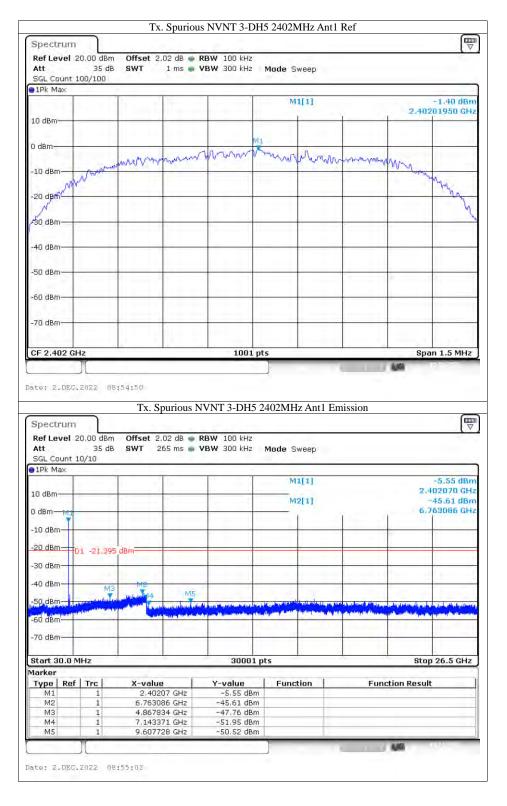

PASS.

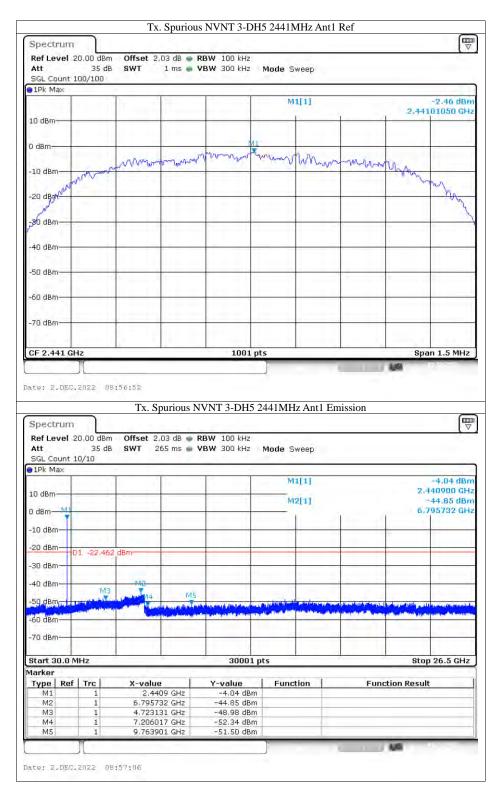

Please refer to following pages.

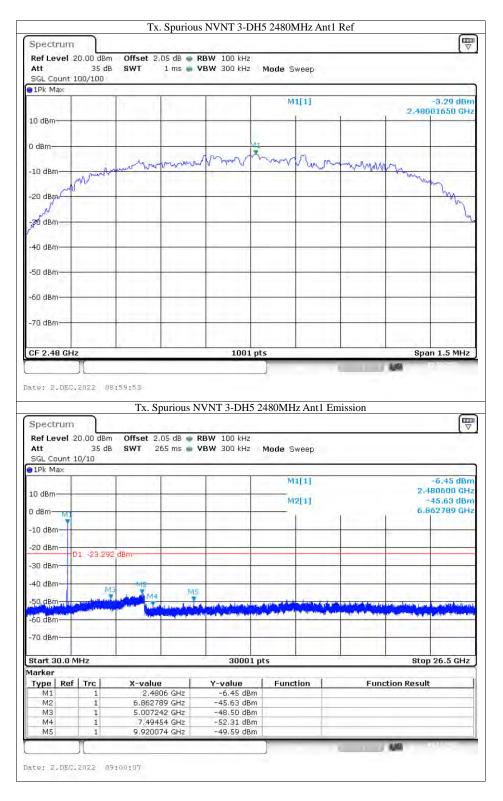

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-42.71	-20	Pass
NVNT	1-DH5	2441	Ant1	-41.15	-20	Pass
NVNT	1-DH5	2480	Ant1	-40.56	-20	Pass
NVNT	2-DH5	2402	Ant1	-44.22	-20	Pass
NVNT	2-DH5	2441	Ant1	-43.25	-20	Pass
NVNT	2-DH5	2480	Ant1	-42.38	-20	Pass
NVNT	3-DH5	2402	Ant1	-44.21	-20	Pass
NVNT	3-DH5	2441	Ant1	-42.38	-20	Pass
NVNT	3-DH5	2480	Ant1	-42.33	-20	Pass









Page 90 of 97 Report No.: E01A22110801F00101

15. Antenna Application

15.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

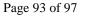
Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

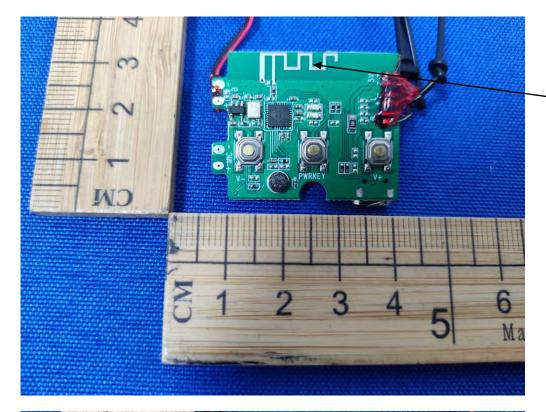
15.2 Result

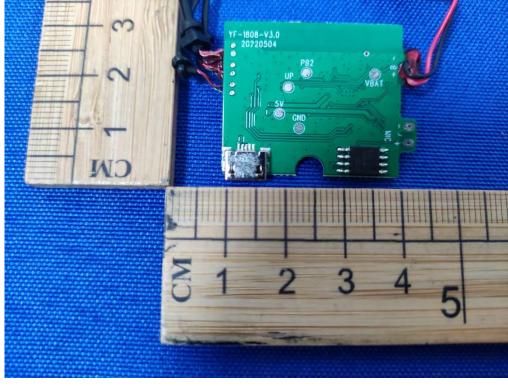
The EUT's antenna, permanent attached antenna, used a chip antenna and integrated on PCB, The antenna's gain is -0.58dBi and meets the requirement.

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.


(Photos of EUT)







ANT

--- End of Report ---