

3.4. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. The measurement is according to section 9.1.2 of KDB 558074 D01 15.247 DTS Meas Guidance v05.
- 3. Spectrum Setting:

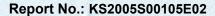
Set analyser center frequency to DTS channel center frequency.

Set the RBW to: 1MHz Set the VBW to: 3MHz

Detector: peak Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

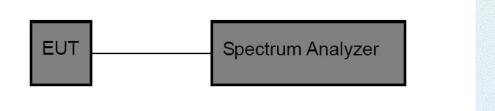
The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.


Test Mode

Please refer to the clause 2.3

Test Result

Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	13.44	
802.11b	2437	12.09	
	2462	13.61	
	2412	11.46	
802.11g	2437	10.08	
	2462	11.35	20
	2412	9.71	30
802.11n (HT20)	2437	8.28	
(11120)	2462	9.70	
	2422	8.25	
802.11n (HT40)	2437	9.00	
(40)	2452	9.53	
	Res	ult: PASS	


3.5. Power Spectral Density

Limit

	FCC Part 15 Subpart C(15.24	7)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

Page 34 of 69

Test Configuration

Test Procedure

- 1. The Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 10 kHz Set the VBW to: 30 kHz

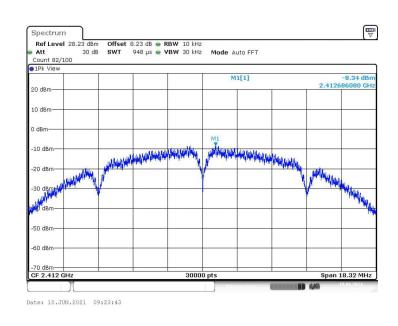
Detector: peak
Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

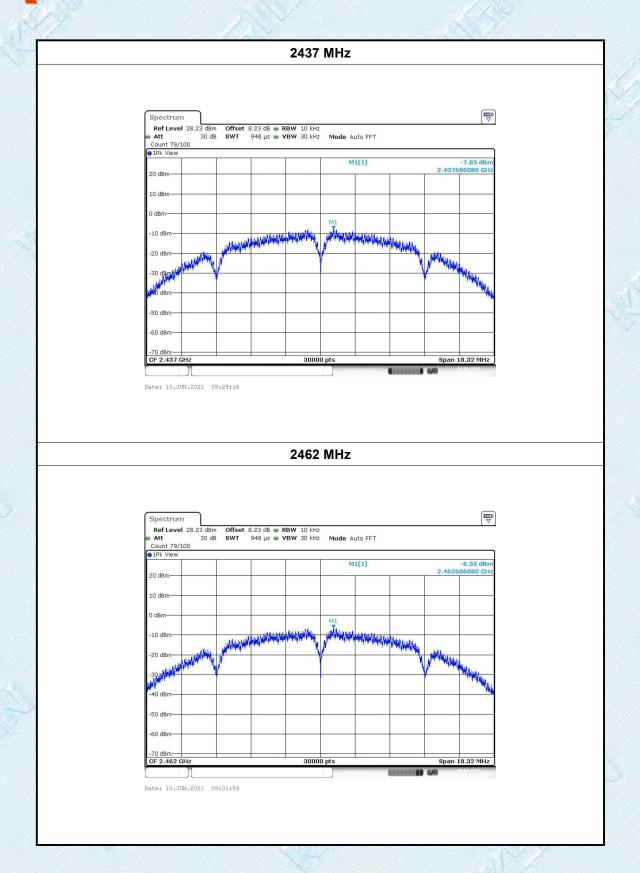
Test Mode

Please refer to the clause 2.3

Test Result

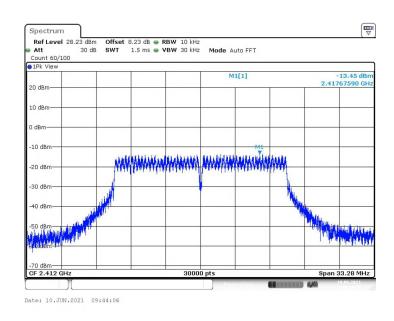

Note:

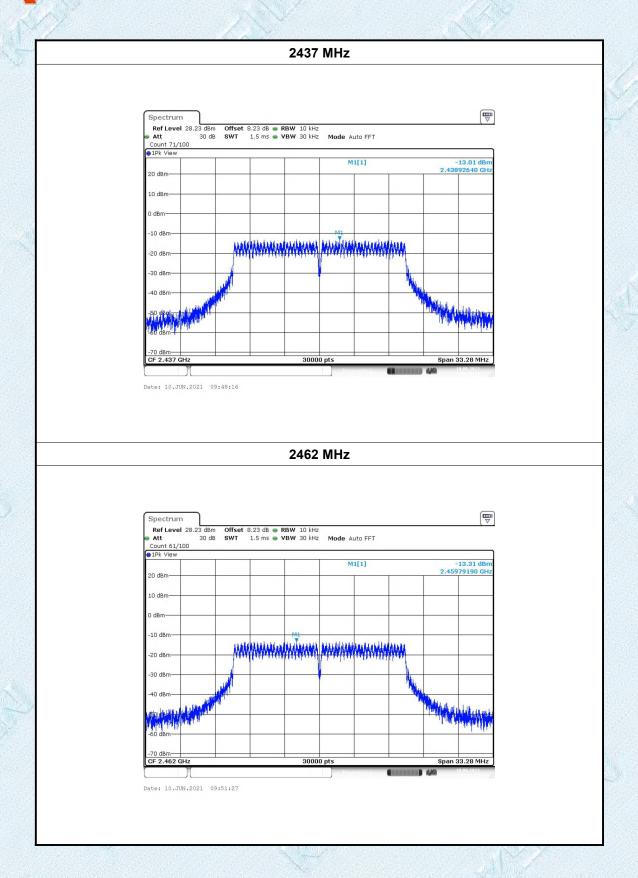
Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)



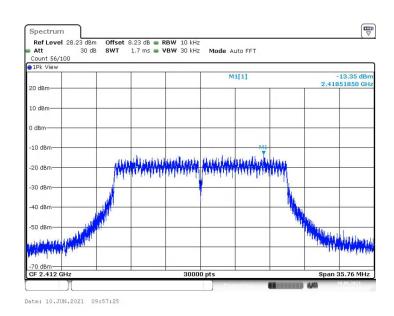
Test Mode:	802.11	b Mode	A)/9	
Channel Frequ (MHz)	ency	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
2412		-8.34	-13.57	
2437		-7.85	-13.08	8dBm/3kHz
2462		-6.55	-11.78	

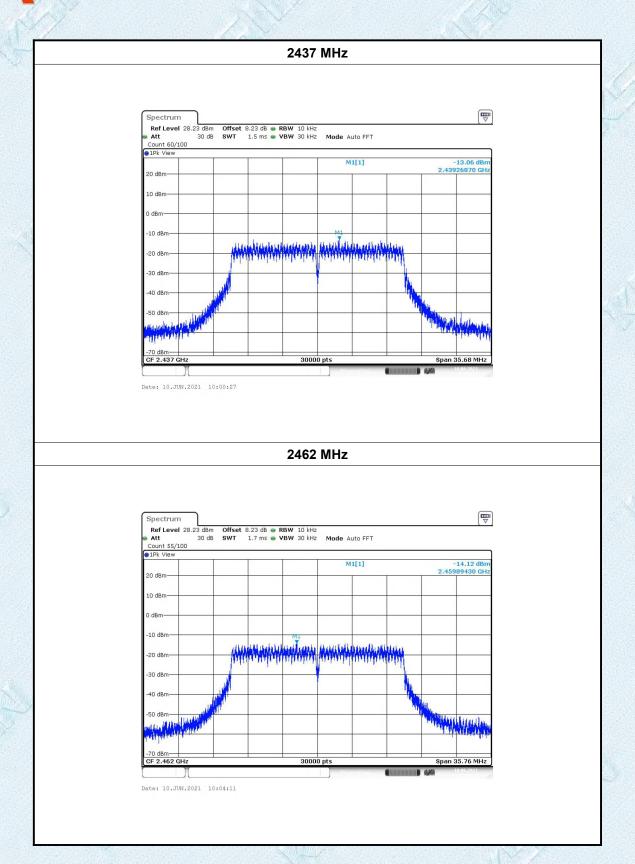
Page 35 of 69





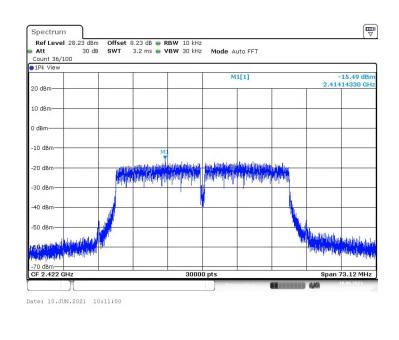
Test Mode:	802.11g	Mode	1/200	
Channel Fred (MHz)	quency	Power Density (dBm/10 kHz)	Power Density (dBm/3 kHz)	Limit (dBm)
2412		-13.45	-18.68	
2437		-13.01	-18.24	8dBm/3kHz
2462		-13.31	-18.54	

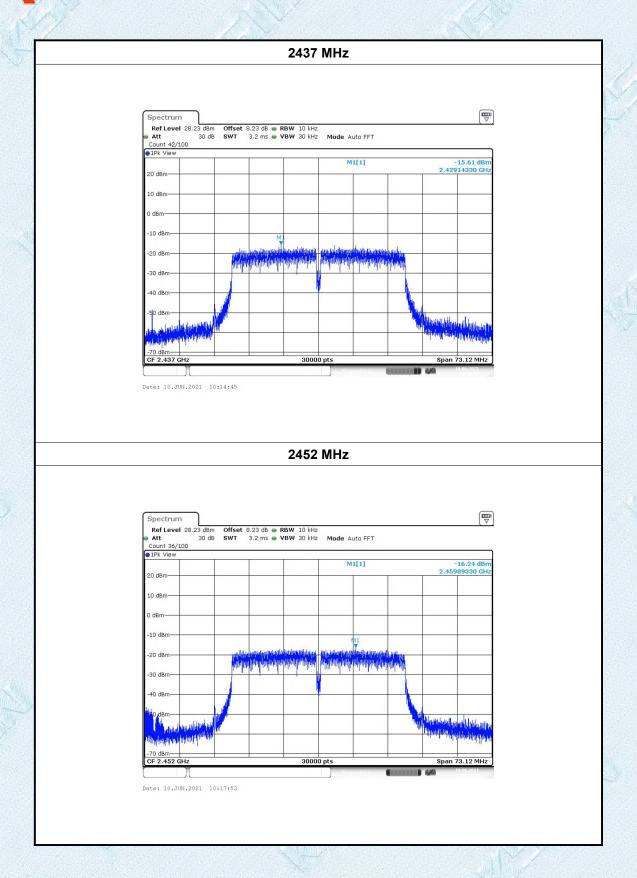




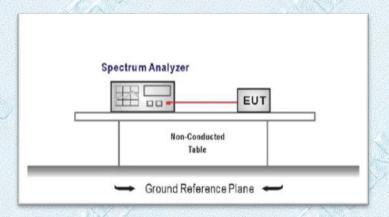
Test Mode:	802.1	1n(HT20) Mode	7//89	
Channel Frequ (MHz)	iency	Power Density (dBm/10kHz)	Power Density (dBm/3 kHz)	Limit (dBm)
2412		-13.35	-18.58	
2437		-13.06	-18.29	8dBm/3kHz
2462		-14.12	-19.35	

Page 39 of 69





Test Mode:	802.1	1n(HT40) Mode	///>	
Channel Freque (MHz)	ency	Power Density (dBm/10 kHz)	Power Density (dBm/3 kHz)	Limit (dBm)
2422		-15.49	-20.72	
2437		-15.61	-20.84	8dBm/3kHz
2452		-16.24	-21.47	


3.6. Band edge and Spurious Emission (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator...
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW \geq 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

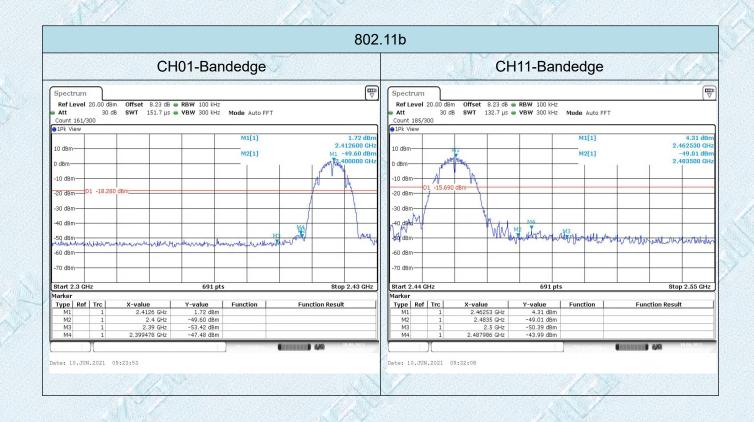
Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

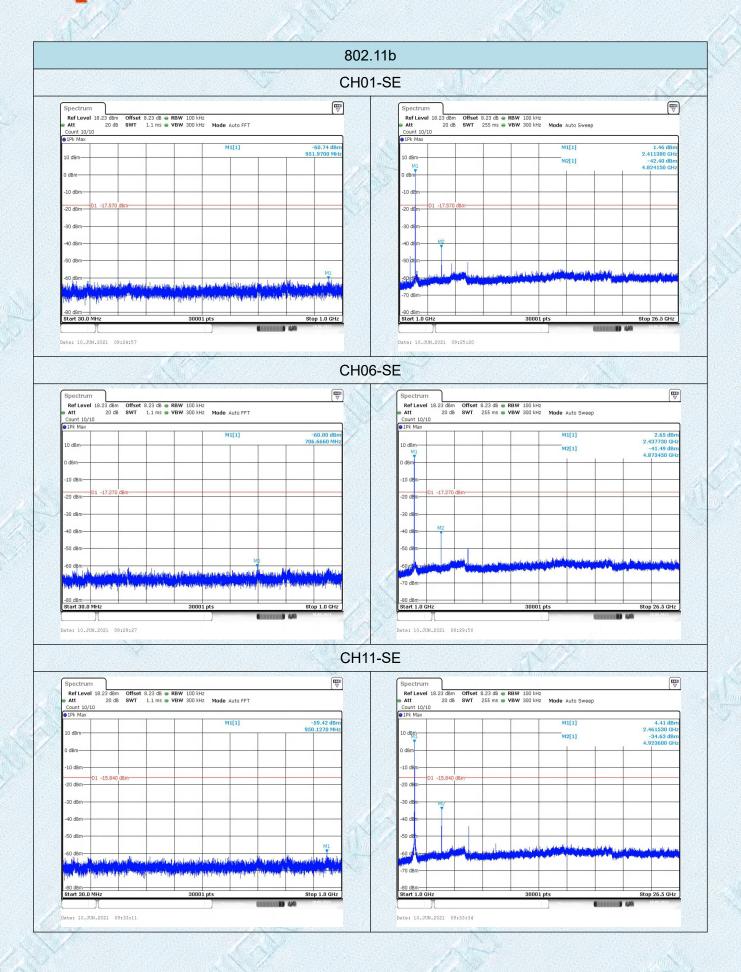
Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

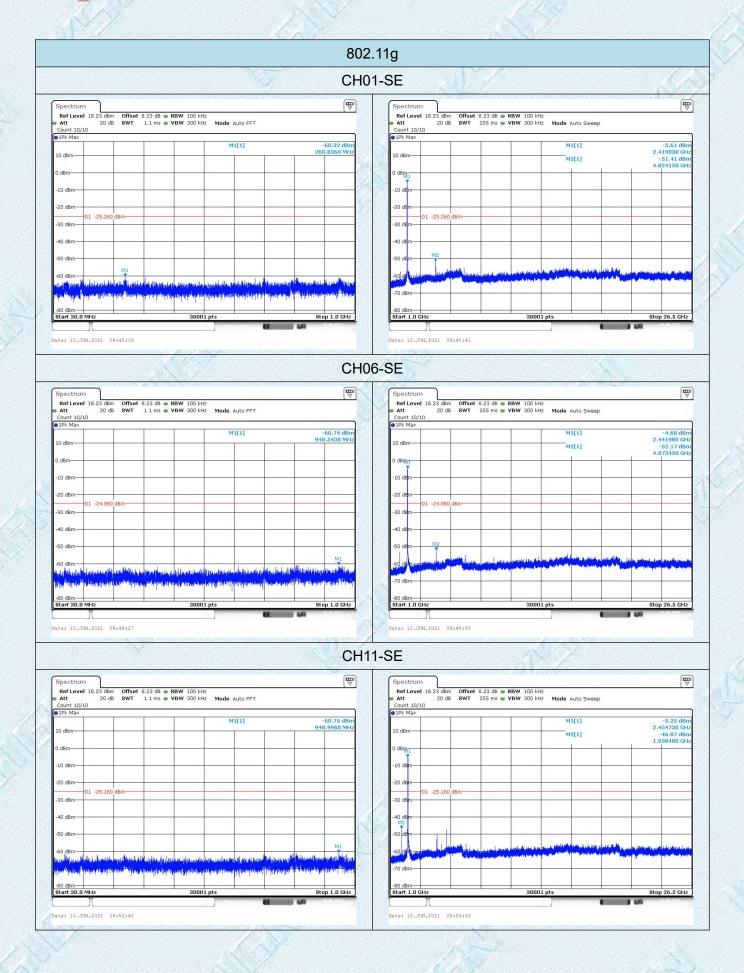

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 5. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emissions relative to the limit.

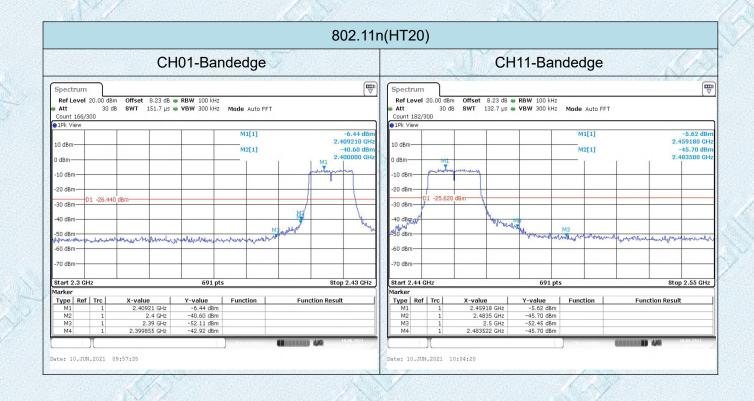
Test Mode

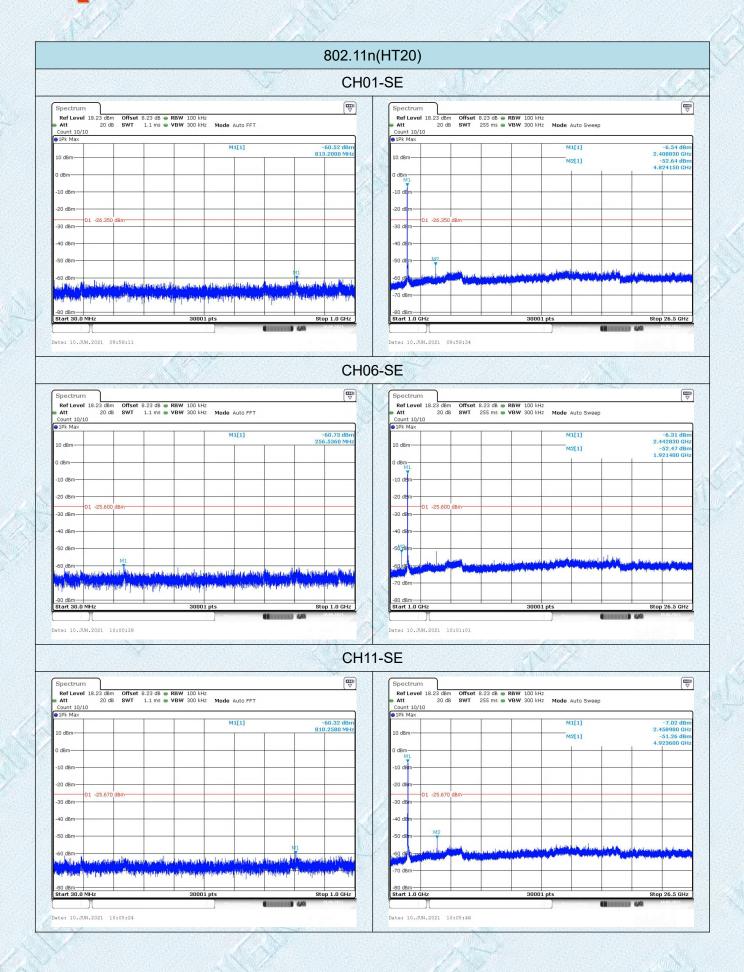

Please refer to the clause 2.3.

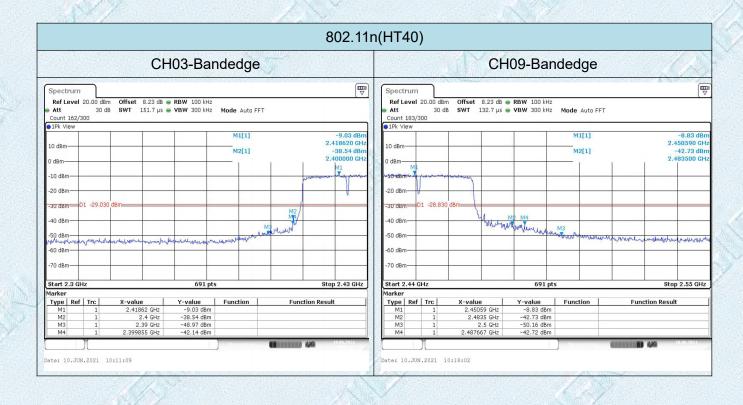
Test Results



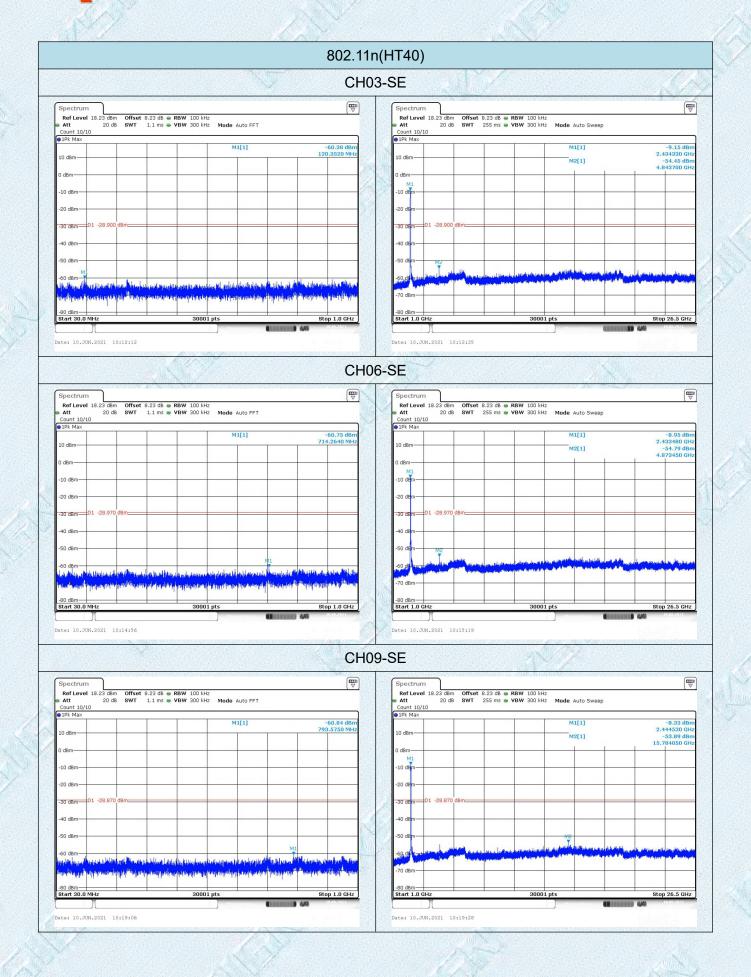




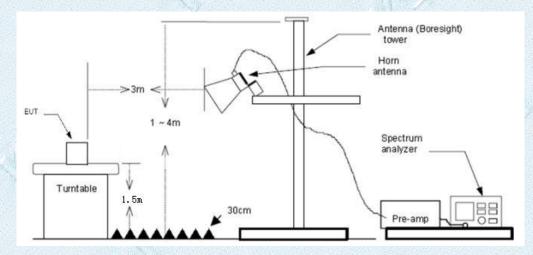




Page 49 of 69



Page 51 of 69


3.7. Band Edge Emissions(Radiated)

Limit

Restricted Frequency Band	(dBuV/i	m)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

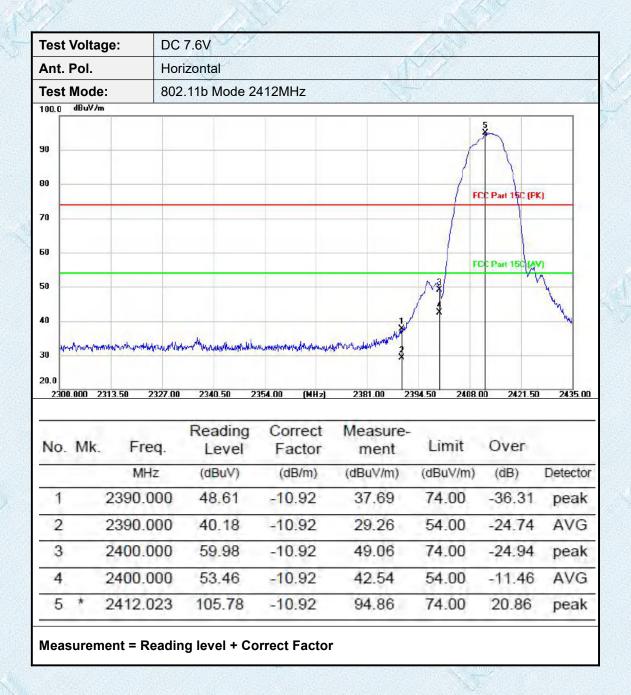
RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with Average detector for Average Value.

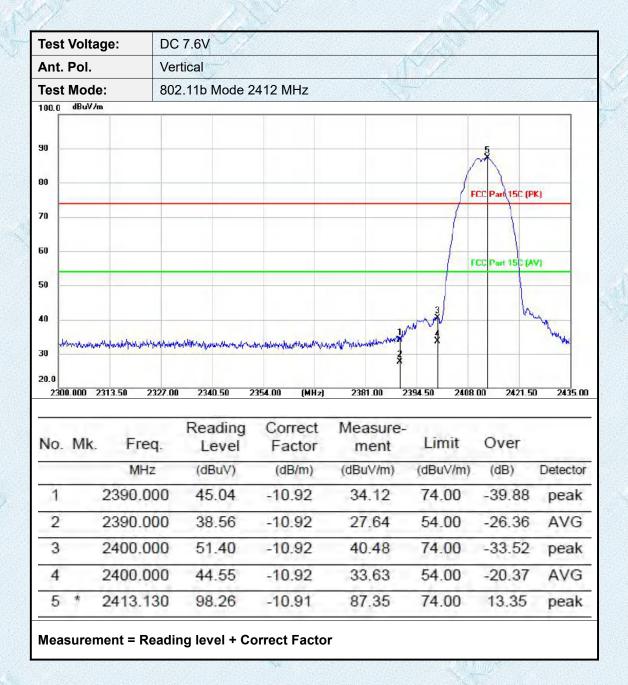
Test Mode

Please refer to the clause 2.3.

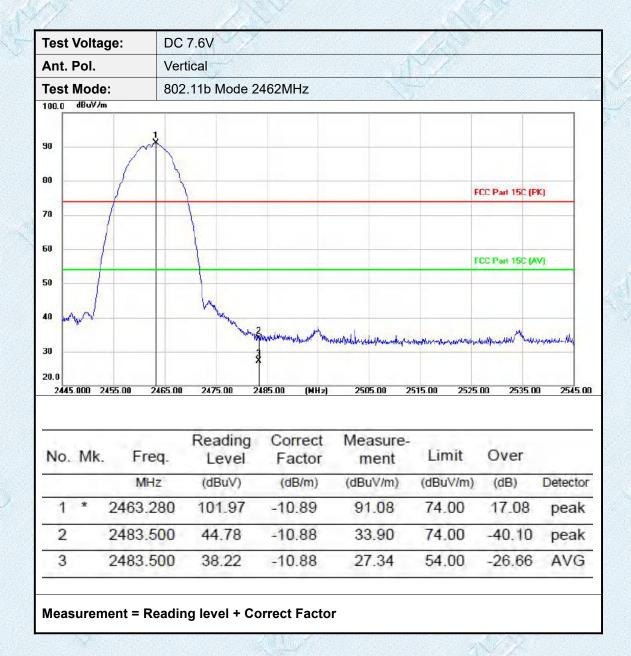
Test Results


Note:

1.Measurement = Reading level + Correct Factor


Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

2.Pre-scan 802.11b, 802.11g, 802.11n(HT20) and 802.11n(HT40) mode, and found the 802.11b mode which it is worse case, so only show the test data for worse case.

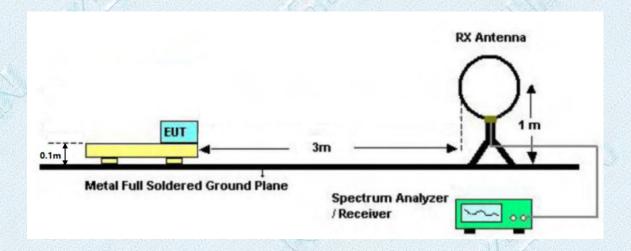


3.8. Spurious Emission (Radiated)

Limit

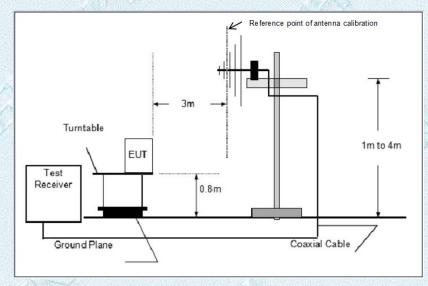
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

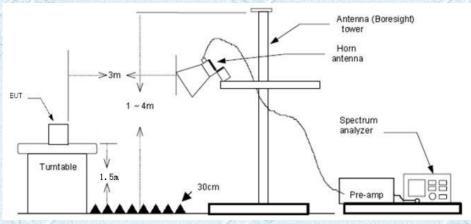

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meter	s(at 3m)
(MHz)	Peak	Average
Above 1000	74	54

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=1MHz Peak detector for Peak value.

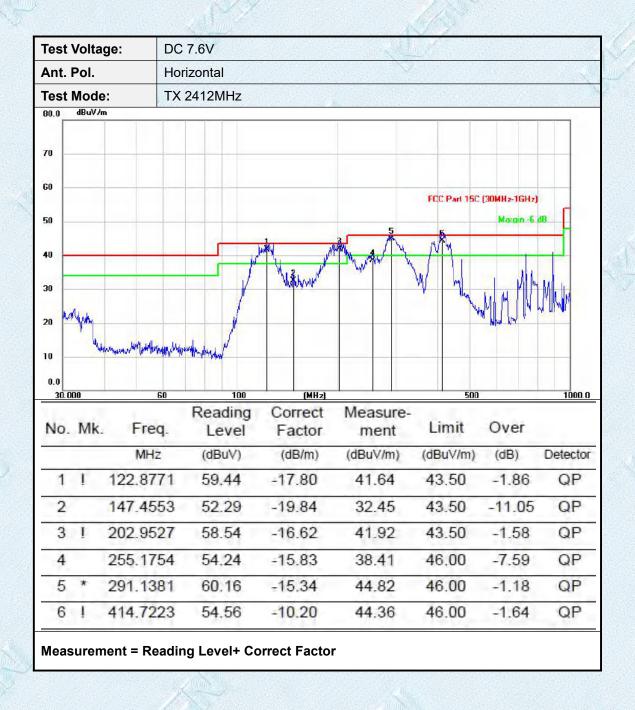
RBW=1MHz, VBW=10Hz RMS detector for Average value.

KSIGN(Guangdong) Testing Co., Ltd.

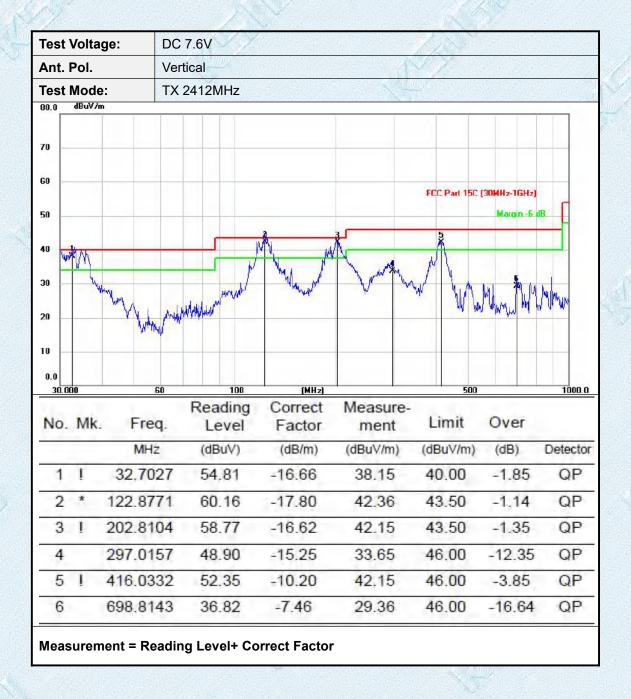
Test Mode

Please refer to the clause 2.3.

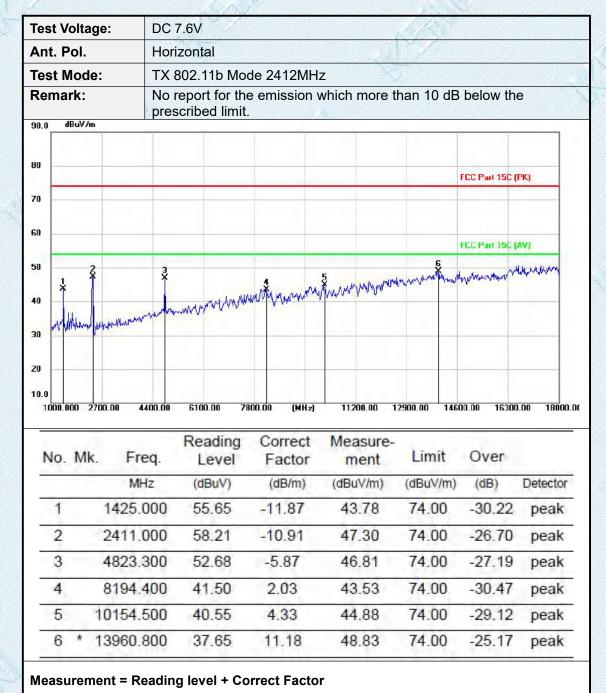
Test Result

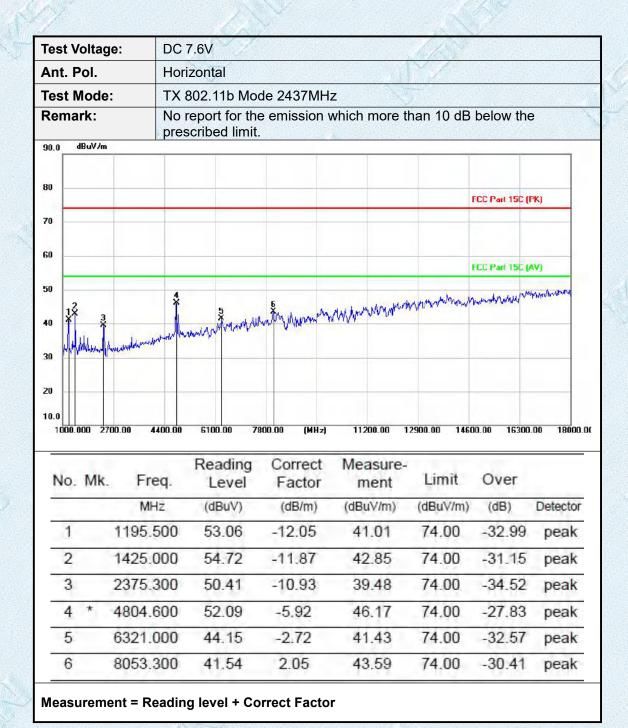

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS


Note:

- Measurement = Reading level + Correct Factor
 Correct Factor=Antenna Factor + Cable Loss Preamplifier Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan 802.11b/g/n(HT20/HT40) modulation, and found the 802.11b modulation 2412MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 6) Pre-scan 802.11b/g/n(HT20/HT40) modulation, and found the 802.11b modulation which it is worse case for above 1GHz, so only show the test data for worse case.

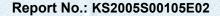




est v	oltag/	е.	DC 7	.00					
\nt. F	Pol.		Verti	cal			U.V.a		
est N	Mode:	:	TX 8	02.11b Mod	de 2412MH	Z			
Rema				eport for the cribed limit.		which more the	han 10 dB	below th	е
0.0	dBuV/m								
0 -								FCC Part 15C ((PK)
0								1001 (100)	(* 1.5)
0								FCC Part 15C ([AV]
	nddanar	der Harry Land	No. of Street, or other Persons	morphospinging whi					
0.0	000 270	10.00 44	00.00	6100.00 78	Correct	11200.00 1 Measure-	2900.00 146	00.00 1630	
0.0		10.00 44 Fre	9.	Reading Level	Correct Factor	11200.00 1 Measure- ment	2900.00 1460 Limit	00.00 16300 Over	0.00 1800
0 0 0.0 1000.0	000 270	10.00 44 Fre MH:	q.	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	2900.00 146 Limit (dBuV/m)	00.00 16300 Over (dB)	Detector
0 0 0.0 1000.0	000 270	Fre MH: 1425.0	q. z	Reading Level (dBuV) 54.07	Correct Factor (dB/m)	Measure- ment (dBuV/m) 42.20	2900.00 146 Limit (dBuV/m) 74.00	Over (dB) -31.80	Detector peak
No.	000 270	Fre MH: 1425.0 2375.3	q. z 00	Reading Level (dBuV) 54.07 51.51	Correct Factor (dB/m) -11.87	11200.00 1 Measure- ment (dBuV/m) 42.20 40.58	Limit (dBuV/m) 74.00 74.00	Over (dB) -31.80	Detector peak peak
0 0 0.0 1000.0	000 270	Fre MH: 1425.0 2375.3 4823.3	q. z 00 00	Reading Level (dBuV) 54.07 51.51 46.49	Correct Factor (dB/m) -11.87 -10.93	11200.00 1 Measure- ment (dBuV/m) 42.20 40.58 40.62	Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -31.80 -33.42 -33.38	Detector peak
No.	000 270	Fre MH: 1425.0 2375.3	q. z 00 00	Reading Level (dBuV) 54.07 51.51	Correct Factor (dB/m) -11.87	11200.00 1 Measure- ment (dBuV/m) 42.20 40.58	Limit (dBuV/m) 74.00 74.00	Over (dB) -31.80	Detector peak peak
No.	000 270	Fre MH: 1425.0 2375.3 4823.3	q. z 00 00 00	Reading Level (dBuV) 54.07 51.51 46.49	Correct Factor (dB/m) -11.87 -10.93	11200.00 1 Measure- ment (dBuV/m) 42.20 40.58 40.62	Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -31.80 -33.42 -33.38	Detector peak peak peak

Test V	oitage	e: D							
Ant. F	Pol.	V	ertical				\sim		
Test N	Mode:	. τ	X 802.	11b Mo	de 2437MH	z 📎			
Rema	ırk:			rt for the		which more th	nan 10 dB	below the)
90.0	dBuV/m								
30									
								FCC Part 15C (F	PK)
70									
50								FCC Part 15C (A	AV)
50								i di	u Assaulia
30 JAN 30 ZO	addin tal a	agent landous relieve your and	Hannya di na Agr	ALC CANON	5 proving on Sun				
1000.0	000 270 Mk.	00.00 4400	.00 610 Re	0.00 7: ading	800.00 (MHz)	11200.00 12 Measure-		00.00 16300. Over	
1000.0	000 270		00 610 Re	00.00 79	800.00 (MHz)	11200.00 12	2900.00 146	00.00 16300. Over	00 18000
1000.0	000 270 Mk.	00.00 4400 Freq.	Re L	ading evel	Correct Factor	Measure- ment	2900.00 146 Limit	00.00 16300. Over	00 18000. Detector
10.0 1000.0 No.	000 270 Mk.	Freq.	Re L (d	ading Level	Correct Factor (dB/m)	Measure- ment (dBuV/m)	2900.00 146 Limit (dBuV/m)	00.00 16300. Over	00 18000.
10.0 1000.0 No.	000 270 Mk.	Freq. MHz	Re L (d	ading Level IBuV)	Correct Factor (dB/m) -11.87	Measure- ment (dBuV/m) 43.31	Limit (dBuV/m) 74.00	Over (dB)	00 18000. Detector peak
No.	000 270 Mk.	Freq. MHz 1425.00	Re L (d) 0 5:	ading Level IBuV) 5.18	Correct Factor (dB/m) -11.87	Measure- ment (dBuV/m) 43.31 39.83	Limit (dBuV/m) 74.00 74.00	Over (dB) -30.69	Detector peak peak
No.	000 270 Mk.	Freq. MHz 1425.00 2375.30 4804.60	Re L (d) 0 5:00 4:00 4:00 4:00 4:00 4:00 4:00 4:	ading Level BuV) 5.18 0.76	Correct Factor (dB/m) -11.87 -10.93 -5.92	Measure- ment (dBuV/m) 43.31 39.83 37.88	Limit (dBuV/m) 74.00 74.00	Over (dB) -30.69 -34.17 -36.12	Detector peak peak peak

Test Voltage:		Je.	DC 7.6V							
Ant. Pol. Test Mode: Remark:			Horizontal TX 802.11b Mode 2462MHz No report for the emission which more than 10 dB below the prescribed limit.							
):								
90.0	dBuV/m		1							
80								FCC Part 15C (I	PKI	
70									,	
60										
200								FCC Part 15C (/	AVI	
50 1	,		3		5 6	MA	and was the same	hyphylanoganomy	y y walk in a re	
	-			X on All	My My My My Mary	VWW. A. A. A.				
40	Í		Alm	Jan Variation of the state of t	0					
	Maura	foregraphy and was and	nghin	mery with property						
20 10.0 1000.		700.00 44	00.00		Correct Factor			00.00 16300 Over		
20 10.0 1000.	000 2	700.00 44	on.oo	6100.00 7	800.00 (мн ₂)	11200.00 12 Measure-	2900.00 146	00.00 16300 Over		
20 10.0 1000.	000 2	700.00 44 Fre	00.00 q.	Reading Level	Correct Factor	11200.00 12 Measure- ment	2900.00 146 Limit	00.00 16300 Over	.00 18000	
10.0 1000. No.	000 2	700.00 44 Free	q. z	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	2900.00 146 Limit (dBuV/m)	00.00 16300 Over (dB)	.00 18000 Detector	
10.0 1000. No.	000 2	Free MH: 1425.0	q. z 00	Reading Level (dBuV) 56.57	Correct Factor (dB/m)	Measure- ment (dBuV/m) 44.70	Limit (dBuV/m) 74.00	Over (dB) -29.30	Detector peak	
10.0 1000. No.	000 2 Mk.	Free MH: 1425.0 2402.5	q. z 00 00	Reading Level (dBuV) 56.57 50.58	Correct Factor (dB/m) -11.87	Measure- ment (dBuV/m) 44.70 39.67	Limit (dBuV/m) 74.00 74.00	Over (dB) -29.30	Detector peak peak	
No.	000 2 Mk.	Free MH: 1425.0 2402.5 4923.6	q. z 000 000 000 000 000 000 000 000 000	Reading Level (dBuV) 56.57 50.58 53.46	Correct Factor (dB/m) -11.87 -10.91 -5.60	Measure- ment (dBuV/m) 44.70 39.67 47.86	Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -29.30 -34.33 -26.14	Detector peak peak peak	



Test Voltage:		DC	DC 7.6V							
Ant. Pol. Test Mode: Remark:		Vert	Vertical TX 802.11b Mode 2462MHz							
		TX								
			No report for the emission which more than 10 dB below the prescribed limit.							
90.0 dB	BuV/m									
30							FCC Part 15C (I	PKI		
70										
50							FCC Part 15C (/	AVJ		
	Ϋ́	X Markey	MMx.A.							
10.0	00 2700.0	0 4400.00	6100.00 75	Correct	Measure-	2900.00 146	00.00 16300			
20	00 2700.0	0 4400.00 Freq.	Reading Level	Correct Factor	11200.00 12 Measure- ment	2900.00 146 Limit	00.00 16300 Over	.00 18000		
10.0	00 2700.0 Mk.	0 4400.00	6100.00 75	Correct	11200.00 12 Measure-	2900.00 146	00.00 16300 Over			
10.0 1000.00	Mk.	Freq.	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	2900.00 146 Limit (dBuV/m)	00.00 16300 Over (dB)	00 18000.		
No.	Mk.	Freq. MHz 425.000	Reading Level (dBuV) 54.37	Correct Factor (dB/m)	Measure- ment (dBuV/m) 42.50	Limit (dBuV/m) 74.00	Over (dB) -31.50	Detector peak		
No.	Mk.	Freq. MHz 425.000	Reading Level (dBuV) 54.37 48.17	Correct Factor (dB/m) -11.87	Measure- ment (dBuV/m) 42.50 36,99	Limit (dBuV/m) 74.00 74.00	Over (dB) -31.50	Detector peak peak		
No.	Mk. 14 18 23	Freq. MHz 425.000 356.800	Reading Level (dBuV) 54.37 48.17 50.49	Correct Factor (dB/m) -11.87 -11.18	Measure- ment (dBuV/m) 42.50 36,99 39,56	Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) -31.50 -37.01 -34.44	Detector peak peak peak		

4.EUT TEST PHOTOS

Reference to the document No.: Test Photos.

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the document No.: External Photos and Internal Photos.

*****THE END*****