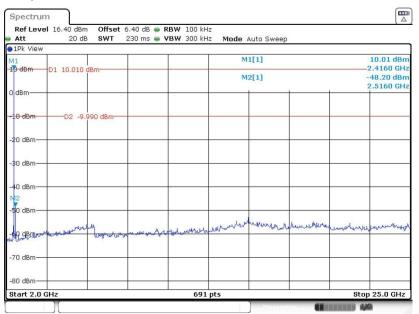


3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:00:15

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.OCT.2019 16:00:45

RefLevel 16.40 dBm Att 20 dB	SWT		RBW 100 kH VBW 300 kH		Auto Sweep			
1Pk View								
10 dBm D1 10.450 dB	-	_		M	1[1]	P	11	10.45 dBm 2.43910 GHz
10 UBIII-01 10.450 UB				M	2[1]			-51.98 dBm
0 dBm					1			1.72990 GHz
-10 dBmD2 -9.55	0 dBm—							
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm				M2				
-60 dBm	Jun work	Mederlaurer		a the second state	hannahanin	menthelister	helter	Hunselmertungh
-70 dBm		in the						
-80 dBm								
Start 30.0 MHz		1	691	pts			S	top 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:43:29

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	16.40 dBm 20 dB		6.40 dB 👄	VBW 100 kH		Auto Sweep			
1Pk View					in the second	-laco o noop			
M1 10 dBm					M	1[1]			10.20 dBr 2.4490 GH
	D1 10.200 d	1Bm-			м	2[1]			53.79 dBr
D dBm								18	5.6970 GH
10 dBm	D2 -9.8	300 dBm							
-20 dBm—			_						
-30 dBm—									
40 dBm—									
-50 dBm—					M		117.		
BP dBm	matrimerally	w work work	the second from the sector	howww	and the start of	martillite	allwahlanda	halmon	munihish
70 dBm—									
80 dBm									
Start 2.0	GHz			691	pts			Stop	25.0 GHz

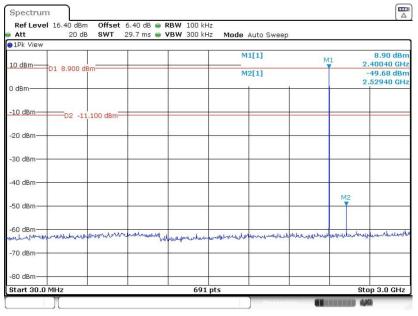
Date: 24.OCT.2019 16:43:56

Ref Level 16.40 dBm Offse Att 20 dB SWT	t 6.40 dB			
1Pk View				
	_	M1[1]	M1	10.03 dBn 2.48210 GH;
10 dBm D1 10.030 dBm		M2[1]		-51.09 dBn
D dBm				2.35310 GH
-10 dBmD2 -9.970 dBm-				
-20 dBm				
-30 dBm				
-40 dBm				
50 dBm			M2	
-60 dBm-	ween weeken when and open week	ald mer werken here here here	wellenstander	humanghourdenan
70 dBm				
80 dBm				
Start 30.0 MHz	691	pts		Stop 3.0 GHz

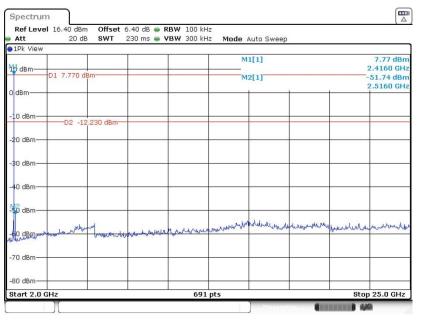
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:51:16

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


120 dBm				1[1] 2[1]			10.12 dBn 2.4830 GH: 51.01 dBn 2.3490 GH:
							2.4830 GH 51.01 dBn
			M	2[1]		1.7	51.01 dBr
2 -9.880 dBm							2.3490 GH
2 -9.880 dBm							
		-					
_							
unarray warder	- John Marth	agrumation	natullanily	methousally	Kongonaldita	howman	plenilleur
	www.com.	Warner Constant of the second se		1000000 Longet yet generalise to the second se			

Date: 24.OCT.2019 16:51:47


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:12:21

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.OCT.2019 16:12:48

Att 20 dB	SWT 29.	7 ms 🥌 VB	W 300 kHz	Mode /	Auto Sweep			
1Pk View			T					
				M	1[1]	M1	2.	8.72 dBn 43910 GH;
D1 8.720 dB	m			M	2[1]		1.70	56.21 dBn
dBm				-		1	2.	56800 GH
LO dBmD2 -11.	280 dBm							
20 dBm								
30 dBm								
10 dBm								
50 dBm							M2	
50 dBm	mypright	returner to	L. day of smith	1. Nhalest Julie	mandered	wennerthand	mululin	humant
70 dBm			encore all a				to yourself it is a second	
30 dBm								

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 24.OCT.2019 16:35:58

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 16.4	40 dBm Offset	6.40 dB 👄 R	BW 100 kH	Iz				
Att	20 dB SWT	230 ms 👄 V	' BW 300 kH	z Mode	Auto Sweep			
1Pk View	.470 dBm				1[1] 2[1]			8.47 dBn 2.4490 GH: 53.62 dBn
0 dBm								5.0300 GH
-10 dBm	D2 -11.530 dBm							
-20 dBm								
-30 dBm								
-40 dBm		_						
-50 dBm					M2			
-6P dBm	www.	and a contraction of the contrac	hodemalaun	all all a contract the second	manuture	Harmonia	warmer way	shrowlet-eau
-70 dBm								
-80 dBm								
Start 2.0 GHz			691	pts			Stop	25.0 GHz

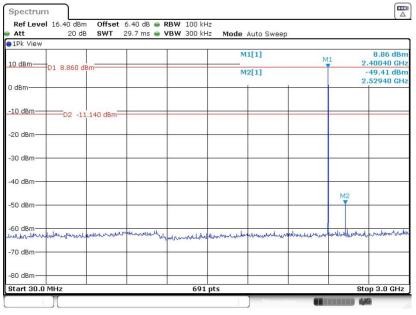
Date: 24.OCT.2019 16:36:29

RefLevel 16.40 dBm Offset Att 20 dB SWT	: 6.40 dB			
1Pk View				
10 dBm-D1 8.880 dBm-		M1[1]	M1	8.88 dBn 2.47780 GH
D1 8.880 dBm		M2[1]		-52.67 dBn 2.35310 GH
0 dBm				2.00010 011
-10 dBmD2 -11.120 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm			M2	
-60 dBm	water and before will be set all all	a manuna manuna al	moundulate	www.www.www.www.www.www.www.
-70 dBm	- andra Ardenadorana e			
-80 dBm				
Start 30.0 MHz	691	pts		Stop 3.0 GHz

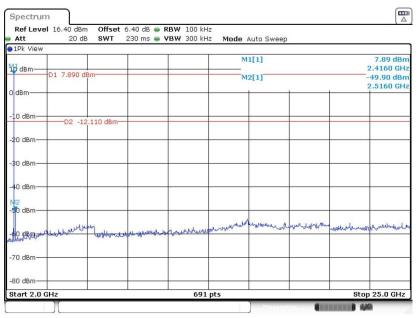
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:57:11

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 16 Att	5.40 dBm Offse 20 dB SWT	t 6.40 dB 👄 R 230 ms 👄 V		Mode A	uto Sweep		
1Pk View	20 00 341	200 113 🖉 🖡	DW 300 KHZ	HOUE A	uto sweep		
10 dBm-D1	8.620 dBm				[1]		8.62 dBn 2.4830 GH 52.52 dBn
D dBm					[1]		2.3490 GH
-10 dBm	-D2 -11.380 dBm						
-20 dBm							
-30 dBm							
40 dBm							
0 dBm				1.10	de m é		
C dBm	Herbert book	toporalastas	walan Majerie	urman an a	and and the states	mountablake	Martina
-70 dBm		_					
-80 dBm							
Start 2.0 GHz			691 p	ts		Stop	25.0 GHz

Date: 24.OCT.2019 16:57:45


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 24.0CT.2019 16:19:14

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.OCT.2019 16:19:47

Ref Level 16.40 dBm Offset Att 20 dB SWT	6.40 dB ● RBW 100 kH 29.7 ms ● VBW 300 kH			
1Pk View				
10 dBm-D1 8.770 dBm-		M1[1]	M1	8.77 dBm 2.43910 GHz
DI 8.770 dBill		M2[1]		-56.31 dBm
0 dBm			- Í	2.56800 GHz
-10 dBmD2 -11.230 dBm-				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm			M	12
-60 dBm	William way	and store of the line to the sector line.	When some only low of the dist.	Ledulacherrow
-70 dBm	Lelulurwhrhwerh		WARKER CITCLE COOL	
-80 dBm				
Start 30.0 MHz	691	nts		Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 24.OCT.2019 16:28:07

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 16.40) dB 🖷 RBW 100 kH			
Att 1Pk View	20 dB SWT 230	i ms 👄 VBW 300 kH	Hz Mode Auto Swe	ер	
M1	780 dBm		M1[1]		8.78 dBn 2.4490 GH -53.02 dBn
D dBm			MZ[1]		15.7630 GH
10 dBmD	2 -11.220 dBm				
-20 dBm					
-30 dBm					
40 dBm					
-50 dBm			M2	the second bad	
BP dBm - Adarha	a multi a the har we that	b devoute work for hard were	numerostown	in property and the	www.unewww.
70 dBm					
-80 dBm					
Start 2.0 GHz		691	pts		Stop 25.0 GHz

Date: 24.OCT.2019 16:28:36

Ref Level 16.40 dBm Att 20 dB			RBW 100 kH VBW 300 kH		Auto Sweep			
1Pk View								
				М	1[1]		M1 2	8.93 dBn 47780 GH;
D1 8.930 dBm				M	2[1]		-	51.82 dBn
) dBm							2	.35310 GH:
10 dBmD2 -11.0	70 dBm						_	
20 dBm								
30 dBm							-	
40 dBm			-				_	
50 dBm						M2		
60 dBm	sile prairies	womphatel			e, a utal a size	Allow to a body bot of	NJ WARMALD IN	al way the other
70 dBm		- With	- Antonia Carlos					

CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 24.OCT.2019 17:02:45

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 16.4	20 dBm Offset	6.40 dB RE 230 ms VE						
1Pk View	20 UB 3WI	230 ms 🖷 ¥t	5W 300 KH.	: Mode /	Auto Sweep			
M1	.710 dBm				1[1]			8.71 dBr 2.4830 GH
				M	2[1]			53.89 dBr 5.6970 GH
dBm								
10 dBm	D2 -11.290 dBm-							
20 dBm								
30 dBm								
40 dBm								
50 dBm				M	2			
CO. dBm and and	and were gurrene	- promped Bardhood by	housedhours	marken	ulmidde	unnormal	heppymander	Munderthand
70 dBm								
80 dBm								
Start 2.0 GHz			691	pts			Stop	25.0 GHz

Date: 24.OCT.2019 17:03:14

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

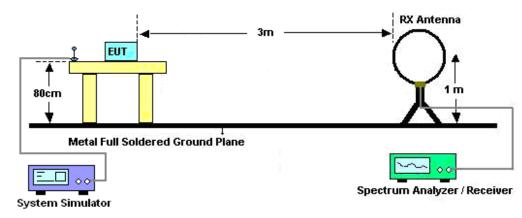
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

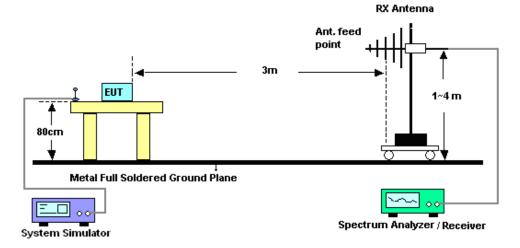
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

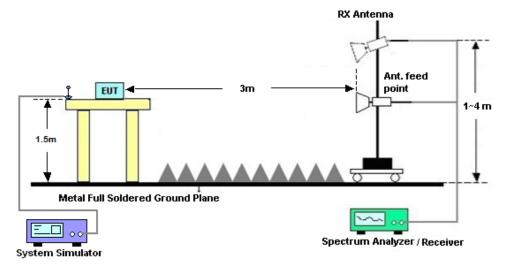
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AMBHRW2266

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

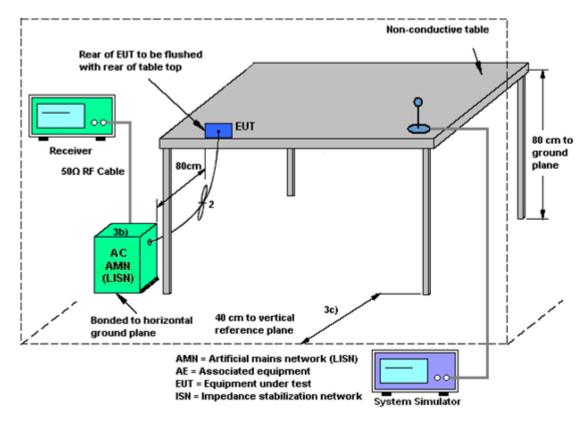
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV30	101338	10Hz~30GHz	Apr. 16, 2019	Oct. 24, 2019	Apr. 15, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Oct. 24, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Oct. 24, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 18, 2019	Nov. 13, 2019	Jul. 17, 2020	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 16, 2019	Nov. 13, 2019	Apr. 15, 2020	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Nov. 13, 2019	Nov. 09, 2020	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2019	Nov. 13, 2019	May 29, 2020	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Nov. 13, 2019	Jan. 26, 2020	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Nov. 13, 2019	Jan. 04, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2019	Nov. 13, 2019	Aug. 05, 2020	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Nov. 13, 2019	Jan. 13, 2020	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2019	Nov. 13, 2019	Aug. 16, 2020	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 18, 2019	Nov. 13, 2019	Oct. 17, 2020	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Nov. 13, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Nov. 13, 2019	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Nov. 13, 2019	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Oct. 31, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2019	Oct. 31, 2019	Oct. 10, 2020	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Oct. 31, 2019	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2019	Oct. 31, 2019	Oct. 10, 2020	Conduction (CO01-KS)

NCR: No Calibration Required.

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.300

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VAB

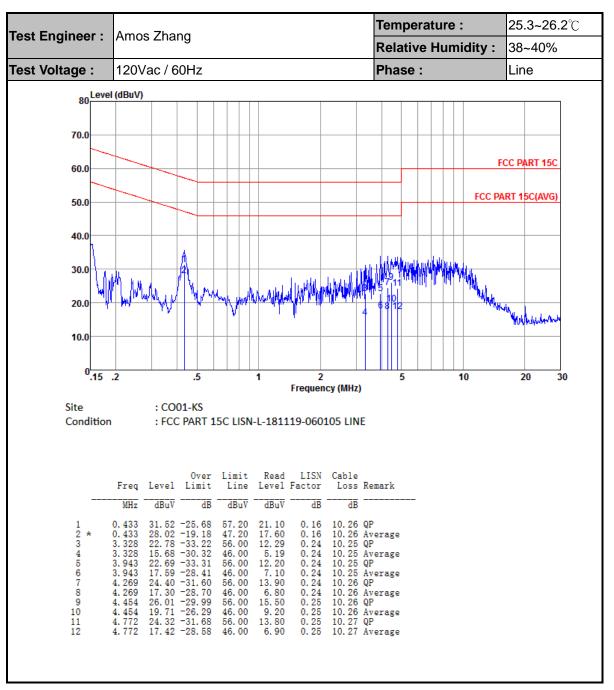
Appendix A. Conducted Test Results

Report Number : FR950807A

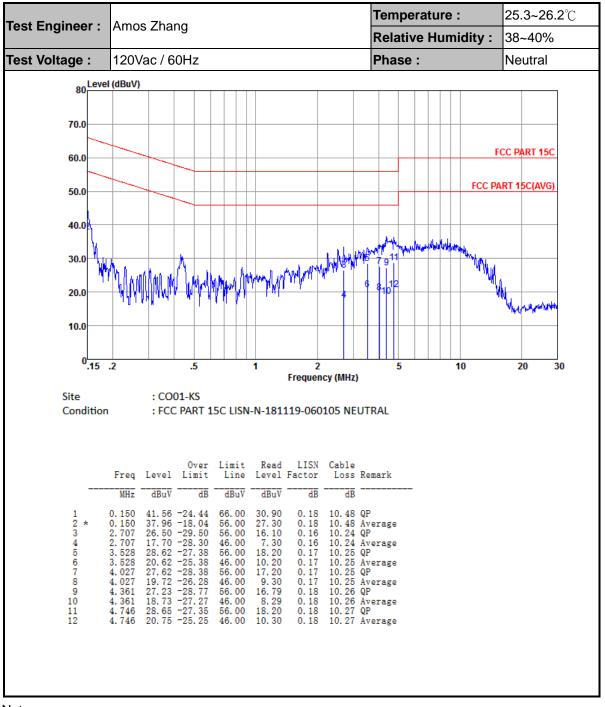
Bluetooth

Test Engineer:	Asa Cheng	Temperature:	20~26	°C
Test Date:	2019/10/24	Relative Humidity:	50-55	%

			<u>20d</u>	B and S	99% Occu		<u>ULTS DATA</u> th and Hopping (Channel Separati	ion_
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (kHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.990	0.906	998.600	0.6599	Pass
DH	1Mbps	1	39	2441	0.984	0.909	998.600	0.6560	Pass
DH	1Mbps	1	78	2480	0.981	0.906	998.600	0.6540	Pass
2DH	2Mbps	1	0	2402	1.259	1.164	1002.900	0.8393	Pass
2DH	2Mbps	1	39	2441	1.263	1.164	1154.800	0.8423	Pass
2DH	2Mbps	1	78	2480	1.224	1.158	994.200	0.8160	Pass
3DH	3Mbps	1	0	2402	1.229	1.146	1042.000	0.8191	Pass
3DH	3Mbps	1	39	2441	1.229	1.143	1011.600	0.8191	Pass
3DH	3Mbps	1	78	2480	1.229	1.143	1007.200	0.8191	Pass


			<u>TE</u> :	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.9043	0.31	0.4	Pass
AFH	20	53.33	2.9043	0.15	0.4	Pass

					ST RESUL Peak Powe
DH	CH.	NTX	Peak Power	Power Limit	Test
			(dBm)	(dBm)	Result
	0	1	10.96	20.97	Pass
DH1	39	1	10.97	20.97	Pass
	78	1	10.94	20.97	Pass
2DH	CH.	NTX	Peak Power	Power Limit	Test
2011	011.		(dBm)	(dBm)	Result
	0	1	11.03	20.97	Pass
2DH1	39	1	11.02	20.97	Pass
	78	1	11.04	20.97	Pass
				•	-
3DH	CH.	NTX	Peak Power	Power Limit	Test
SDH	CH.		(dBm)	(dBm)	Result
	0	1	11.39	20.97	Pass
3DH1	39	1	11.38	20.97	Pass
ĺ	78	1	11.34	20.97	Pass


		<u>TEST RES</u> Number of Ho	<u>SULTS DAT</u> pping Fred
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	79	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

					BT (Band E								
BT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	· · ·	(H/V)
		2359.79	52.47	-21.53	74	48.38	31.21	5.43	32.55	297	67	Р	Н
	*	2359.79	27.71	-26.29	54	-	-	-	-	-	-	А	Н
D.T.		2402	106.19	-	-	101.94	31.3	5.48	32.53	297	67	Ρ	Н
BT CH00		2402	81.43	-	-	-	-	-	-	-	-	А	Н
2402MHz		2376.43	51.81	-22.19	74	47.68	31.25	5.43	32.55	266	107	Ρ	V
2402101712	*	2376.43	27.05	-26.95	54	-	-	-	-	-	-	(P/A) P A P A P A P A Y P A Y A Y A Y A Y A A	V
		2402	100.27	-	-	96.02	31.3	5.48	32.53	266	107	Ρ	V
		2402	75.51	-	-	-	-	-	-	-	-	А	V
	*	2480	104.11	-	-	99.28	31.59	5.55	32.31	165	37	Ρ	Н
		2480	79.35	-	-	-	-	-	-	-	-	А	Н
57		2483.62	57.27	-16.73	74	52.44	31.59	5.55	32.31	165	37	Ρ	Н
BT		2483.62	32.51	-21.49	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz	*	2480	98.30	-	-	93.47	31.59	5.55	32.31	303	51	Ρ	V
2400101112		2480	73.54	-	-	-	-	-	-	-	-	А	V
		2489.02	52.41	-21.59	74	47.53	31.64	5.55	32.31	303	51	Р	V
		2489.02	27.65	-26.35	54	-	-	-	-	-	-	А	V

2.4GHz 2400~2483.5MHz

All results are PASS against Peak and Average limit line.

Remark

2.

				I	BT (Harmo	onic @ 3	8m)						
ВТ	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT		4806	42.45	-31.55	74	61.6	34.88	8.1	62.13	150	360	Р	н
CH 00 2402MHz		4806	40.65	-33.35	74	59.8	34.88	8.1	62.13	150	360	Р	V
		4884	40.05	-33.95	74	59.17	34.92	8.07	62.11	100	360	Р	н
BT		7320	41.63	-32.37	74	59.35	35.3	9.75	62.77	100	360	Р	Н
CH 39 2441MHz		4884	40.22	-33.78	74	59.34	34.92	8.07	62.11	100	360	Р	V
244 111112		7320	41.93	-32.07	74	59.65	35.3	9.75	62.77	100	360	Р	V
D.T.		4962	39.64	-34.36	74	58.7	34.97	8.05	62.08	150	360	Р	Н
ВТ СН 78		7440	40.49	-33.51	74	58.06	35.37	9.84	62.78	150	360	Р	Н
СП 78 2480MHz		4962	39.55	-34.45	74	58.61	34.97	8.05	62.08	150	360	Р	V
2400141112		7440	42.37	-31.63	74	59.94	35.37	9.84	62.78	150	360	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		49.4	19.36	-20.64	40	36.48	15.17	0.81	33.1	-	-	Р	н
		75.59	26.85	-13.15	40	45.7	13.2	0.97	33.02	120	30	Р	н
		108.57	27.06	-16.44	43.5	41.88	17.1	1.16	33.08	-	-	Р	Н
		145.43	28.21	-15.29	43.5	42.51	17.38	1.33	33.01	-	-	Р	н
		217.21	31.68	-14.32	46	47.55	15.37	1.63	32.87	-	-	Р	н
2.4GHz		256.98	29.32	-16.68	46	40.59	19.75	1.77	32.79	-	-	Р	Н
BT LF		45.52	24.35	-15.65	40	40.04	16.63	0.78	33.1	-	-	Ρ	V
		49.4	22.97	-17.03	40	40.09	15.17	0.81	33.1	-	-	Р	V
		96.93	25.77	-17.73	43.5	41.82	15.84	1.09	32.98	-	-	Р	V
		116.33	27.02	-16.48	43.5	41.38	17.52	1.19	33.07	-	-	Р	V
		201.69	27.68	-15.82	43.5	43.86	15.14	1.58	32.9	-	-	Р	V
		262.8	30.73	-15.27	46	41.81	19.9	1.79	32.77	100	13	Р	V
	1. No	o other spurio	us found.										
Remark	2. Al	l results are F	ASS agains	st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

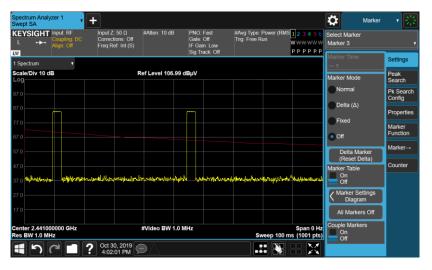
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix D. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

2 Spectrum cale/Div 10 dB 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0	1	R	tef Level 106. $\wedge 2\Delta 1$		Track: Off			рррррр 1.237 ms	Marker Time 1.23700 ms	Settings
og 7.0 7.0 7.0 7.0 7.0	1	R		99 dBµV						
7.0	1	**********	$\wedge 2\Delta 1 \wedge$				83	.73 dBµV	Peak Search	Peak Search
			Y	,3∆1			ſ		Next Peak	Pk Searc Config
									Next Pk Right	Propertie
7.0			Marcarbora			ļ	mound		Next Pk Left	Marker Function
									Minimum Peak	Marker→
enter 2.441000000 es BW 1.0 MHz	GHz		#Video BW 1	.0 MHz		Swe	eep 10.0 n	Span 0 Hz ns (1001 pts)	Pk-Pk Search	Counter
Marker Table	•								Marker Delta	
Mode Trace	t	X 1.237 ms	Y 83.73 dBj	V	ction F	unction Width	Fund	tion Value	Mkr→CF	
2 Δ1 1 3 Δ1 1	t (Δ) t (Δ)		Δ) -0.3270 c Δ) -0.01764 c						Mkr→Ref Lvl	
4 5 6									Continuous Peak Search On Off	

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.