

# Maximum Permissible Exposure (MPE)

## Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

RSS 102 issue 5.

This is a Mobile device, the MPE is required.

# FCC: According to §1.1310 and §2.1091 RF exposure is calculated.

| Frequency Range                                     | Electric Field | Magnetic Field | Power Density          | Averaging Time |  |  |
|-----------------------------------------------------|----------------|----------------|------------------------|----------------|--|--|
| (MHz)                                               | Strength (V/m) | Strength (A/m) | $(mW/cm^2)$            | (minute)       |  |  |
| Limits for General Population/Uncontrolled Exposure |                |                |                        |                |  |  |
| 0.3-1.34                                            | 614            | 1.63           | *(100)                 | 30             |  |  |
| 1.34-30                                             | 824/f          | 2.19/f         | *(180/f <sup>2</sup> ) | 30             |  |  |
| 30-300                                              | 27.5           | 0.073          | 0.2                    | 30             |  |  |
| 300-1500                                            | /              | /              | F/1500                 | 30             |  |  |
| 1500-15000                                          | /              | /              | 1.0                    | 30             |  |  |

Limits for Maximum Permissive Exposure (MPE)

F =frequency in MHz,

\* = Plane-wave equipment power density



## FCC: 2.4GHz mode: 802.11 b mode

Maximum Permissible Exposure (MPE) Evaluation: The worst case of Average power

Power measurement: refer to Part15.247 report for details.

| Cable loss $= 0$ | Output Pow | Limit |       |
|------------------|------------|-------|-------|
| СН               | PK         | AV    | (dBm) |
|                  | (dBm)      | (dBm) |       |
| Low              | 14.55      | 12.56 |       |
| Mid              | 14.95      | 12.93 | 30    |
| High             | 14.82      | 12.81 |       |

802.11g

Power Tolerance: +/- 1 dBm

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 R<sup>2</sup>

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$  and  $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$  to the center of radiation of the antenna

|                                                            | CH 1-11 |           |
|------------------------------------------------------------|---------|-----------|
|                                                            |         |           |
| Tune-Up power at antenna input terminal:                   | 12.93   | (dBm)     |
| Tune-Up power at antenna input terminal:                   | 19.63   | (mW)      |
| Tune-Up power Tolerance:                                   | 1.00    | dB        |
| Duty cycle:                                                | 100.00  | (%)       |
| Maximum Pav :                                              | 24.72   | (mW)      |
| Antenna gain (typical):                                    | 2.00    | (dBi)     |
| Maximum antenna gain:                                      | 1.58    | (numeric) |
| Prediction distance:                                       | 20.00   | (cm)      |
|                                                            |         |           |
| MPE limit for uncontrolled exposure at prediction          | 1.00    | (mW/cm^2) |
| Power density at predication frequency at 20 (cm) distance | 0.0078  | (mW/cm^2) |

#### Measurement Result:

The worst power density is 0.0078 mW/cm<sup>2</sup> which is less than 1 mW/cm<sup>2</sup>.

~~ End ~~

**International Standards Laboratory**