

KSIGN (Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

Т	EST REPORT			
Report No:	KS2005S00105E01			
FCC ID······:	2AM8GVOREZA			
Applicant:	GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO., LIMITED			
Address	No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu Dstrict, Guangzhou, China, 511434			
Manufacturer	Guangzhou Lie Dun Electronics Technology CO.,Ltd			
Address	Building 4, 43 International Trade Avenue South, Hualong, Panyu, Guangzhou, China, 511434			
Factory	Guangzhou Lie Dun Electronics Technology CO.,Ltd			
Address	Building 4, 43 International Trade Avenue South, Hualong, Panyu, Guangzhou, China, 511434			
Product Name:	VOREZA II			
Trade Mark	VOREZA			
Model/Type reference:	VOR2-IEC2-X04			
Listed Model(s)	I			
Standard::	FCC Part 15, Subpart E (15.407:2017)			
Date of Receipt:	Sep.15, 2020			
Date of Test Date	Jan.18, 2021- June.11, 2021			
Date of issue	June.11, 2021			
Test result:	Pass			
Compiled by: (Printed name+signature)	Rory Huang Rory Huang angdong) Tes			
Supervised by: (Printed name+signature)	Eder Zhan Eder. Wan KSIGN			
Approved by: (Printed name+signature)	Neil Wan Neil Wan PROVED. 2			
Testing Laboratory Name:	KSIGN(Guangdong) Testing Co., Ltd.			
Address	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

Page

1. TEST SUMMARY	
1.1. Test Standards	
1.2. Report version	
1.3. TEST DESCRIPTION.	
1.4. TEST FACILITY	
1.5. MEASUREMENT UNCERTAINTY.	
1.6. Environmental conditions	
2. GENERAL INFORMATION	
2.1. GENERAL DESCRIPTION OF EUT	7
2.2. OPERATION STATE	
2.3. MEASUREMENT INSTRUMENTS LIST	
2.4. TEST SOFTWARE	9
3. TEST ITEM AND RESULTS	
3.1. ANTENNA REQUIREMENT.	10
3.2. Conducted Emission	
3.3. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH TEST.	
3.4. CONDUCTED OUTPUT POWER TEST	
3.5. MAXIMUM POWER SPECTRAL DENSITY TEST	
3.6. FREQUENCY STABILITY MEASUREMENT	
3.7. Band Edge Emissions(Radiated)	
3.8. RADIATED SPURIOUS EMISSIONS	
3.9. CONDUCTED SPURIOUS EMISSION	
4. EUT TEST PHOTOS	
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	

KSIGN

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 15, Subpart E(15.407) - for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

KDB 789033: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E .

1.2. Report version

Revised No.	Date of issue	Description
01	June.11, 2021	Original

1.3. Test Description

FCC Part 15 Subpart E(15.407)							
Test Item	Test require	Result	Test Engineer				
Antenna Requirement	15.203	Pass	Emiya Lin				
Conducted Emission	15.207	Pass	Emiya Lin 📎				
Band Edge Emissions	15.407(b)	Pass	Emiya Lin				
26dB Bandwidth & 99% Bandwidth	15.407(a)	Pass	Emiya Lin				
6dB Bandwidth (only for UNII-3)	15.407(e)	N/A	N/A				
Maximum Conducted Output Power	15.407(a)	Pass	Emiya Lin				
Maximum Power Spectral Density	15.407(a)	Pass	Emiya Lin				
Transmitter Radiated Spurious Emission	15.407(b)	Pass	Emiya Lin				
Peak Excursion	15.407(a)	Pass	Emiya Lin				
Frequency Stability	15.407(g)	Pass	Emiya Lin				
Transmitter Power Control	15.407(h)(1)	N/A	N/A				

Note:

1. The measurement uncertainty is not included in the test result.

- 2. Transmit Power Control was not tested as the maximum EIRP is less than 500mW (27dBm) in U-NII Bands 2&3.
- 3. "N/A" is an abbreviation for "Not Applicable".

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

	Temperature	15 °C to +35 °C
Normal Condition	Relative humidity	20 % to 75 %.
	Voltage	The equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer

Normal Condition	T _N =Normal Temperature	25 °C
Extreme Condition	T _L =Lower Temperature	-20 °C
Extreme Condition	T _H =Higher Temperature	50 °C

2. GENERAL INFORMATION

2.1. General Description of EUT

Test Sample Number:	1-1-1(Normal Sample),1-1-2(Engineering Sample)	S.
Product Name:	VOREZA II	Manuel
Trademark:	VOREZA	
Model/Type reference:	VOR2-IEC2-X04	
Listed models:		
Model Difference:		
Power Supply(Adapter):	MODEL:SOY-1200300 INPUT: 100-240V~ 50/60Hz 1.2A max. OUTPUT: DC 12.0V 3.0A, 36.0W	
Battery:	DC 7.6V 13000mAh/98.8Wh	
Hardware version:	ZA801 REV11	
Software version:	EC: E7.CD.06 BIOS: E.ZA102_1.V10.048 Windows10 pro: 1803	

Technical index for 5G WIFI							
Operation Band:	⊠U-NII-1	U-NII-2A		U-NII-	2C	U	-NII-3
	U-NII-1:	5150MHz~5250MHz					
Operation Frequency Benger	U-NII-2A:	5250MHz~5350MHz					
Operation Frequency Range:	U-NII-2C:	5470MHz~57	25M	Hz			
1. S. M. S.	U-NII-3:	5725MHz~58	50M	Hz			No.
	802.11a	🛛 20MHz					5
Support bandwidth:	802.11n	🛛 20MHz		40MHz			×.
	802.11ac	🛛 20MHz		40MHz	⊠ 80N	1Hz	□ 160MHz
Modulation:	802.11a: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM)						
Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11a: up to 150Mbps 802.11ac: at most 433.3 Mbps						
Max Peak Output Power:	802.11a: 8.81dBm 802.11n (HT20): 8.82dBm 802.11n (HT40): 6.75dBm 802.11ac (HT20): 6.78dBm 802.11ac (HT40): 6.64dBm 802.11ac (HT80): 6.61dBm						
Antenna type:	FPC Antenna						
Antenna gain:	1.0dBi		1	15-1 C			100 A.

2.2. Operation State

Frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Γ		Test	20MHz		40MHz		80MHz	
	Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
		CH∟	36	5180	38	5190	<u> </u>	-
		CH _M	44	5220	-	- (A)	42	5210
		CH _H	48	5240	46	5230	-	- 5

> Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)	
802.11a	6Mbps	
802.11n(HT20)	MCS0	
802.11n(HT40)	MCS0	
802.11ac(HT20)/(HT40)/(HT80)	MCS0	

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

2.3.	Measurement	Instruments	List
0.9249270985		100 / 27 / 200 / 200 / 27 / 27 / 27 / 28 / 200	

	Tonscend JS0806-2 Test system							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until			
1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021			
2	Vector Signal Generator	Agilent	N5182A	MY50142520	04/07/2021			
3	Analog Signal Generator	HP	83752A	3344A00337	04/07/2021			
4	Power Sensor	Agilent	E9304A	MY50390009	04/07/2021			
5	Power Sensor	Agilent	E9300A	MY41498315	04/07/2021			
6	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2021			
7	Climate Chamber	Angul	AGNH80L	1903042120	04/07/2021			
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	04/07/2021			
9	RF Control Unit	Tonscend	JS0806-2	/	04/07/2021			

	Transmitter spur	ious emissions & Re	eceiver spurious en	nissions	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	04/07/2021
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/27/2021
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/27/2021
4	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2021
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/25/2021
7	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2021
10	Pre-Amplifier	EMCI	EMC051835SE	980662	04/07/2021

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2021
2	EMI Test Receiver	R&S	ESR	102524	04/07/2021
3	Manual RF Switch	JS TOYO		MSW-01/002	04/07/2021

Note:

The Cal. Interval was one year.
 The cable loss has calculated in test result which connection between each test instruments.

2.4. Test Software

	Software name	Model	Version
62	Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
83	Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
95	Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna Requirement

Standard Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

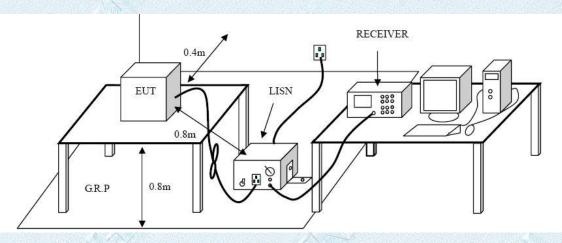
3.2. Conducted Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Conducted Emission Test Limit

Executor of	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

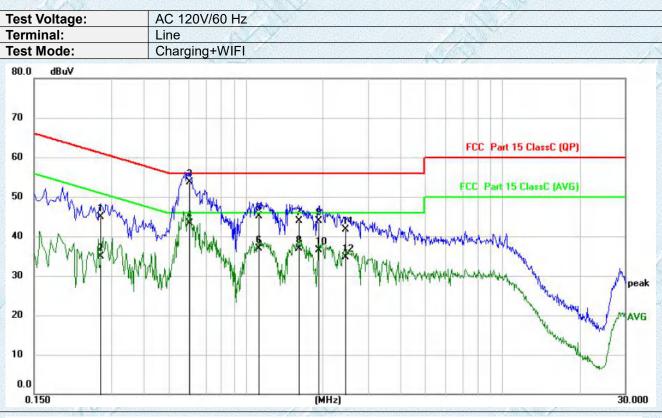
(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

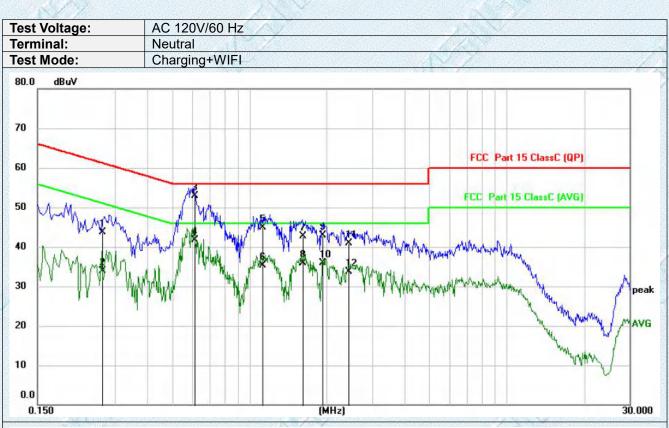
Test Mode


Please refer to the clause 2.2.

Test Results

Pre-scan 802.11a/n(HT20/HT40)/ac(HT20/HT40/HT80) modulation, and found the 802.11a modulation

5220MHz which it is worse case, so only show the test data for worse case.


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2719	34.14	10.85	44.99	61.06	-16.07	QP
2	-	0.2719	24.12	10.85	34.97	51.06	-16.09	AVG
3	*	0.6035	42.86	10.87	53.73	56.00	-2.27	QP
4		0.6035	32.49	10.87	43.36	46.00	-2.64	AVG
5		1.1184	34.33	10.87	45.20	56.00	-10.80	QP
6	1	1.1184	25.98	10.87	36.85	46.00	-9.15	AVG
7		1.6145	32.98	10.88	43.86	56.00	-12.14	QP
8		1.6145	26.05	10.88	36.93	46.00	-9.07	AVG
9	- T	1.9224	32.93	10.88	43.81	56.00	-12.19	QP
10		1.9224	25.54	10.88	36.42	46.00	-9.58	AVG
11		2.4364	30.83	10.90	41.73	56.00	-14.27	QP
12		2.4364	23.78	10.90	34.68	46.00	-11.32	AVG

Remarks:

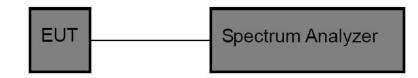
1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

	20.00		Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.2683	32.91	10.85	43.76	61.17	-17.41	QP
	0.2683	22.99	10.85	33.84	51.17	-17.33	AVG
*	0.6134	41.97	10.87	52.84	56.00	-3.16	QP
	0.6134	30.77	10.87	41.64	46.00	-4.36	AVG
	1.1215	33.95	10.87	44.82	56.00	-11.18	QP
	1.1215	24.47	10.87	35.34	46.00	-10.66	AVG
	1.6076	31.76	10.88	42.64	56.00	-13.36	QP
	1.6076	24.96	10.88	35.84	46.00	-10.16	AVG
	1.9192	32.06	10.88	42.94	56.00	-13.06	QP
	1.9192	24.96	10.88	35.84	46.00	-10.16	AVG
	2.4300	29.97	10.90	40.87	56.00	-15.13	QP
	2.4300	22.77	10.90	33.67	46.00	-12.33	AVG
	*	0.2683 * 0.6134 0.6134 1.1215 1.1215 1.6076 1.6076 1.9192 2.4300	0.2683 22.99 * 0.6134 41.97 0.6134 30.77 1.1215 33.95 1.1215 24.47 1.6076 31.76 1.9192 32.06 1.9192 24.96 2.4300 29.97	0.2683 22.99 10.85 * 0.6134 41.97 10.87 0.6134 30.77 10.87 1.1215 33.95 10.87 1.1215 24.47 10.87 1.6076 31.76 10.88 1.6076 24.96 10.88 1.9192 32.06 10.88 2.4300 29.97 10.90	0.268322.9910.8533.84*0.613441.9710.8752.840.613430.7710.8741.641.121533.9510.8744.821.121524.4710.8735.341.607631.7610.8842.641.607624.9610.8835.841.919232.0610.8842.941.919224.9610.8835.842.430029.9710.9040.87	0.268322.9910.8533.8451.17*0.613441.9710.8752.8456.000.613430.7710.8741.6446.001.121533.9510.8744.8256.001.121524.4710.8735.3446.001.607631.7610.8842.6456.001.607624.9610.8835.8446.001.919232.0610.8842.9456.001.919224.9610.8835.8446.002.430029.9710.9040.8756.00	0.268322.9910.8533.8451.17-17.33*0.613441.9710.8752.8456.00-3.160.613430.7710.8741.6446.00-4.361.121533.9510.8744.8256.00-11.181.121524.4710.8735.3446.00-10.661.607631.7610.8842.6456.00-13.361.607624.9610.8835.8446.00-10.161.919232.0610.8835.8446.00-10.161.919224.9610.8835.8446.00-10.162.430029.9710.9040.8756.00-15.13

Remarks:

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit


3.3. 26dB Bandwidth and 99% Occupied Bandwidth Test

Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

FCC Part 15 Subpart C(15.407)				
Test Item	Limit	Frequency Range (MHz)		
		5150~5250		
26 dB Bandwidth	N/A	5250~5350		
		5470~5725		
6 dB Bandwidth	>500kHz	5725~5850		

Test Configuration

Test Procedure

- 1. According KDB 789033 D02 Section C
- 2. Connect the antenna port(s) to the spectrum analyzer input.
- 3. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = Channel center frequency

Span=2 x emission bandwidth

RBW = 1% to 5% of the emission bandwidth

VBW>3 x RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission, and use the 99 % power bandwidth function of the instrument

The setting of the spectrum analyser as below:

26dB Bandwidth Test				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span	>26 dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW>RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth Test			
Spectrum Parameters	Setting			
Attenuation	Auto			
RBW	1% to 5% of the OBW			
VBW	≥ 3RBW			
Detector	Peak			
Trace	Max Hold			

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.2.

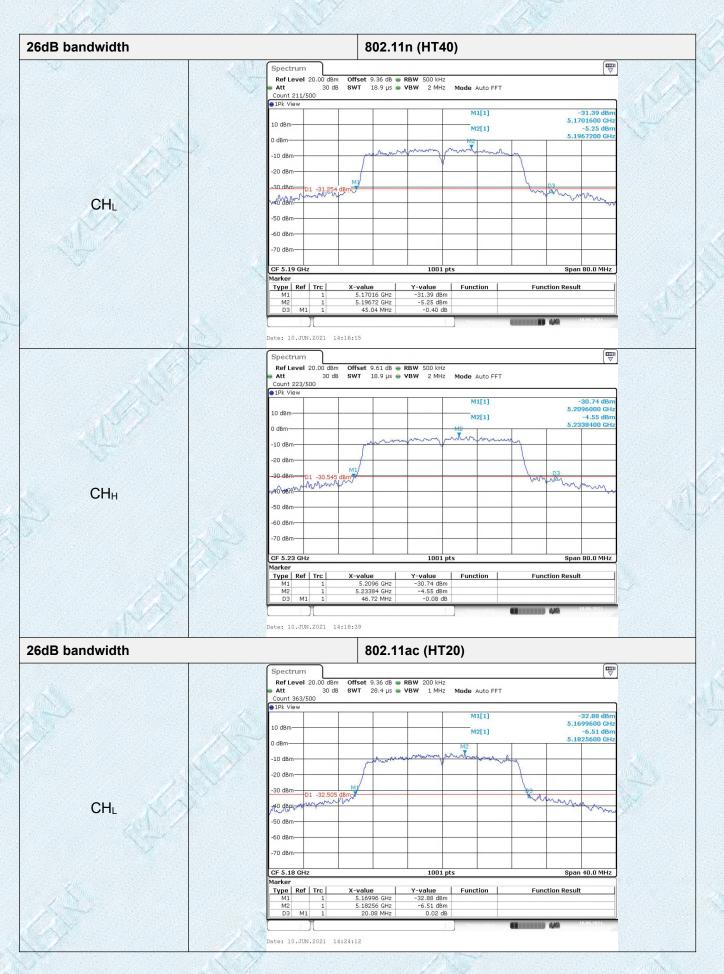
Test Results

Band	Test Mode	Channel	26dB Bandwidth [MHz]	99% Occupied bandwidth (MHz)	Result
		CH∟	20.080	17.383	Pass
	802.11a	СНм	20.880	16.983	Pass
	15	CHн	19.240	17.143	Pass
		CH∟	19.760	18.022	Pass
120	802.11n(HT20)	СНм	19.720	18.142	Pass
Strain States		СНн	20.040	18.022	Pass
ST.		CHL	45.040	36.284	Pass
U-NII-1	802.11n(HT40)	СНн	46.720	36.364	Pass
	Sile Sile	CH∟	20.080	17.942	Pass
	802.11ac(HT20)	CH _M	19.920	18.022	Pass
	See.	СН _н	19.840	18.102	Pass
	802 11co/UT40)	CH∟	45.120	36.523	Pass
	802.11ac(HT40)	СНн	53.520	36.523	Pass
	802.11ac(HT80)	CHM	81.600	76.563	Pass

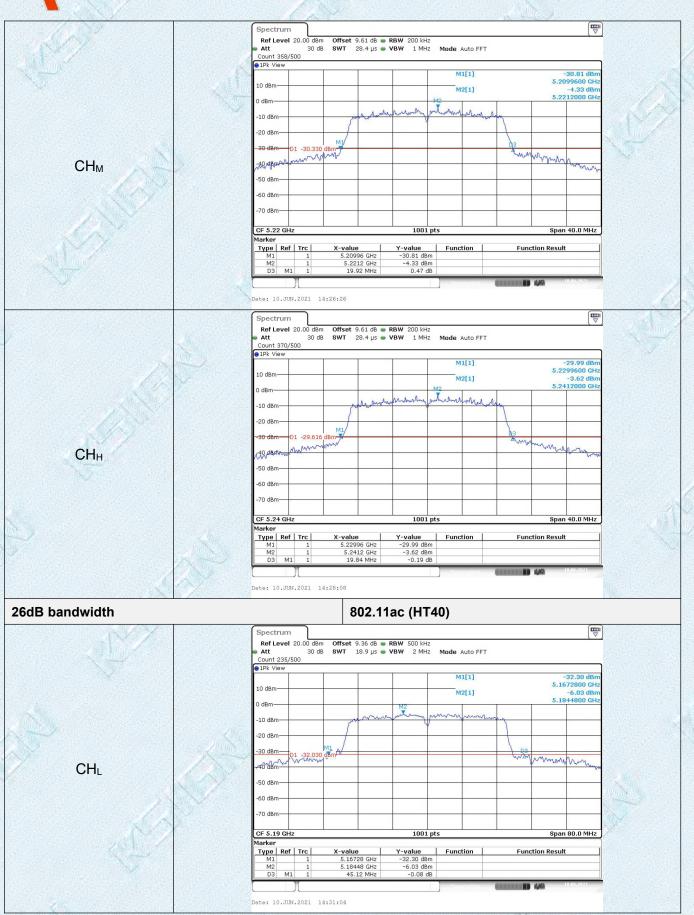
Band U-NII-1 802.11a 26dB bandwidth ₽ Spectrum
 Ref Level
 20.00 dBm
 Offset
 9.36 dB
 ● RBW
 200 kHz

 Att
 30 dB
 SWT
 28.4 μs
 ● VBW
 1 MHz
 Mode
 Auto FFT
 Count 500/500 ●1Pk Vie M1[1] 5.169 10 dBm 0.47 (M2[1] M2 5.1812400 GH 0 dBm when mann m -10 dBm--20 dBm-1 -25.5 -30 dBm mon CHL -40 dBr -50 dBm -60 dBm -70 dBm CF 5.18 G 1001 pts Span 40.0 MHz larker X-value 5.16992 GHz 5.18124 GHz 20.08 MHz Y-value -25.79 dBm 0.47 dBm -0.31 dB Type Ref Trc 1 Function Function Result M2 D3 M1 Date: 10.JUN.2021 16:01:07 **•** Spectrum Ref Level 20.00 dBm Offset 9.61 dB ● RBW 200 kHz Att 30 dB SWT 28.4 µs ● VBW 1 MHz Mode Auto FFT Count 362/500 1Pk View M1[1] -31.10 dBr 5.2101200 GH 10 dBm M2[1] -5.02 dB 5.2212800 GH 0 dBm -10 dBm -20 dBm 30 dBm 1 -31.018 dBm D3 maria Anon CHM -40 dBm= ٨ſ. -50 dBm -60 dBm -70 dBm CF 5.22 G 1001 pt Span 40.0 MH: larke X-value 5.21012 GHz 5.22128 GHz 20.88 MHz Y-value -31.10 dBm -5.02 dBm -0.57 dB Type Ref Trc Function Result Function M2 D3 M1 Date: 10.JUN.2021 14:03:44 Spectrum Ref Level 20.00 dBm Att 30 dB 00 dBm Offset 9.61 dB 👄 RBW 200 kHz 30 dB SWT 28.4 μs 👄 VBW 1 MHz Mode Auto FFT Att Count 375/500
 1Pk View -30.04 dBm 5.2302800 GHz 10 dBm M2[1] -3.67 dB 5.2412400 GH 0 dBn mour And -10 dBm -20 dBr 1 -29.67 30 dBr mon CH_H -AD ABM -50 dBm -60 dBm -70 dBm CF 5.24 GHz 1001 pts Span 40.0 MHz larke X-value 5.23028 GHz 5.24124 GHz 19.24 MHz Y-value -30.04 dBm -3.67 dBm 0.26 dB Type Ref Trc Function Function Result M1 M2 D3 M:

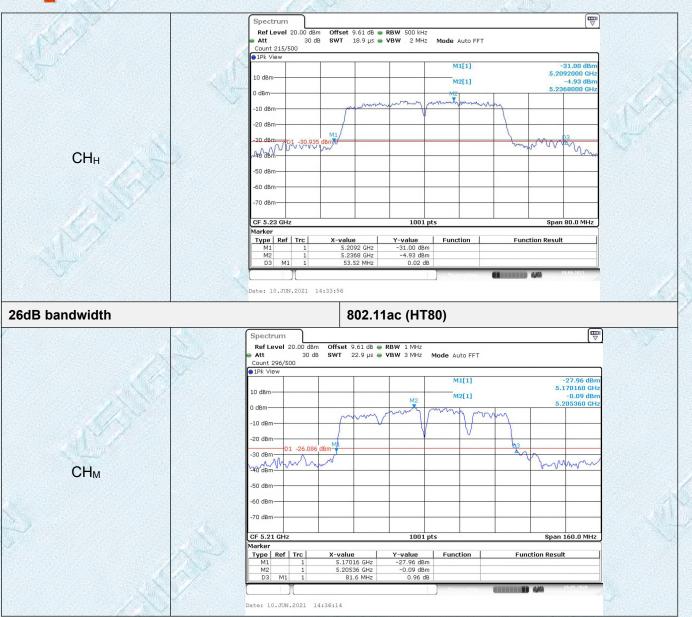
Date: 10.JUN.2021 14:05:26

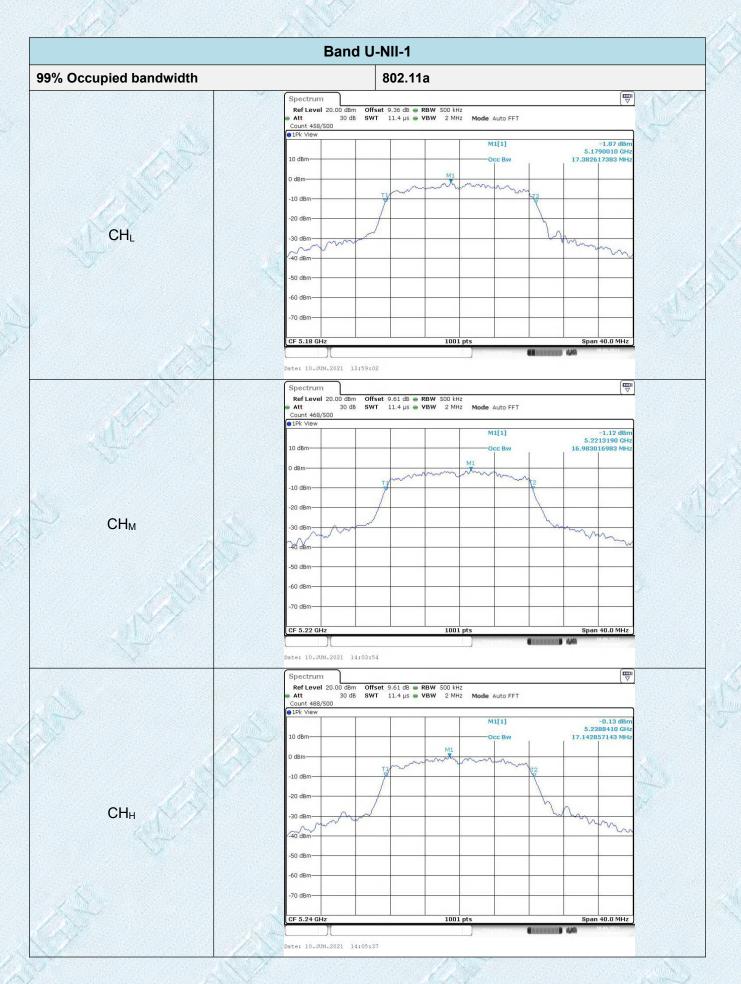

Page 18 of 72

Page 19 of 72


Report No.: KS2005S00105E01

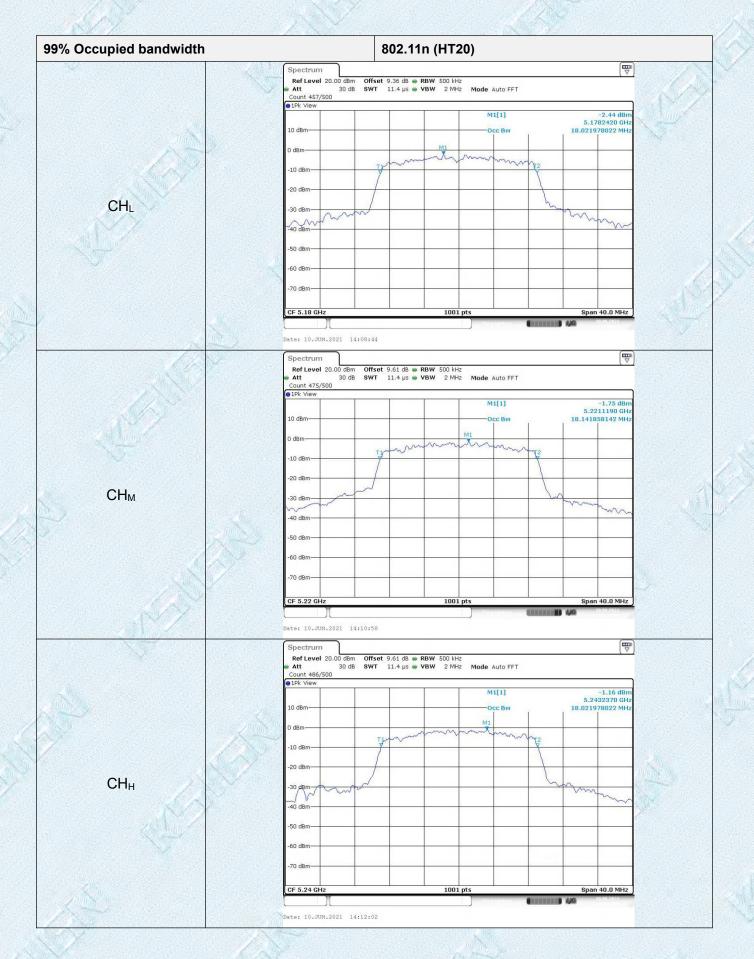
Page 20 of 72

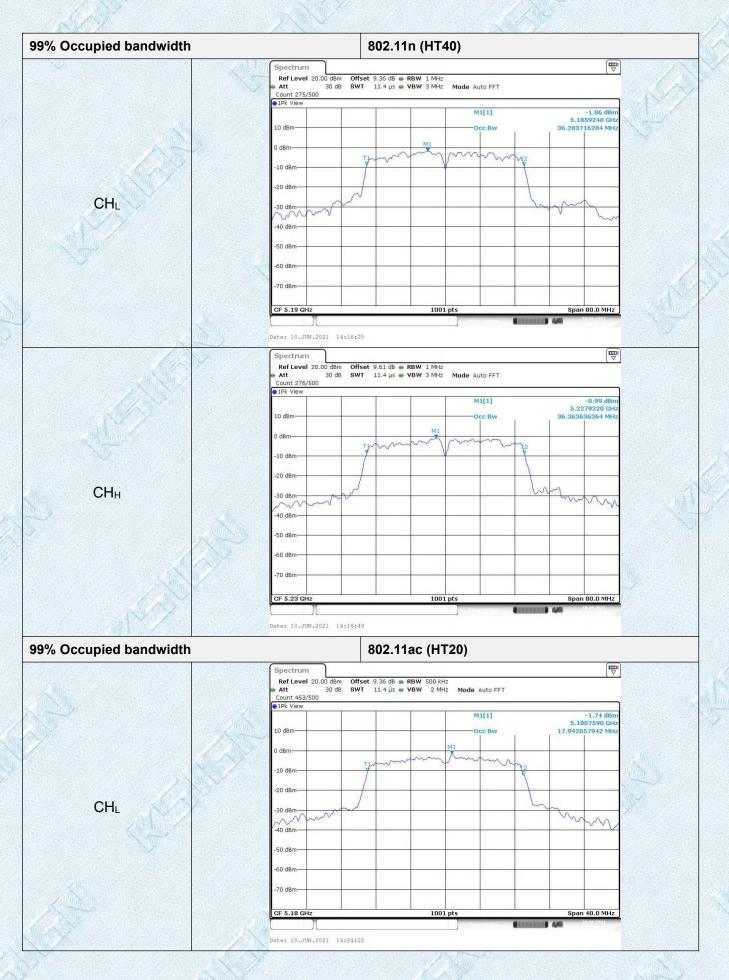

Report No.: KS2005S00105E01



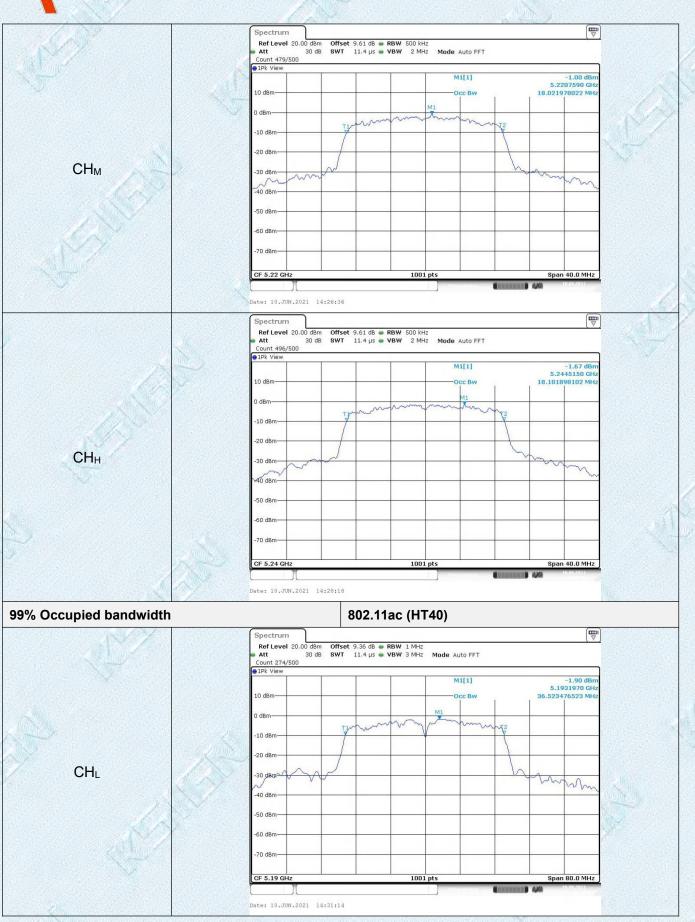
Page 21 of 72

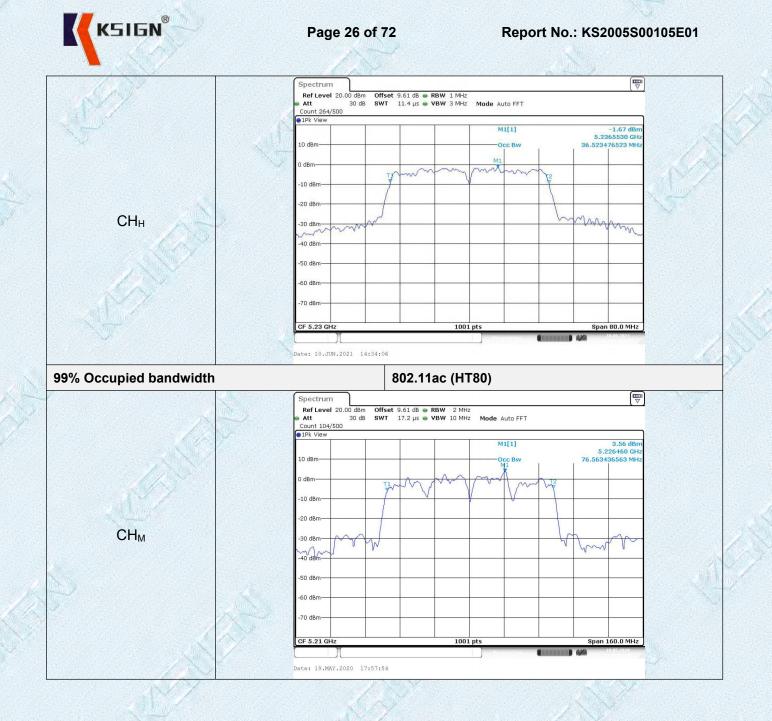
Report No.: KS2005S00105E01




Page 23 of 72

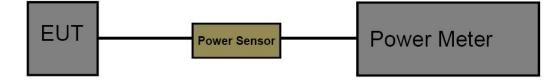
Page 24 of 72


Report No.: KS2005S00105E01



Page 25 of 72

Report No.: KS2005S00105E01


3.4. Conducted Output Power Test

Limit

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

FCC Part 15 Subpart E(15.407)				
Test Item	Limit	Frequency Range(MHz)		
	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250		
Conducted Output Power	250mW (24dBm)	5250~5350		
	250mW (24dBm)	5470~5725		
	1 Watt (30dBm)	5725~5850		

Test Configuration

Test Procedure

- The EUT was tested according to according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5. Record the measurement data.

Test Mode

Please refer to the clause 2.2.

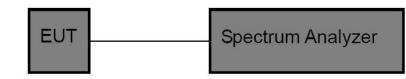
Test Result

Page 28 of 72

	R III
	IGN
-	A. AN

Band	Test Mode	Channel	Output Power (dBm)	Limit(MHz)	Result	
U-NII-1	802.11a	CH∟	8.06		Pass	
		CH _M	8.81	24		
		CH _H	8.81			
	802.11n(HT20)	CHL	8.07		Pass	
		CH _M	8.57	24		
		СНн	8.82	1892		
	802.11n(HT40)	CH∟	6.10	24	Pass	
		СНн	6.75	24		
	802.11ac(HT20)	CH∟	6.20		Pass	
		CH _M	6.76	24		
		CH _H	6.78			
	802.11ac(HT40)	CH∟	5.88	04	Pass	
		СНн	6.64	24		
	802.11ac(HT80)	СНм	6.61	24	Pass	
Remark: The EUT provides one antennas for transmitting and receiving.						

Gain=1dBi< 6dBi So P_{out}=P_{limit}


3.5. Maximum Power Spectral Density Test

Limit

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

FCC Part 15 Subpart E(15.407)					
Test Item	Limit	Frequency Range(MHz)			
	Other than Mobile and Portable : 17dBm/MHz Mobile and Portable : 11dBm/MHz	5150~5250			
Power Spectral Density	11dBm/MHz	5250~5350			
	11dBm/MHz	5470~5725			
3	30dBm/500kHz	5725~5850			

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 1 MHz
- (5) Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.2.

Test Result

Page 30 of 72

			®
K	51	6N	A ST
		Sur.	~?)

Band	Test Mode	Channel	Power Spectral Density (dBm/MHz)	Limit(dBm/MHz)	Result
U-NII-1	802.11a	CH∟	6.88		15
		CH _M	6.88	11	Pass
		СНн	7.45	in State	
	802.11n(HT20)	CH∟	5.85		Pass
		CHM	7.31	11	
		СНн	7.47		
	802.11n(HT40)	CHL	1.91	11	Pass
		CH _H	3.07		
	802.11ac(HT20)	CH∟	4.47		
		CH _M	4.99	11	Pass
		CH _H	5.02	12	
	802.11ac(HT40)	CHL	1.34	4.28	Dava
		СНн	2.41	11	Pass
	802.11ac(HT80)	CH _M	-0.79	11	Pass
-1.1 1				Labor de la constante de la const	