FCC ID: 2AMBW-WM1

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power	Average Time			
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	_			
(A) Limits for Occupational/Control Exposures							
300-1500			F/300	6			
1500-100000			5	6			
(B) Limits for General Population/Uncontrol Exposures							
300-1500			F/1500	6			
1500-100000			1	30			

11.1 Friis transmission formula: Pd= (Pout*G)\ (4*pi*R²)

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm², If we know the maximum gain of the nd total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

11.2 Measurement Result

WIFI2.4G

Antenna gain: 1.54 dBi

Measured power (dBm)	Tune-up power (dBm)	Max tune-up power (dBm)	Antenna Gain Numeric	Evaluation result (mW/cm2)	Power density Limits (mW/cm2)
17.75	16 to 18	18	1.4	0.02	1

BLE

Antenna gain: 1.70 dBi

Measured power (dBm)	Tune-up power (dBm)	Max tune-up power (dBm)	Antenna Gain Numeric	Evaluation result (mW/cm2)	Power density Limits (mW/cm2)
1.82	0 to 2	2	1.5	0.0005	1

CONCLUSION of simultaneous transmitter

Both of the module 1 and module 2 can transmit simultaneously, the formula of calculated the MPE is:

CPD1/LPD1+CPD2/LPD2+·····etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore the worst-case situation is 0.02/1.00+0.0005/1.00 = 0.0205, which is less than "1", This confirmed that the device comply with FCC 1.1310 MPE limit.