RF TEST REPORT

Report No.: 17071412-FCC-R2

Supersede Report No.: N/A				
Applicant	GHOSTEK, LLC			
Product Name	Bluetooth headphone			
Model No.	soDrop Pro)		
Serial No.	N/A			
Test Standard	FCC Part 1	5.247: 2016, ANSI C63.10: 2	013	
Test Date	December 07, 2017 to January 07, 2018			
Issue Date	January 08, 2018			
Test Result	Pass Fail			
Equipment compl	ied with the	specification		
Equipment did not comply with the specification				
Aaron Liong		David Huang		
Aarron Liang		David Huang		
Test Engineer		Checked By		
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park

South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

 Test Report No.
 17071412-FCC-R2

 Page
 2 of 45

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Accreditations for Conformity Assessment

Test Report No.	17071412-FCC-R2
Page	3 of 45

This page has been left blank intentionally.

 Test Report No.
 17071412-FCC-R2

 Page
 4 of 45

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION7
5.	TEST SUMMARY
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS9
6.1	ANTENNA REQUIREMENT9
6.2	DTS (6 DB) CHANNEL BANDWIDTH10
6.3	MAXIMUM OUTPUT POWER12
6.4]	POWER SPECTRAL DENSITY14
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS16
6.6	AC POWER LINE CONDUCTED EMISSIONS19
6.7	RADIATED EMISSIONS & RESTRICTED BAND25
AN	NEX A. TEST INSTRUMENT
AN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS
AN	IEX C. TEST SETUP AND SUPPORTING EQUIPMENT40
AN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
	IEX E. DECLARATION OF SIMILARITY45

Test Report No.	17071412-FCC-R2
Page	5 of 45

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17071412-FCC-R2	NONE	Original	January 08, 2018

2. Customer information

Applicant Name	GHOSTEK, LLC
Applicant Add	140 58th St Suite 2G, Brooklyn NY 11220,USA
Manufacturer	ASKA Electronics Co., Ltd
Manufacturer Add	3F, building 19#, Road Da Ling Bian, Shahu Community, Tangxia Town,
	Dongguan, China

Test Report No.	17071412-FCC-R2
Page	6 of 45

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	535293		
IC Test Site No.	4842E-1		
Test Software	Radiated Emission Program-To Shenzhen v2.0		
Test Lab B:			
Lab performing tests	SIEMIC (Nanjing-China) Laboratories		
Lab Address	2-1 Longcang Avenue Yuhua Economic and		
	Technology Development Park, Nanjing, China		
FCC Test Site No.	694825		
IC Test Site No.	4842B-1		
Test Software	EZ_EMC(ver.lcp-03A1)		

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

 Test Report No.
 17071412-FCC-R2

 Page
 7 of 45

4. Equipment under Test (EUT) Information

Description of EUT:	Bluetooth headphone
Main Model:	soDrop Pro
Serial Model:	N/A
Date EUT received:	December 06, 2017
Test Date(s):	December 07, 2017 to January 07, 2018
Equipment Category :	DTS
Antenna Gain:	Bluetooth/BLE: 0dBi
Antenna Type:	PCB Antenna
Type of Modulation:	Bluetooth: GFSK, π /4DQPSK, 8DPSK BLE: GFSK
RF Operating Frequency (ies):	Bluetooth& BLE: 2402-2480 MHz
Max. Output Power:	5.840dBm
Number of Channels:	Bluetooth: 79CH BLE: 40CH
Port:	USB Port, AUX Port
Trade Name :	N/A
Input Power:	Battery Spec: 3.7V, 380mAh
FCC ID:	2AMA3-SODROPPRO

Test Report No.	17071412-FCC-R2
Page	8 of 45

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted	Compliance
	Frequency Bands	
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Emissions & Unwanted Emissions	Compliance
§15.247(d)	into Restricted Frequency Bands	

Measurement Uncertainty

Emissions				
Test Item	Description	Uncertainty		
Band-Edge & Unwanted				
Emissions into Restricted				
Frequency Bands and	Confidence level of approximately 95% (in the case			
Radiated Emissions &	where distributions are normal), with a coverage	+5.6dB/-4.5dB		
Unwanted Emissions	factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)			
into Restricted Frequency				
Bands				
-	_	-		

 Test Report No.
 17071412-FCC-R2

 Page
 9 of 45

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 1 antenna:

A permanently attached PCB antenna for Bluetooth, the gain is 0dBi for Bluetooth/BLE.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

 Test Report No.
 17071412-FCC-R2

 Page
 10 of 45

6.2 DTS (6 dB) Channel Bandwidth

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Aarron Liang

Spec	Item	Item Requirement Applic		
§ 15.247(a)(2)	a)	a) 6dB BW≥ 500kHz;		
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	•	
Test Setup		Spectrum Analyzer EUT		
	55807	4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth		
	6dB E	mission bandwidth measurement procedure		
	-	Set RBW = 100 kHz.		
	-	Set the video bandwidth (VBW) \geq 3 RBW.		
	-	Detector = Peak.		
Test Procedure	-	Trace mode = max hold.		
Test Procedure	-	Sweep = auto couple.		
	-	Allow the trace to stabilize.		
	Ν	leasure the maximum width of the emission that is constraine	d by the	
	f	requencies associated with the two outermost amplitude point	s (upper and	
	le	ower frequencies) that are attenuated by 6 dB relative to the m	naximum	
	le	level measured in the fundamental emission.		
Remark				
Result	✓ Pas	ss Fail		
Test Data	;	N/A		
Test Plot Yes	(See b	elow)		

Test Report No.	17071412-FCC-R2
Page	11 of 45

6dB Bandwidth measurement result

Test Data

СН	Frequency (MHz)	6dB Bandwidth (kHz)	99% Occupied Bandwidth (MHz)
Low	2402	697.5	1.0516
Mid	2440	697.5	1.0458
High	2480	697.5	1.0465

Test Plots

Keysidi Spectrum Analyzer – Occupied BW R.L = 87 – 590 – 64 Center Freq 2.402000000 GHz #IFGaind. #IFGaind. I5.dB/div Ref 15.00 dBm	SRISE.INT ALION AUT Center Freq: 242000000 GHz Trig: Freq: Aug00000 GHz Trig: Freq: Aug00000 GHz Aug Hold:>10/10 #Atten: 26 dB	0 12:51:42 PMDec 07,2017 Radio Std: None Radio Device: BTS	Keyeld Spectrum Autyrar - Occupie Keyeld Spectrum Autyrar - Occupie Keyeld Spectrum Autyrar - Occupie Keyeld Spectrum Autyrar - Occupie Second Spectr	SE DOO GHz #FGain:Low SE Center F Trig: Fre #Atten: 2		Radio Std: None	Frequency
0.00 150 0.00 450 450 0.00 105 105 105 105 105 105 105 1		2.4020000	0 GHz 150 300 400 760 400 760 100 100			m	Center Freq 2.44000000 GHz
Center 2.402 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 3 MHz Sweep 1 ms Auto	Step 00 kHz Man Center 2.44 GHz #Res BW 100 kHz	#VE	BW 300 kHz	Span 3 MHz Sweep 1 ms	CF Step 300.000 kHz Auto Man
	MHz 382 kHz % of OBW Power 5	2.3 dBm 99.00 % 6.00 dB	Occupied Bandw	1.0458 MHz	Total Power % of OBW Power x dB	12.1 dBm 99.00 % -6.00 dB	Freq Offset 0 Hz
1 <mark>90</mark>	STA	TUS	MSG				
6dB E	Sandwidth - Low Cl	0 13-52-24 PM Dec 07 2017		6dB Bandw	ridth - Mid C	CH 2440	
Conter Freq 2.48000000 GHz Parter Freq 2.48000000 GHz #FGalaL #FGalaL #FGalaL #FGalaL Conter Lasses Conter 2.48 GHz Res BW 100 kHz Conter 2.48 GHz Res BW 100 kHz Conter 2.48 GHz Transmit Freq Error -11.3	Center Freg 2.4000000 GHz Center Freg 2.4000000 GHz Trig: Free Run Arg Hold⇒1010 #Atten: 26 dB #VBW 300 kHz Total Power 11 MHz 866 kHz % of OBW Power 5	Radio Std: None Radio Device: BTS	r Freq 00 GHz Step D0 KHz Man	6dB Bandw	idth - Mid C	CH 2440	
Conter Freq 2.48000000 GHz Parter Freq 2.48000000 GHz #FGalaL #FGalaL #FGalaL #FGalaL Conter Lasses Conter 2.48 GHz Res BW 100 kHz Conter 2.48 GHz Res BW 100 kHz Conter 2.48 GHz Transmit Freq Error -11.3	Center Freg 2.4000000 GHz Center Freg 2.4000000 GHz Trig: Free Run Arg Hold⇒1010 #Atten: 26 dB #VBW 300 kHz Total Power 11 MHz 866 kHz % of OBW Power 5	Radio Std: None Radio Std: None Radio Device: BTS Span 3 MHz Sweep 1 ms L5 dBm 99.00 % 6.00 dB	* Freq 0 GHz 0 0 GHz 00 0 Hz Man	6dB Bandw	idth - Mid C	CH 2440	

Test Report No.	17071412-FCC-R2
Page	12 of 45

6.3 Maximum Output Power

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1005mbar
Test date :	January 01, 2018
Tested By :	Aarron Liang

Requirement(s):

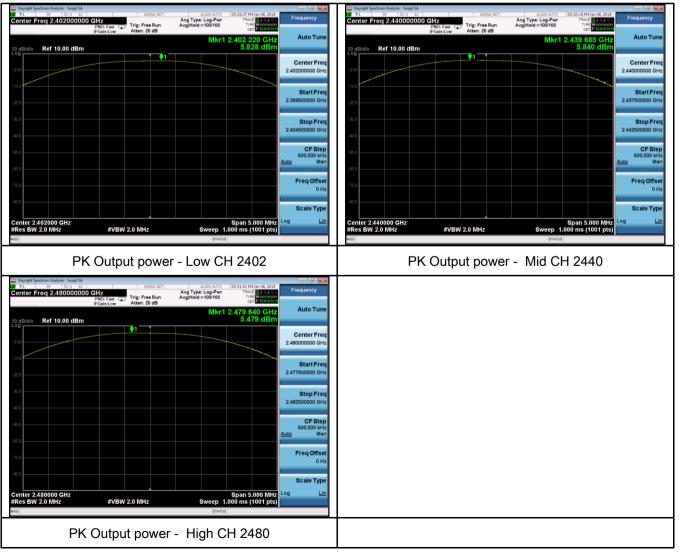
Spec	Item	Requirement	Applicable	
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt		
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt		
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.		
(A8.4)	d)	FHSS in 902-928MHz with \geq 50 channels: \leq 1 Watt		
(, (011))	e)	FHSS in 902-928MHz with $\geq 25 \& <50$ channels: ≤ 0.25 Watt		
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	Y	
Test Setup	Spectrum Analyzer EUT			
Test Procedure	Spectrum Analyzer EUT 558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method Maximum output power measurement procedure a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.			
Remark				
Result	Pass Fail			

Test Report No. 17071412-FCC-R2 Page 13 of 45

Test Data	Yes
Test Plot	✓ Yes (See b

N/A

below)


□_{N/A}

Output Power measurement result

Test Data

Туре	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
Output	Low	2402	5.828	30	Pass
Output	Mid	2440	5.840	30	Pass
power	High	2480	5.479	30	Pass

Test Plots

 Test Report No.
 17071412-FCC-R2

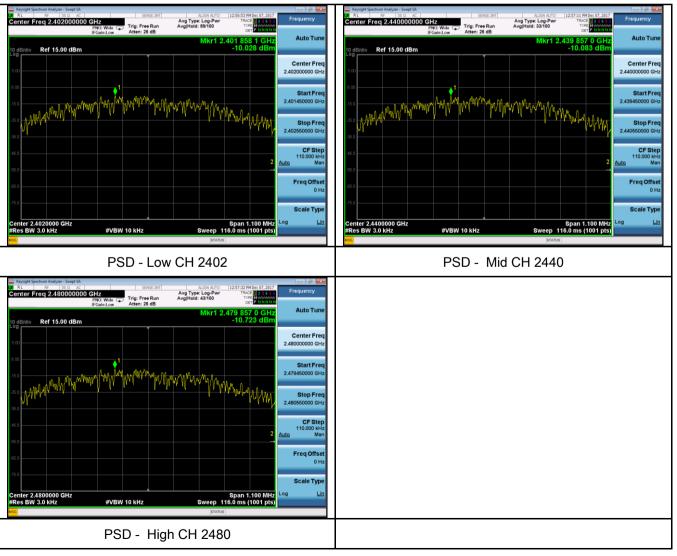
 Page
 14 of 45

6.4 Power Spectral Density

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Aarron Liang

Spec	Item	em Requirement				
		The power spectral density conducted from the				
		intentional radiator to the antenna shall not be greater				
§15.247(e)	a)	than 8 dBm in any 3 kHz band during any time				
		interval of continuous transmission.				
Test Setup		Spectrum Analyzer EUT				
	558074	D01 DTS MEAS Guidance v03r03, 10.2 power spectral density met	hod			
	power s	pectral density measurement procedure				
	- a) Set analyzer center frequency to DTS channel center frequency.					
	- b) Set the span to 1.5 times the DTS bandwidth.					
	-	c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.				
Test	- d) Set the VBW \geq 3 × RBW.					
	-	e) Detector = peak.				
Procedure	- f) Sweep time = auto couple.					
	- g) Trace mode = max hold.					
	-	h) Allow trace to fully stabilize.				
	-	i) Use the peak marker function to determine the maximum amplitud	de level within			
		the RBW.				
	-	j) If measured value exceeds limit, reduce RBW (no less than 3 kHz	z) and repeat.			
Remark						
Result	Pas	ss Fail				
Test Data	Yes Yes (See	below)				

Test Report No.	17071412-FCC-R2
Page	15 of 45


Power Spectral Density measurement result

Test Data

Туре	СН	Freq (MHz)	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Result
	Low	2402	-10.028	-5.23	-15.258	8	Pass
PSD	Mid	2440	-10.083	-5.23	-15.313	8	Pass
	High	2480	-10.723	-5.23	-15.953	8	Pass

Note: factor=10log(3/10)=-5.23

Test Plots

 Test Report No.
 17071412-FCC-R2

 Page
 16 of 45

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Aarron Liang

Requirement(s):

Spec	Item	Requirement	Applicable				
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	V				
Test Setup		FUT& 3m Support Units 0.8/1.5m Ground Plane Test Receiver					
Test Procedure	Radiate	ed Method Only 1. Check the calibration of the measuring instrument using either an calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument Rotated table and turn on the EUT and make it operate in transmitt set it to Low Channel and High Channel within its operating range, the instrument is operated in its linear range.	. Put it on the ing mode. Then				

3								
SIF		Test Report No.	17071412-FCC-R2					
A Bureau Veritas G	roup Company	Page	17 of 45					
	- 3. First. set bot	h RBW and VBW	of spectrum analyzer to 100 kHz with a					
	convenient frequency span including 100kHz bandwidth from band edge, check							
	the emission of	the emission of EUT, if pass then set Spectrum Analyzer as below:						
	a. The resolution	on bandwidth and	video bandwidth of test receiver/spectrum					
	analyzer is 120) kHz for Quasiy P	eak detection at frequency below 1GHz.					
	b. The resolution	on bandwidth of te	st receiver/spectrum analyzer is 1MHz and video					
	bandwidth is 3I	MHz with Peak de	tection for Peak measurement at frequency above					
	1GHz.							
	c. The resolution	on bandwidth of te	st receiver/spectrum analyzer is 1MHz and the					
	video bandwidt	th is 10Hz with Pea	ak detection for Average Measurement as below					
	at frequency at	oove 1GHz.						
			e appearing on spectral display and set it as a					
			ith marking the highest point and edge frequency.					
	- 5. Repeat abov	e procedures unti	I all measured frequencies were complete.					
Remark								
Result	Pass	Fail						
Test Data	es	N/A						
Test Plot	es (See below)	N/A						

Test Report No.	17071412-FCC-R2
Page	18 of 45

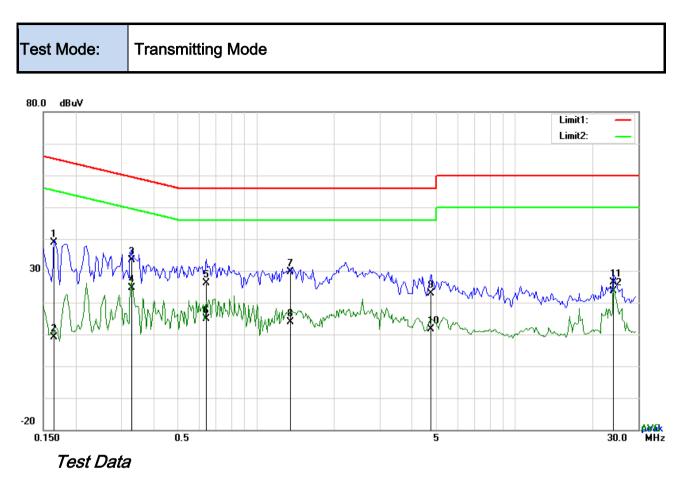
Test Plots

Band Edge measurement result

Keysight Spectrum Analyzer - Swept SA			🔤 Keysight Spectrum Analyzer - Swept SA 💦 👘 🐼
Start Freq 2.310000000 GHz PNO: Fast Trig: Free Run IFGaint.low Atten: 26 dB	Avg Type: Log-Pwr TRA		0 R.L 8F [59.0 AC SBGESITI ALIGN AUTO 0.2302 PMDe0 2/302 PMDe0 2/30
10 dB/div Ref 15.00 dBm	Mkr1 2.40 5.6	2 0 GHz Auto Tune 90 dBm	Mkr1 2.480 000 GHz 10 dBildiv Ref 15.00 dBm 4.826 dBm
500 -150		Center Freq 2.360000000 GHz	500 1 50 Center Freq 500 2.48750000 GHz
-350 -350 -450		21 Start Freq 2.31000000 GHz	Start Freq 2.47500000 GHz
65 0 65 0 75 0	ware and the second second	2.41000000 GHz	650 Stop Freq 650 Stop Freq 750 Stop Freq
Start 2.31000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.4 Sweep 9.600 ms (Start 2.47500 GHz Stop 2.50000 GHz CF Step 2.400 ms (100 1b2) #Res BW 100 kHz Sweep 2.400 ms (100 1b2) Auto mouth of the store of the stor
1 N 1 f 2.492.0 GHz 5.890 dBm 2 N 1 f 2.400.0 GHz -34.702 dBm 3		Freq Offset 0 Hz	1 1 f 2.480.000 GHz 4.826 dBm 2 N 1 f 2.483.500 GHz -55.127 dBm 3 3 3 4 6 0 4 4 6 0 0 0
6 7 8 9 10 11		Scale Type	7 8 9 9 10 Log Lin
K⊑	STATUS		
Band Edg	ge, Left Side		Band Edge, Right Side

6.6 AC Power Line Conducted Emissions

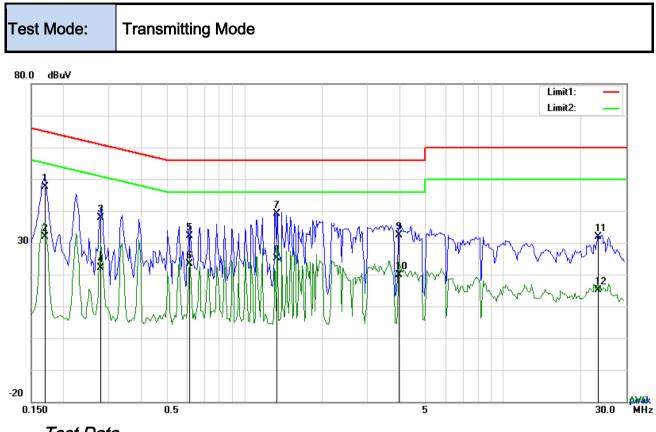
Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Aarron Liang


Requirement(s):

Spec	Item	Requirement		Applicable			
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-fr connected to the public voltage that is conducted frequency or frequencies not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 5$ $5 \sim 30$	Y				
Test Setup		5 ~ 30 60 50 Vertical Ground Reference Plane UT #0 cm UT #0 cm B 0 cm Horizontal Ground Reference Plane Horizontal Ground Reference Plane Horizontal Ground Reference Plane					
Procedure	the 2. The filte	the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table.The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains.					

S RE A Bureau Verit		Test Report No. Page	17071412-FCC-R2 20 of 45
	 The EUT was switched of A scan was made on the over the required freque High peaks, relative to the selected frequencies and setting of 10 kHz. 	on and allowed NEUTRAL lin ncy range usin he limit line, Th d the necessar	owered separately from another main supply. I to warm up to its normal operating condition. e (for AC mains) or Earth line (for DC power) g an EMI test receiver. e EMI test receiver was then tuned to the y measurements made with a receiver bandwidth line (for AC mains) or DC line (for DC power).
Remark			
Result	Pass Fail		
Test Data	Yes Yes (See below)	I/A I/A	

Test Report No. 17071412-FCC-R2 21 of 45 Page

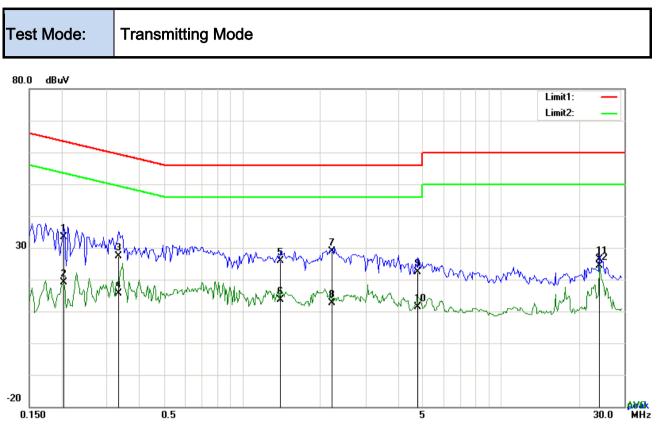

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1656	28.87	QP	10.03	38.90	65.18	-26.28
2	L1	0.1656	-0.96	AVG	10.03	9.07	55.18	-46.11
3	L1	0.3294	23.44	QP	10.03	33.47	59.47	-26.00
4	L1	0.3294	14.55	AVG	10.03	24.58	49.47	-24.89
5	L1	0.6414	16.00	QP	10.03	26.03	56.00	-29.97
6	L1	0.6414	4.81	AVG	10.03	14.84	46.00	-31.16
7	L1	1.3590	19.53	QP	10.03	29.56	56.00	-26.44
8	L1	1.3590	3.81	AVG	10.03	13.84	46.00	-32.16
9	L1	4.7355	12.85	QP	10.08	22.93	56.00	-33.07
10	L1	4.7355	1.43	AVG	10.08	11.51	46.00	-34.49
11	L1	24.0210	16.08	QP	10.38	26.46	60.00	-33.54
12	L1	24.0210	13.26	AVG	10.38	23.64	50.00	-26.36

Test Report No. 17071412-FCC-R2 Page

22 of 45

Test Data

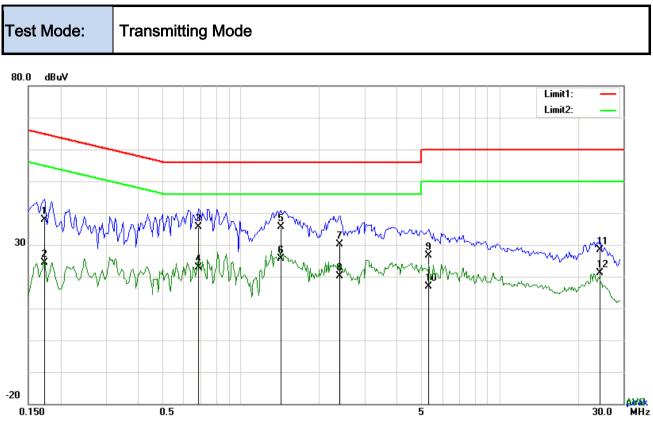

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1695	37.49	QP	10.02	47.51	64.98	-17.47
2	Ν	0.1695	21.88	AVG	10.02	31.90	54.98	-23.08
3	Ν	0.2787	27.78	QP	10.02	37.80	60.85	-23.05
4	Ν	0.2787	12.10	AVG	10.02	22.12	50.85	-28.73
5	Ν	0.6141	22.03	QP	10.02	32.05	56.00	-23.95
6	Ν	0.6141	13.31	AVG	10.02	23.33	46.00	-22.67
7	Ν	1.3434	29.19	QP	10.03	39.22	56.00	-16.78
8	Ν	1.3434	15.05	AVG	10.03	25.08	46.00	-20.92
9	Ν	3.9711	22.21	QP	10.06	32.27	56.00	-23.73
10	Ν	3.9711	9.89	AVG	10.06	19.95	46.00	-26.05
11	Ν	23.2995	21.62	QP	10.31	31.93	60.00	-28.07
12	Ν	23.2995	4.72	AVG	10.31	15.03	50.00	-34.97

 Test Report No.
 17071412-FCC-R2

 Page
 23 of 45

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2046	23.36	QP	10.03	33.39	63.42	-30.03
2	L1	0.2046	9.09	AVG	10.03	19.12	53.42	-34.30
3	L1	0.3333	17.43	QP	10.03	27.46	59.37	-31.91
4	L1	0.3333	5.57	AVG	10.03	15.60	49.37	-33.77
5	L1	1.4097	15.76	QP	10.04	25.80	56.00	-30.20
6	L1	1.4097	3.54	AVG	10.04	13.58	46.00	-32.42
7	L1	2.2248	18.73	QP	10.05	28.78	56.00	-27.22
8	L1	2.2248	2.66	AVG	10.05	12.71	46.00	-33.29
9	L1	4.7862	12.38	QP	10.08	22.46	56.00	-33.54
10	L1	4.7862	1.18	AVG	10.08	11.26	46.00	-34.74
11	L1	24.0210	15.94	QP	10.38	26.32	60.00	-33.68
12	L1	24.0210	14.02	AVG	10.38	24.40	50.00	-25.60

Test Report No. 17071412-FCC-R2 Page

24 of 45

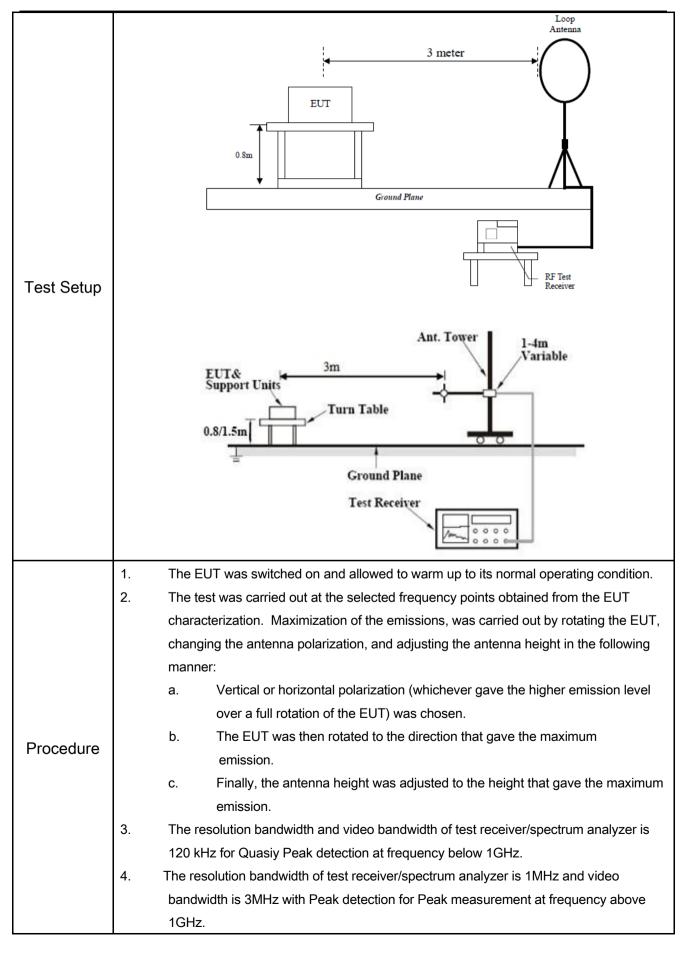
Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1734	27.93	QP	10.02	37.95	64.80	-26.85
2	Ν	0.1734	14.32	AVG	10.02	24.34	54.80	-30.46
3	Ν	0.6843	25.51	QP	10.02	35.53	56.00	-20.47
4	Ν	0.6843	12.81	AVG	10.02	22.83	46.00	-23.17
5	Ν	1.4214	25.59	QP	10.03	35.62	56.00	-20.38
6	Ν	1.4214	15.70	AVG	10.03	25.73	46.00	-20.27
7	Ν	2.4042	20.04	QP	10.04	30.08	56.00	-25.92
8	Ν	2.4042	9.97	AVG	10.04	20.01	46.00	-25.99
9	Ν	5.3205	16.59	QP	10.07	26.66	60.00	-33.34
10	Ν	5.3205	6.91	AVG	10.07	16.98	50.00	-33.02
11	Ν	24.3486	18.00	QP	10.33	28.33	60.00	-31.67
12	Ν	24.3486	10.92	AVG	10.33	21.25	50.00	-28.75

6.7 Radiated Emissions & Restricted Band

Temperature	25℃
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Aarron Liang


Requirement(s):

Spec	Item	Requirement		Applicable	
		Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tigh edges	p-frequency devices shall not ecified in the following table and as shall not exceed the level of		
		Frequency range (MHz)	Field Strength (µV/m)	_	
	a)	0.009~0.490	2400/F(KHz)	~	
		0.490~1.705	24000/F(KHz)		
		1.705~30.0	30		
		30 - 88	100		
47CFR§15.		88 - 216	150		
247(d),		216 960	200		
RSS210		Above 960			
(A8.5)	b)	For non-restricted band, In any 100 frequency band in which the spread modulated intentional radiator is op power that is produced by the inter 20 dB or 30dB below that in the 10 band that contains the highest leve determined by the measurement m used. Attenuation below the general is not required 20 dB down 30	d spectrum or digitally berating, the radio frequency tional radiator shall be at least 0 kHz bandwidth within the I of the desired power, ethod on output power to be	V	
	c)	or restricted band, emission must a emission limits specified in 15.209	lso comply with the radiated	V	

 Test Report No.
 17071412-FCC-R2

 Page
 26 of 45

3				
SĨE	M	IC	Test Report No.	17071412-FCC-R2
A Bureau Veri			Page	27 of 45
	5.	bandwidth is frequency abo	10Hz with Peak detec ove 1GHz. 3 were repeated for t	ceiver/spectrum analyzer is 1MHz and the video ation for Average Measurement as below at he next frequency point, until all selected frequency
Remark				
Result	P	ass	E Fail	
Test Data	Yes		N/A	
Test Plot	Yes	(See below)	□ _{N/A}	

Test Result:

Test Mode: Transmitting Mode	
------------------------------	--

Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

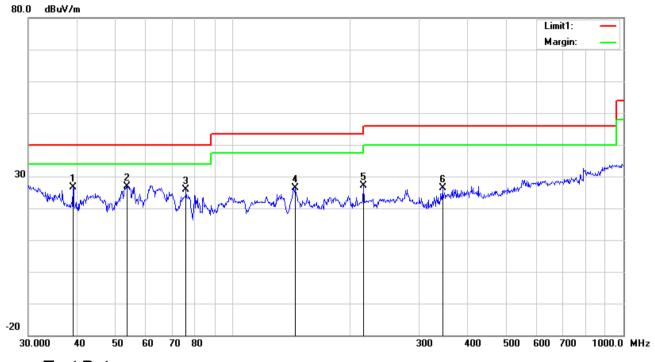
Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Report No. 17071412-FCC-R2 Page

28 of 45

Test Mode: **Transmitting Mode** 30MHz -1GHz 80.0 dBu∀/m Limit1: Margin: 30 Mahandham 2 X ۶ X 5 1 3 . 18 -20 30.000 40 50 60 70 80 300 400 500 600 700 1000.0 MHz Test Data


Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)	6	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	53.6932	35.18	peak	7.99	22.39	0.79	21.57	40.00	-18.43	100	332
2	Н	75.9773	39.74	peak	7.68	22.40	0.98	26.00	40.00	-14.00	100	45
3	Н	100.2286	32.80	peak	10.44	22.32	1.12	22.04	43.50	-21.46	100	277
4	Н	135.5062	35.76	peak	12.89	22.40	1.24	27.49	43.50	-16.01	100	183
5	Н	199.2855	32.42	peak	12.06	22.38	1.54	23.64	43.50	-19.86	100	87
6	Н	304.6100	33.90	peak	13.70	22.28	1.81	27.13	46.00	-18.87	100	183

Test Report No.	17071412-FCC-R2
Page	29 of 45

30MHz -1GHz

Test Data

Horizontal Polarity Plot @3m

Ν	P/	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
о.	L			or								ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	39.0245	33.42	peak	14.61	22.27	0.78	26.54	40.00	-13.46	100	137
2	V	53.6932	40.54	peak	7.99	22.39	0.79	26.93	40.00	-13.07	100	318
3	V	75.9773	39.66	peak	7.68	22.40	0.98	25.92	40.00	-14.08	100	44
4	V	144.8418	34.92	peak	12.60	22.38	1.30	26.44	43.50	-17.06	100	115
5	V	216.0240	36.07	peak	11.88	22.35	1.59	27.19	46.00	-18.81	100	122
6	V	344.3855	31.95	peak	14.53	22.17	2.01	26.32	46.00	-19.68	100	219

 Test Report No.
 17071412-FCC-R2

 Page
 30 of 45

Above 1GHz

7440

31.65

24.38

5.68

27.99

33.72

54

-20.28

Average Horizontal

Test Mod	le: Ti	ransmittir	ng Mode)					
Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector	Polarity
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(PK/AV)	(H/V)
			Low Ch	annel:GFS	K Mode-240	2MHz			
2390	38.59	28.72	3.36	26.32	44.35	74	-29.65	peak	Vertical
4804	29.81	32.94	3.98	27.49	39.24	54	-14.76	Average	Vertical
4804	40.15	32.94	3.98	27.49	49.58	74	-24.42	peak	Vertical
7206	30.17	25.28	5.51	27.94	33.02	54	-20.98	Average	Vertical
7206	41.26	25.28	5.51	27.94	44.11	74	-29.89	peak	Vertical
2390	39.38	28.72	3.36	26.32	45.14	74	-28.86	peak	Horizontal
4804	29.55	32.94	3.98	27.49	38.98	54	-15.02	Average	Horizontal
4804	40.34	32.94	3.98	27.49	49.77	74	-24.23	peak	Horizontal
7206	30.22	25.28	5.51	27.94	33.07	54	-20.93	Average	Horizontal
7206	41.64	25.28	5.51	27.94	44.49	74	-29.51	peak	Horizontal
			Middle C	hannel:GF	SK Mode-24	40MHz			
4880	30.72	32.11	4.04	27.53	39.34	54	-14.66	Average	Vertical
4880	40.35	32.11	4.04	27.53	48.97	74	-25.03	peak	Vertical
7320	31.52	24.33	5.58	27.96	33.47	54	-20.53	Average	Vertical
7320	41.61	24.33	5.58	27.96	43.56	74	-30.44	peak	Vertical
4880	30.48	32.11	4.04	27.53	39.10	54	-14.90	Average	Horizontal
4880	42.63	32.11	4.04	27.53	51.25	74	-22.75	peak	Horizontal
7320	31.29	24.33	5.58	27.96	33.24	54	-20.76	Average	Horizontal
7320	42.18	24.33	5.58	27.96	44.13	74	-29.87	peak	Horizontal
			<u> </u>	nannel:GFS	K Mode-248	BOMHz			
2483.5	39.59	28.79	3.48	26.34	45.52	74	-28.48	peak	Vertical
4960	30.62	31.32	4.12	27.58	38.48	54	-15.52	Average	Vertical
4960	40.18	31.32	4.12	27.58	48.04	74	-25.96	peak	Vertical
7440	30.72	24.38	5.68	27.99	32.79	54	-21.21	Average	Vertical
7440	41.26	24.38	5.68	27.99	43.33	74	-30.67	peak	Vertical
2483.5	39.31	28.79	3.48	26.34	45.24	74	-28.76	peak	Horizontal
4960	29.74	31.32	4.12	27.58	37.60	54	-16.40	Average	Horizontal
4960	40.84	31.32	4.12	27.58	48.70	74	-25.30	peak	Horizontal

Test Report No.	17071412-FCC-R2
Page	31 of 45

Restricted Band

Frequency	Meter Reading	antenna Factor	cable loss	preamp factor	Emission Level	Limits	Margin	Detector Type	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	GFSK								
2390	38.89	28.72	3.36	26.32	44.65	74	-29.35	peak	Vertical
2390	39.56	28.72	3.36	26.32	45.32	74	-28.68	peak	Horizontal
2483.5	38.95	28.79	3.48	26.34	44.88	74	-29.12	peak	Vertical
2483.5	39.28	28.79	3.48	26.34	45.21	74	-28.79	peak	Horizontal

Test Report No. 17071412-FCC-R2 Page

32 of 45

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted			1		
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	>
Line Impedance	LI-125A	191106	09/23/2017	09/22/2018	K
Line Impedance	LI-125A	191107	09/23/2017	09/22/2018	>
ISN	ISN T800	34373	09/23/2017	09/22/2018	
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/15/2017	09/14/2018	K
Power Splitter	1#	1#	08/30/2017	08/29/2018	V
DC Power Supply	E3640A	MY40004013	09/15/2017	09/14/2018	V
Radiated Emissions					
EMI test receiver	ESL6	100262	09/15/2017	09/14/2018	>
Positioning Controller	UC3000	MF780208282	11/17/2017	11/16/2018	>
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	V
Horn Antenna	BBHA9170	3145226D1	09/27/2017	09/26/2018	K
Active Antenna (9kHz-30MHz)	AL-130	121031	10/12/2017	10/11/2018	L
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/22/2017	09/21/2018	
Universal Radio Communication Tester	CMU200	121393	09/23/2017	09/22/2018	×

 Test Report No.
 17071412-FCC-R2

 Page
 33 of 45

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

EUT - Front View

EUT - Rear View

Test Report No.	17071412-FCC-R2
Page	34 of 45

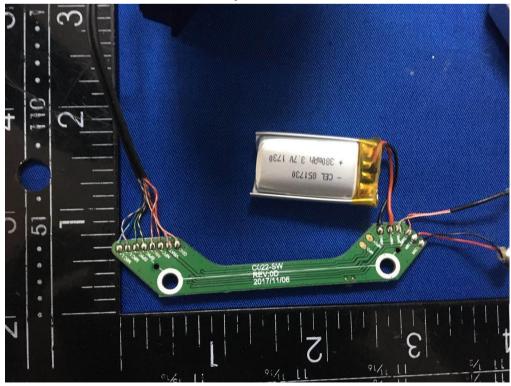
EUT - Top View

EUT - Bottom View

Test Report No.	17071412-FCC-R2
Page	35 of 45

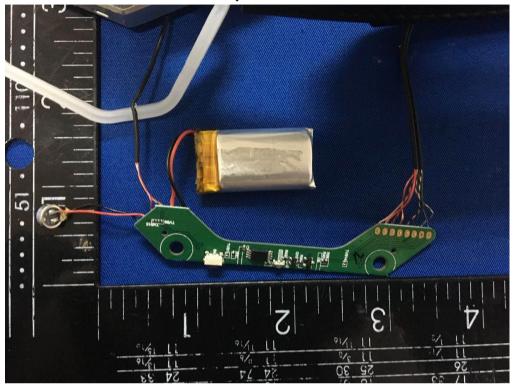
EUT - Left View

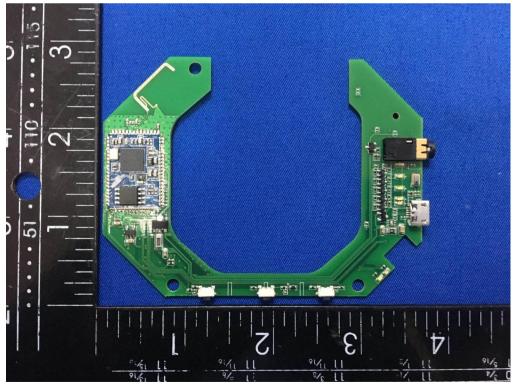
EUT - Right View


Test Report No.	17071412-FCC-R2
Page	36 of 45

Annex B.ii. Photograph: EUT Internal Photo

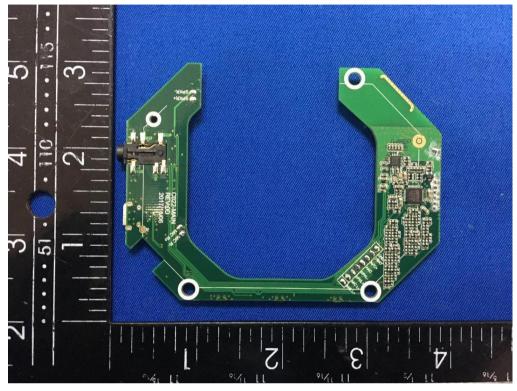
Cover Off - Top View


Battery - Front View



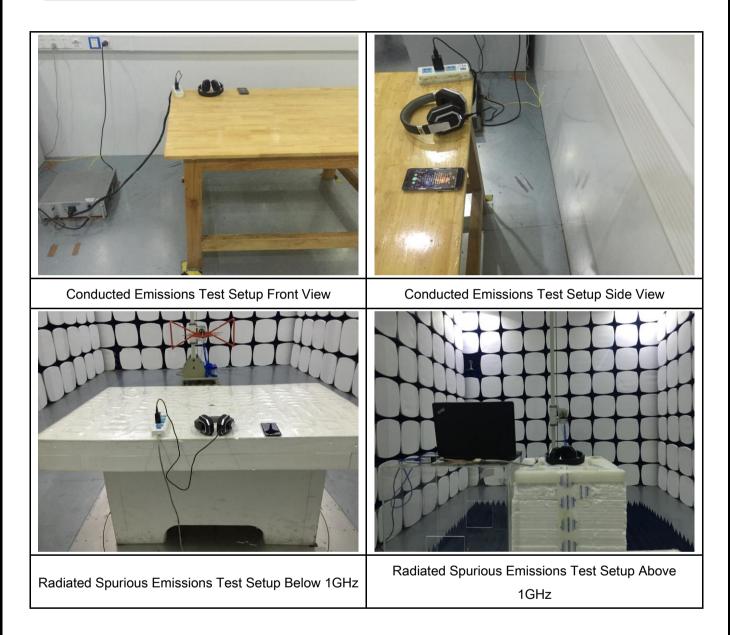
Test Report No.	17071412-FCC-R2
Page	37 of 45

Battery - Rear View


Mainboard - Front View

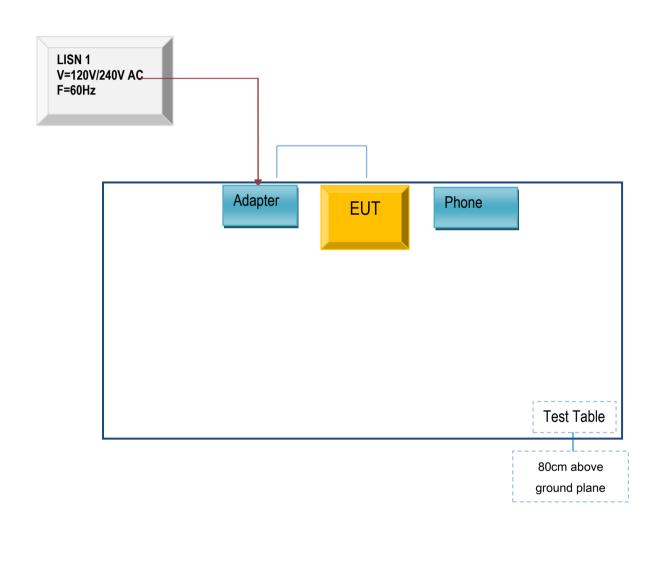
Test Report No.	17071412-FCC-R2
Page	38 of 45

Mainboard - Rear View


BT/BLE - Antenna View

Test Report No.	17071412-FCC-R2
Page	39 of 45

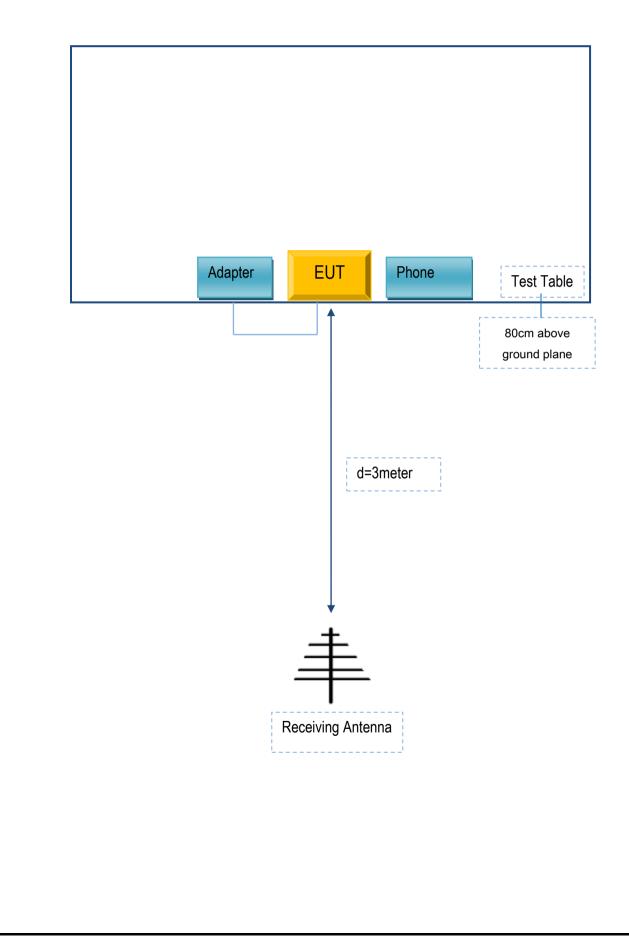
Annex B.iii. Photograph: Test Setup Photo


Test Report No. 17071412-FCC-R2 Page

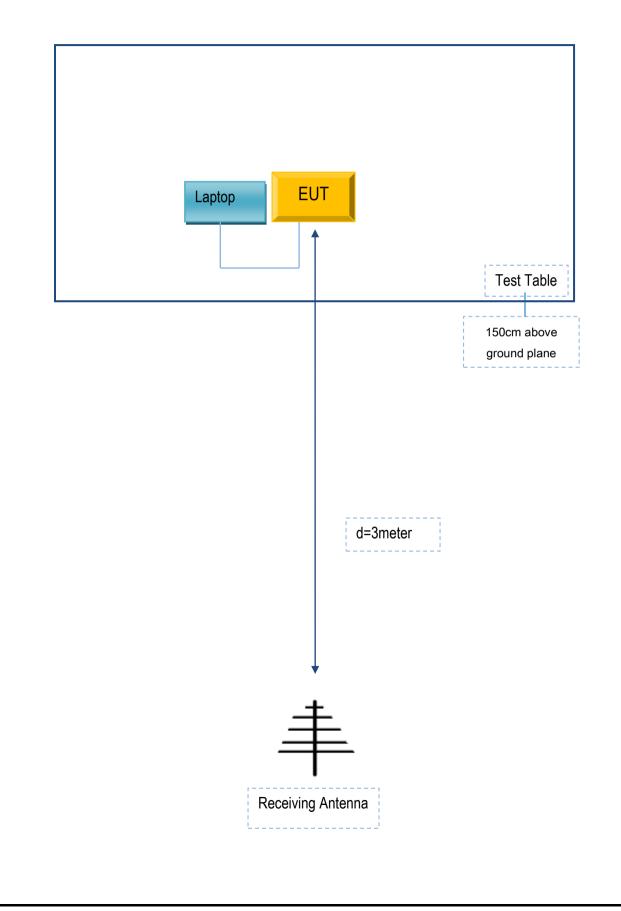
40 of 45

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	17071412-FCC-R2
Page	41 of 45


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	17071412-FCC-R2
Page	42 of 45

Block Configuration Diagram for Radiated Emissions (Above 1GHz).

Test Report No.	17071412-FCC-R2
Page	43 of 45

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
DCA	Adaptor	E2164A	LR-1EHRX
NOKIA	Phone	S6	N/A
Lenovo	Laptop	E40	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
Power Cable	Un-shielding	No	0.8m	N/A
USB Cable	Un-shielding	No	0.8m	N/A

 Test Report No.
 17071412-FCC-R2

 Page
 44 of 45

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

 Test Report No.
 17071412-FCC-R2

 Page
 45 of 45

Annex E. DECLARATION OF SIMILARITY

N/A