# KSIGN (Guangdong) Testing Co., Ltd.

KSIGN

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

| Т                        | TEST REPORT                                                                                                                                                                                                                    |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Report No:               | KS2005S00105E03                                                                                                                                                                                                                |  |  |  |  |
| FCC ID:                  | 2AM8GVOREZA                                                                                                                                                                                                                    |  |  |  |  |
| Applicant:               | GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO.,<br>LIMITED                                                                                                                                                                       |  |  |  |  |
| Address                  | No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu Dstrict, Guangzhou, China, 511434                                                                                                                    |  |  |  |  |
| Manufacturer             | Guangzhou Lie Dun Electronics Technology CO.,Ltd                                                                                                                                                                               |  |  |  |  |
| Address                  | Building 4, 43 International Trade Avenue South, Hualong, Panyu,<br>Guangzhou, China, 511434                                                                                                                                   |  |  |  |  |
| Factory                  | Guangzhou Lie Dun Electronics Technology CO.,Ltd                                                                                                                                                                               |  |  |  |  |
| Address                  | Building 4, 43 International Trade Avenue South, Hualong, Panyu,<br>Guangzhou, China, 511434                                                                                                                                   |  |  |  |  |
| Product Name:            | VOREZA II                                                                                                                                                                                                                      |  |  |  |  |
| Trade Mark               | VOREZA                                                                                                                                                                                                                         |  |  |  |  |
| Model/Type reference:    | VOR2-IEC2-X04                                                                                                                                                                                                                  |  |  |  |  |
| Listed Model(s)          | 1                                                                                                                                                                                                                              |  |  |  |  |
| Standard:                | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                                                                                                                                                              |  |  |  |  |
| Date of Receipt:         | Sep.15, 2020                                                                                                                                                                                                                   |  |  |  |  |
| Date of Test Date        | Jan.18, 2021- June.11, 2021                                                                                                                                                                                                    |  |  |  |  |
| Date of issue            | June.11, 2021                                                                                                                                                                                                                  |  |  |  |  |
| Test result:             | Pass                                                                                                                                                                                                                           |  |  |  |  |
| Compiled by:             | Rory Augung andonal                                                                                                                                                                                                            |  |  |  |  |
| (Printed name+signature) | Rory Huang Rory Huang Guangdong) Rog                                                                                                                                                                                           |  |  |  |  |
| Supervised by:           | EP 11 3 13                                                                                                                                                                                                                     |  |  |  |  |
| (Printed name+signature) | Eder Zhan Cder. Mars KSIGN                                                                                                                                                                                                     |  |  |  |  |
| Approved by:             | ACail Ward to St                                                                                                                                                                                                               |  |  |  |  |
| (Printed name+signature) | Eder Zhan Eder. Than KSIGN                                                                                                                                                                                                     |  |  |  |  |
| Testing Laboratory Name: | KSIGN(Guangdong) Testing Co. 1 td                                                                                                                                                                                              |  |  |  |  |
| Address                  | <b>KSIGN(Guangdong) Testing Co., Ltd.</b><br>West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu<br>Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen,<br>Guangdong, People's Republic of China |  |  |  |  |

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.



# TABLE OF CONTENTS

## Page

| 1. TEST SUMMARY                                  |    |
|--------------------------------------------------|----|
| 1.1. Test Standards                              |    |
| 1.2. REPORT VERSION.                             |    |
| 1.3. TEST DESCRIPTION                            | 4  |
| 1.4. Test Facility                               | 5  |
| 1.5. MEASUREMENT UNCERTAINTY                     | 6  |
| 1.6. Environmental conditions                    |    |
| 2. GENERAL INFORMATION                           |    |
| 2.1. CLIENT INFORMATION                          |    |
| 2.2. GENERAL DESCRIPTION OF EUT                  |    |
| 2.3. OPERATION STATE                             |    |
| 2.4. Measurement Instruments List.               |    |
| 2.5. Test Software                               | 9  |
| 3. TEST ITEM AND RESULTS                         | 10 |
|                                                  |    |
| 3.1. ANTENNA REQUIREMENT                         |    |
| 3.2. CONDUCTED EMISSION                          |    |
| 3.3. PEAK OUTPUT POWER                           |    |
| 3.4. 99% Occupied Bandwidth & 20dB Bandwidth     |    |
| 3.5. CARRIER FREQUENCIES SEPARATION.             |    |
| 3.6. NUMBER OF HOPPING CHANNEL                   |    |
| 3.7. DWELL TIME                                  |    |
| 3.8. BAND EDGE AND SPURIOUS EMISSION (CONDUCTED) |    |
| 3.9. BAND EDGE EMISSIONS(RADIATED)               |    |
| 3.10. RADIATED SPURIOUS EMISSIONS                |    |
| 3.11. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE    |    |
| 4. EUT TEST PHOTOS                               |    |
| 5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL             |    |

# KSIGN®

# 1. TEST SUMMARY

# 1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

**KDB 558074 D01 :** The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

# 1.2. Report version

| Revised No.        | Date of issue                                 | Description |
|--------------------|-----------------------------------------------|-------------|
| 01                 | June.11, 2021                                 | Original    |
|                    |                                               |             |
|                    | Star Star                                     |             |
|                    |                                               | Nº Y        |
|                    |                                               |             |
|                    |                                               | × *         |
|                    | 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (       |             |
| 5.00               |                                               |             |
| 188                | 1. A. M.                                      |             |
|                    |                                               |             |
|                    | A Z                                           |             |
|                    |                                               |             |
|                    |                                               |             |
|                    |                                               |             |
| 6                  | N N                                           | 2           |
| 18                 | 1999 - S. |             |
| NOY.               |                                               | 15 C. M.    |
| Sector Contraction |                                               |             |
|                    | No.                                           | 1877 - C    |
| <u> </u>           |                                               | ×57         |
|                    |                                               |             |
|                    | 1NT                                           | 10 A        |
|                    |                                               |             |
|                    | 10 M                                          |             |



# 1.3. Test Description

| FCC Part 15 Subpart C(15.247)              |                  |          |               |  |  |
|--------------------------------------------|------------------|----------|---------------|--|--|
|                                            | Standard Section | <b>_</b> |               |  |  |
| Test Item                                  | FCC              | Result   | Test Engineer |  |  |
| Antenna Requirement                        | 15.203           | Pass     | Emiya Lin     |  |  |
| Conducted Emission                         | 15.207           | Pass     | Emiya Lin     |  |  |
| Restricted Bands                           | 15.205           | Pass     | Emiya Lin     |  |  |
| Hopping Channel Separation                 | 15.247(a)(1)     | Pass     | Emiya Lin     |  |  |
| Dwell Time                                 | 15.247(a)(1)     | Pass     | Emiya Lin     |  |  |
| Peak Output Power                          | 15.247(b)(1)     | Pass     | Emiya Lin     |  |  |
| Number of Hopping<br>Frequency             | 15.247(b)(1)     | Pass     | Emiya Lin     |  |  |
| Band Edge Emissions                        | 15.247(d)        | Pass     | Emiya Lin     |  |  |
| Radiated Spurious Emission                 | 15.247(c)&15.209 | Pass     | Emiya Lin     |  |  |
| 99% Occupied Bandwidth & 20dB<br>Bandwidth | 15.247(a)        | Pass     | Emiya Lin     |  |  |
| Pseudorandom Frequency Hopping<br>Sequence | 15.247 (a)(1)    | Pass     | Emiya Lin     |  |  |

Note: The measurement uncertainty is included in the test result.



# 1.4. Test Facility

#### Address of the report laboratory

#### KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

#### Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

#### FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.



## 1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

| Test Items                              | Measurement Uncertainty | Notes |  |
|-----------------------------------------|-------------------------|-------|--|
| Transmitter power conducted             | 0.42 dB                 | (1)   |  |
| Transmitter power Radiated              | 2.14 dB                 | (1)   |  |
| Conducted spurious emissions 9kHz~40GHz | 1.60 dB                 | (1)   |  |
| Radiated spurious emissions 9kHz~40GHz  | 2.20 dB                 | (1)   |  |
| Conducted Emissions 9kHz~30MHz          | 3.20 dB                 | (1)   |  |
| Radiated Emissions 30~1000MHz           | 4.70 dB                 | (1)   |  |
| Radiated Emissions 1~18GHz              | 5.00 dB                 | (1)   |  |
| Radiated Emissions 18~40GHz             | 5.54 dB                 | (1)   |  |
| Occupied Bandwidth                      | 2.80 dB                 | (1)   |  |

**Note (1):** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

## 1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:       | 15~35°C     |
|--------------------|-------------|
| Relative Humidity: | 30~60 %     |
| Air Pressure:      | 950~1050mba |



# 2. GENERAL INFORMATION

# 2.1. Client Information

| Applicant:                                                                                        | GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO., LIMITED                                                          |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Address:                                                                                          | No.4 plant of No.43 South International Trade Avenue, Hualong Town,<br>Panyu Dstrict, Guangzhou, China, 511434 |  |
| Manufacturer:                                                                                     | Guangzhou Lie Dun Electronics Technology CO.,Ltd                                                               |  |
| Address:Building 4, 43 International Trade Avenue South, Hualong, Pan<br>Guangzhou, China, 511434 |                                                                                                                |  |
| Factory :                                                                                         | Guangzhou Lie Dun Electronics Technology CO.,Ltd                                                               |  |
| Address:                                                                                          | Building 4, 43 International Trade Avenue South, Hualong, Panyu, Guangzhou, China, 511434                      |  |

# 2.2. General Description of EUT

| Test Sample Number 1:  | 1-1-1(Normal Sample),1-1-2(Engineering Sample)                                          |
|------------------------|-----------------------------------------------------------------------------------------|
| Product Name:          | VOREZA II                                                                               |
| Marketing Name:        | VOR2-IEC2-X04                                                                           |
| Model/Type reference:  | VOREZA                                                                                  |
| Listed Model(s):       |                                                                                         |
| Model Difference:      |                                                                                         |
| Power Source:          | MODEL:SOY-1200300<br>INPUT: 100-240V~ 50/60Hz 1.2A max.<br>OUTPUT: DC 12.0V 3.0A, 36.0W |
| Power supply(Battery): | DC 7.6V 13000mAh/98.8Wh                                                                 |
| Hardware version:      | ZA801 REV11                                                                             |
| Software version:      | EC: E7.CD.06<br>BIOS: E.ZA102_1.V10.048<br>Windows10 pro: 1803                          |
| Bluetooth 4.2+EDR      |                                                                                         |
| Modulation:            | GFSK, π/4DQPSK, 8DPSK                                                                   |
| Operation frequency:   | 2402MHz~2480MHz                                                                         |
| Max Peak Output Power: | DH5:4.40dBm<br>2DH5:3.61dBm<br>3DH5:3.63dBm                                             |
| Channel number:        | 79                                                                                      |
| Channel separation:    | 1MHz                                                                                    |
| Antenna type:          | FPC Antenna                                                                             |
| Antenna gain:          | 1.5dBi                                                                                  |



## 2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

| Channel | Frequency (MHz) |  |  |
|---------|-----------------|--|--|
| 00      | 2402            |  |  |
| 01      | 2403            |  |  |
|         |                 |  |  |
| 38      | 2440            |  |  |
| 39      | 2441            |  |  |
| 40      | 2442            |  |  |
|         |                 |  |  |
| 77      | 2479            |  |  |
| 78      | 2480            |  |  |

Note: The display in grey were the channel selected for testing.

#### Test mode

| NO. | TEST MODE DESCRIPTION          |
|-----|--------------------------------|
| 1   | Low channel GFSK(DH5)          |
| 2   | Middle channel GFSK(DH5)       |
| 3   | High channel GFSK(DH5)         |
| 4   | Low channel π/4-DQPSK(2DH5)    |
| 5   | Middle channel π/4-DQPSK(2DH5) |
| 6   | High channel π/4-DQPSK(2DH5)   |
| 7   | Low channel 8DPSK(3DH5)        |
| 8   | Middle channel 8DPSK(3DH5)     |
| 9   | High channel 8DPSK(3DH5)       |
| 10  | Hopping mode GFSK(DH5)         |
| 11  | Hopping mode π/4-DQPSK(2DH5)   |
| 12  | Hopping mode 8DPSK(3DH5)       |
|     |                                |

#### Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.Only the worst data on the X axis recorded in the report.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

4. The test software is the SecureCRTSecure\_V7.0.0.326 which can set the EUT into the individual test modes.



|      | Т                                      | onscend JS0806-2 | Test system |            |            |
|------|----------------------------------------|------------------|-------------|------------|------------|
| Item | Test Equipment                         | Manufacturer     | Model No.   | Serial No. | Cal. Until |
| 1    | Spectrum Analyzer                      | R&S              | FSV40-N     | 101798     | 04/07/2021 |
| 2    | Vector Signal Generator                | Agilent          | N5182A      | MY50142520 | 04/07/2021 |
| 3    | Analog Signal Generator                | HP               | 83752A      | 3344A00337 | 04/07/2021 |
| 4    | Power Sensor                           | Agilent          | E9304A      | MY50390009 | 04/07/2021 |
| 5    | Power Sensor                           | Agilent          | E9300A      | MY41498315 | 04/07/2021 |
| 6    | Wideband Radio<br>Communication Tester | R&S              | CMW500      | 157282     | 04/07/2021 |
| 7    | Climate Chamber                        | Angul            | AGNH80L     | 1903042120 | 04/07/2021 |
| 8    | Dual Output DC Power Supply            | Agilent          | E3646A      | MY40009992 | 04/07/2021 |
| 9    | RF Control Unit                        | Tonscend         | JS0806-2    | 1          | 04/07/2021 |

# 2.4. Measurement Instruments List

|      | Transmitter spur                           | ious emissions & Re    | eceiver spurious en | nissions   |            |
|------|--------------------------------------------|------------------------|---------------------|------------|------------|
| Item | Test Equipment                             | Manufacturer           | Model No.           | Serial No. | Cal. Until |
| 1    | EMI Test Receiver                          | R&S                    | ESR                 | 102525     | 04/07/2021 |
| 2    | High Pass Filter                           | Chengdu<br>E-Microwave | OHF-3-18-S          | 0E01901038 | 03/27/2021 |
| 3    | High Pass Filter                           | Chengdu<br>E-Microwave | OHF-6.5-18-S        | 0E01901039 | 03/27/2021 |
| 4    | Spectrum Analyzer                          | HP                     | 8593E               | 3831U02087 | 04/07/2021 |
| 5    | Ultra-Broadband logarithmic period Antenna | Schwarzbeck            | VULB 9163           | 01230      | 03/29/2023 |
| 6    | Loop Antenna                               | Beijin ZHINAN          | ZN30900C            | 18050      | 03/25/2021 |
| 7    | Spectrum Analyzer                          | R&S                    | FSV40-N             | 101798     | 04/07/2021 |
| 8    | Horn Antenna                               | Schwarzbeck            | BBHA 9120 D         | 2023       | 03/29/2023 |
| 9    | Pre-Amplifier                              | Schwarzbeck            | BBV 9745            | 9745#129   | 04/07/2021 |
| 10   | Pre-Amplifier                              | EMCI                   | EMC051835SE         | 980662     | 04/07/2021 |

| Item | Test Equipment    | Manufacturer | Model No. | Serial No.   | Cal. Until |
|------|-------------------|--------------|-----------|--------------|------------|
| 1    | LISN              | R&S          | ENV432    | 1326.6105.02 | 03/27/2021 |
| 2    | EMI Test Receiver | R&S          | ESR       | 102524       | 04/07/2021 |
| 3    | Manual RF Switch  | JS TOYO      |           | MSW-01/002   | 04/07/2021 |

Note:

The Cal. Interval was one year.
The cable loss has calculated in test result which connection between each test instruments.

# 2.5. Test Software

| Software name                           | Model    | Version       |
|-----------------------------------------|----------|---------------|
| Conducted emission Measurement Software | EZ-EMC   | EMC-Con 3A1.1 |
| Radiated emission Measurement Software  | EZ-EMC   | FA-03A.2.RE   |
| Bluetooth and WIFI Test System          | JS1120-3 | 2.5.77.0418   |



# 3. TEST ITEM AND RESULTS

## 3.1. Antenna requirement

## Requirement

## FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

## Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

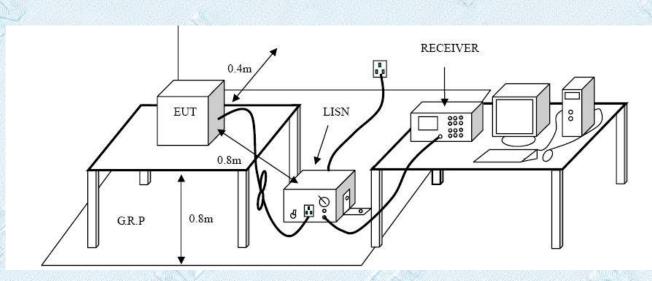


## 3.2. Conducted Emission

## Limit

#### Conducted Emission Test Limit

| Frequency     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |


#### Notes:

(1) \*Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### Test Configuration



#### **Test Procedure**

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 0.8 m by 1.6 m, raised 0.8 m above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.
  The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

## Test Mode:

Please refer to the clause 2.3.

#### Test Results

Pre-scan DH5, 2DH5, 3DH5 modulation, and found the DH5 modulation 2402MHz which it is worse case, so only show the test data for worse case.



| Fest Voltage:                                                                                                                                                    | AC 1                                                                                        | 20V/60 Hz                                                                                      |                                                                                                                   |                                                                                                                  | . Sela                                                                                |                                                                                            |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Ferminal:                                                                                                                                                        | Line                                                                                        |                                                                                                |                                                                                                                   |                                                                                                                  | as and                                                                                |                                                                                            |                                                                    |
|                                                                                                                                                                  | Chai                                                                                        | ging+BT                                                                                        |                                                                                                                   |                                                                                                                  |                                                                                       |                                                                                            |                                                                    |
|                                                                                                                                                                  | WMW W                                                                                       |                                                                                                |                                                                                                                   | 12 mar 1 m |                                                                                       | N                                                                                          |                                                                    |
| 0                                                                                                                                                                |                                                                                             |                                                                                                |                                                                                                                   |                                                                                                                  |                                                                                       |                                                                                            | A ALL ALL                                                          |
| 0.0<br>0.150<br>No. Mk. F                                                                                                                                        | req.                                                                                        | Reading<br>Level                                                                               | Correct<br>Factor                                                                                                 | <sup>2)</sup><br>Measure-<br>ment                                                                                | Limit                                                                                 | Over                                                                                       | 30                                                                 |
| 0.150<br>No. Mk. F                                                                                                                                               | req.                                                                                        |                                                                                                | Correct                                                                                                           | Measure-                                                                                                         |                                                                                       | Over<br>dB                                                                                 | a<br>Detector                                                      |
| 0.150<br>No. Mk. F                                                                                                                                               |                                                                                             | Level                                                                                          | Correct<br>Factor                                                                                                 | Measure-<br>ment                                                                                                 | Limit                                                                                 | 17 m                                                                                       |                                                                    |
| No. Mk. F                                                                                                                                                        | MHz                                                                                         | Level<br>dBuV                                                                                  | Correct<br>Factor<br>dB                                                                                           | Measure-<br>ment<br>dBuV                                                                                         | Limit<br>dBu∨                                                                         | dB                                                                                         | Detector                                                           |
| No. Mk. F<br>1 0<br>2 0                                                                                                                                          | MHz<br>2683                                                                                 | Level<br>dBuV<br>32.91                                                                         | Correct<br>Factor<br>dB<br>10.85                                                                                  | Measure-<br>ment<br>dBuV<br>43.76                                                                                | Limit<br>dBuV<br>61.17                                                                | dB<br>-17.41                                                                               | Detector<br>QP                                                     |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0                                                                                                                                 | MHz<br>2683<br>2683                                                                         | Level<br>dBuV<br>32.91<br>22.99                                                                | Correct<br>Factor<br>dB<br>10.85<br>10.85                                                                         | Measure-<br>ment<br>dBuV<br>43.76<br>33.84                                                                       | Limit<br>dBuV<br>61.17<br>51.17                                                       | dB<br>-17.41<br>-17.33                                                                     | Detector<br>QP<br>AVG                                              |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0                                                                                                                          | MHz<br>2683<br>2683<br>.6134                                                                | Level<br>dBuV<br>32.91<br>22.99<br>41.97                                                       | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.85                                                                | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84                                                              | Limit<br>dBuV<br>61.17<br>51.17<br>56.00                                              | dB<br>-17.41<br>-17.33<br>-3.16                                                            | Detector<br>QP<br>AVG<br>QP                                        |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0<br>5 1                                                                                                                   | MHz<br>2683<br>2683<br>.6134<br>.6134                                                       | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77                                              | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87                                                       | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64                                                     | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00                                     | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36                                                   | Detector<br>QP<br>AVG<br>QP<br>AVG                                 |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0<br>5 1<br>6 1                                                                                                            | MHz<br>2683<br>2683<br>.6134<br>.6134<br>.1215                                              | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77<br>33.95                                     | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87<br>10.87                                              | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64<br>44.82                                            | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00<br>56.00                            | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36<br>-11.18                                         | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP                           |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0<br>5 1<br>6 1<br>7 1                                                                                                     | MHz<br>2683<br>2683<br>.6134<br>.6134<br>.1215<br>.1215<br>.6076                            | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77<br>33.95<br>24.47<br>31.76                   | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87<br>10.87<br>10.87<br>10.87<br>10.88                   | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64<br>44.82<br>35.34<br>42.64                          | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00          | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36<br>-11.18<br>-10.66<br>-13.36                     | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP              |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0<br>5 1<br>6 1<br>7 1<br>8 1                                                                                              | MHz<br>2683<br>2683<br>.6134<br>.6134<br>.6134<br>.1215<br>.1215<br>.6076<br>.6076          | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77<br>33.95<br>24.47<br>31.76<br>24.96          | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87<br>10.87<br>10.87<br>10.87<br>10.88<br>10.88          | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64<br>44.82<br>35.34<br>42.64<br>35.84                 | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00 | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36<br>-11.18<br>-10.66<br>-13.36<br>-10.16           | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |
| No. Mk. F<br>1 0<br>2 0<br>3 * 0<br>4 0<br>5 1<br>6 1<br>7 1<br>8 1<br>9 1                                                                                       | MHz<br>2683<br>2683<br>.6134<br>.6134<br>.6134<br>.1215<br>.1215<br>.6076<br>.6076<br>.9192 | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77<br>33.95<br>24.47<br>31.76<br>24.96<br>32.06 | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87<br>10.87<br>10.87<br>10.87<br>10.88<br>10.88<br>10.88 | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64<br>44.82<br>35.34<br>42.64<br>35.84<br>42.94        | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00 | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36<br>-11.18<br>-10.66<br>-13.36<br>-10.16<br>-13.06 | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP |
| no. Mk.     F       1     0       2     0       3     *     0       4     0       5     1       6     1       7     1       8     1       9     1       10     1 | MHz<br>2683<br>2683<br>.6134<br>.6134<br>.6134<br>.1215<br>.1215<br>.6076<br>.6076          | Level<br>dBuV<br>32.91<br>22.99<br>41.97<br>30.77<br>33.95<br>24.47<br>31.76<br>24.96          | Correct<br>Factor<br>dB<br>10.85<br>10.85<br>10.87<br>10.87<br>10.87<br>10.87<br>10.87<br>10.88<br>10.88          | Measure-<br>ment<br>dBuV<br>43.76<br>33.84<br>52.84<br>41.64<br>44.82<br>35.34<br>42.64<br>35.84                 | Limit<br>dBuV<br>61.17<br>51.17<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00 | dB<br>-17.41<br>-17.33<br>-3.16<br>-4.36<br>-11.18<br>-10.66<br>-13.36<br>-10.16           | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |

Remarks:

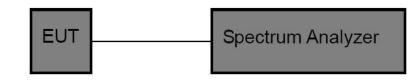
1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit



|                                               | : AC ´                                                                                        | 120V/60 Hz                                                                            |                                                                                     |                                                                                                | Sec. Color                                                                   | S.                                                                                   |                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Terminal:                                     | Neu                                                                                           | tral                                                                                  |                                                                                     |                                                                                                | 11/                                                                          |                                                                                      |                                                        |
| Test Mode:                                    | Cha                                                                                           | rging+BT                                                                              |                                                                                     |                                                                                                |                                                                              |                                                                                      |                                                        |
| 80.0 dBuV<br>70<br>60<br>50<br>40<br>30<br>20 | Mungual Mark                                                                                  |                                                                                       |                                                                                     | Mar Margara                                                                                    |                                                                              | Part 15 ClaseC                                                                       |                                                        |
| 0.0<br>0.150<br>No. Mk.                       | Freq.                                                                                         | Reading                                                                               | Correct<br>Factor                                                                   | <sup>≱</sup><br>Measure-<br>ment                                                               | Limit                                                                        | Over                                                                                 | 30.                                                    |
|                                               |                                                                                               | - W                                                                                   | 1.000.000                                                                           | 1.11                                                                                           |                                                                              |                                                                                      | Detector                                               |
|                                               | MHz                                                                                           | dBuV                                                                                  | dB                                                                                  | dBuV                                                                                           | dBuV                                                                         | dB                                                                                   | Detector                                               |
| 1 *                                           | MHz<br>0.5084                                                                                 | dBuV<br>42.96                                                                         | dB<br>10.88                                                                         | dBu∨<br>53.84                                                                                  | dBuV<br>56.00                                                                | dB<br>-2.16                                                                          | QP                                                     |
| 2                                             | MHz<br>0.5084<br>0.5084                                                                       | dBu∨<br>42.96<br>30.58                                                                | dB<br>10.88<br>10.88                                                                | dBuV<br>53.84<br>41.46                                                                         | dBuV<br>56.00<br>46.00                                                       | dB<br>-2.16<br>-4.54                                                                 | QP<br>AVG                                              |
| 1                                             | MHz<br>0.5084                                                                                 | dBuV<br>42.96                                                                         | dB<br>10.88                                                                         | dBu∨<br>53.84                                                                                  | dBuV<br>56.00                                                                | dB<br>-2.16                                                                          | QP                                                     |
| 2                                             | MHz<br>0.5084<br>0.5084                                                                       | dBu∨<br>42.96<br>30.58                                                                | dB<br>10.88<br>10.88                                                                | dBuV<br>53.84<br>41.46                                                                         | dBuV<br>56.00<br>46.00                                                       | dB<br>-2.16<br>-4.54                                                                 | QP<br>AVG                                              |
| 2 3                                           | MHz<br>0.5084<br>0.5084<br>0.5984                                                             | dBuV<br>42.96<br>30.58<br>41.96                                                       | dB<br>10.88<br>10.88<br>10.88                                                       | dBuV<br>53.84<br>41.46<br>52.84                                                                | dBuV<br>56.00<br>46.00<br>56.00                                              | dB<br>-2.16<br>-4.54<br>-3.16                                                        | QP<br>AVG<br>QP                                        |
| 2<br>3<br>4                                   | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984                                                   | dBuV<br>42.96<br>30.58<br>41.96<br>32.96                                              | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.88                                     | dBuV<br>53.84<br>41.46<br>52.84<br>43.84                                                       | dBuV<br>56.00<br>46.00<br>56.00<br>46.00                                     | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16                                               | QP<br>AVG<br>QP<br>AVG                                 |
| 2<br>3<br>4<br>5                              | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984<br>0.8903                                         | dBuV<br>42.96<br>30.58<br>41.96<br>32.96<br>37.37                                     | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.88<br>10.87                            | dBuV<br>53.84<br>41.46<br>52.84<br>43.84<br>48.24                                              | dBuV<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00                            | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16<br>-7.76                                      | QP<br>AVG<br>QP<br>AVG<br>QP                           |
| 2<br>3<br>4<br>5<br>6                         | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984<br>0.8903<br>0.8903                               | dBuV<br>42.96<br>30.58<br>41.96<br>32.96<br>37.37<br>30.13                            | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.88<br>10.87<br>10.87                   | dBuV<br>53.84<br>41.46<br>52.84<br>43.84<br>43.84<br>48.24<br>41.00                            | dBuV<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00                   | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16<br>-7.76<br>-5.00                             | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG                    |
| 2<br>3<br>4<br>5<br>6<br>7                    | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984<br>0.8903<br>0.8903<br>1.1931<br>1.1931           | dBuV<br>42.96<br>30.58<br>41.96<br>32.96<br>37.37<br>30.13<br>40.97<br>25.97          | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.87<br>10.87<br>10.87<br>10.87          | dBuV<br>53.84<br>41.46<br>52.84<br>43.84<br>43.84<br>48.24<br>41.00<br>51.84<br>36.84          | dBuV<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00          | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16<br>-7.76<br>-5.00<br>-4.16<br>-9.16           | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP              |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9          | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984<br>0.8903<br>0.8903<br>1.1931<br>1.1931<br>1.5613 | dBuV<br>42.96<br>30.58<br>41.96<br>32.96<br>37.37<br>30.13<br>40.97<br>25.97<br>32.77 | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.87<br>10.87<br>10.87<br>10.87<br>10.87 | dBuV<br>53.84<br>41.46<br>52.84<br>43.84<br>43.84<br>48.24<br>41.00<br>51.84<br>36.84<br>43.64 | dBuV<br>56.00<br>46.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00 | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16<br>-7.76<br>-5.00<br>-4.16<br>-9.16<br>-12.36 | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP |
| 2<br>3<br>4<br>5<br>6<br>7<br>8               | MHz<br>0.5084<br>0.5084<br>0.5984<br>0.5984<br>0.8903<br>0.8903<br>1.1931<br>1.1931           | dBuV<br>42.96<br>30.58<br>41.96<br>32.96<br>37.37<br>30.13<br>40.97<br>25.97          | dB<br>10.88<br>10.88<br>10.88<br>10.88<br>10.87<br>10.87<br>10.87<br>10.87          | dBuV<br>53.84<br>41.46<br>52.84<br>43.84<br>43.84<br>48.24<br>41.00<br>51.84<br>36.84          | dBuV<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00          | dB<br>-2.16<br>-4.54<br>-3.16<br>-2.16<br>-7.76<br>-5.00<br>-4.16<br>-9.16           | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |

Remarks:

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit




# 3.3. Peak Output Power

#### Limit

| Test Item         | Limit                                  | Frequency Range(MHz) |
|-------------------|----------------------------------------|----------------------|
| Peak Output Power | Hopping Channels>75<br>Power<1W(30dBm) | 2400~2483.5          |
|                   | Other <125mW(21dBm)                    |                      |

## **Test Configuration**



## Test Procedure

- 1. The Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator..
- 2. Spectrum Setting:

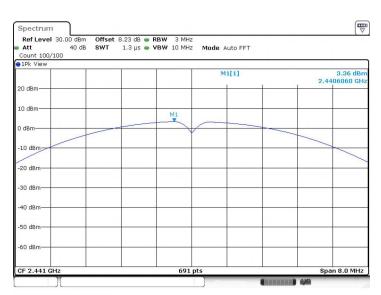
Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=10 MHz for bandwidth more than 1MHz.

## Test Mode

Please refer to the clause 2.3

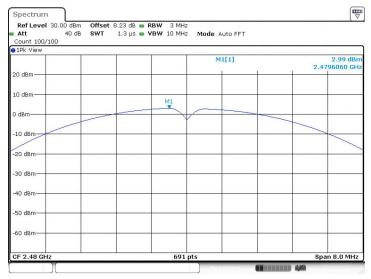
## Test Result

Page 15 of 70


KSIGN®

|                |           |                   | The Level Martin State of the S |
|----------------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Mode:     | DH5       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Channel freque | ncy (MHz) | Test Result (dBm) | Limit (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2402           |           | 4.40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2441           |           | 3.36              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2480           |           | 2.99              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |           | 2402 MHz          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |




KSIGN®

2441 MHz



Date: 21.JAN.2021 20:05:10

2480 MHz



Date: 21.JAN.2021 20:05:24

| Test Mode:     | 2DH5       |                   | E AS        |
|----------------|------------|-------------------|-------------|
| Channel freque | ency (MHz) | Test Result (dBm) | Limit (dBm) |
| 2402           | 2          | 3.61              |             |
| 2441           |            | 2.35              | 30          |
| 2480           | )          | 2.01              |             |
|                | 1          | 2402 MHz          |             |



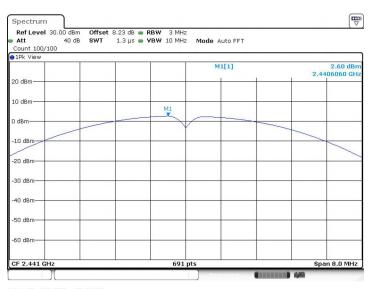

Date: 21.JAN.2021 20:05:40





#### 2480 MHz




| Test Mode:     | 3DH5      | Yes and the second seco | E AN        |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Channel freque | ncy (MHz) | Test Result (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit (dBm) |
| 2402           |           | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 2441           |           | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30          |
| 2480           |           | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |

| 1Pk View |    |       |    |                        |
|----------|----|-------|----|------------------------|
|          |    | M1[1] | 2. | 3.63 dBn<br>4016060 GH |
| 20 dBm-  |    |       |    | -                      |
|          |    |       |    |                        |
| 10 dBm   | M1 |       |    |                        |
| 0 dBm    |    |       |    |                        |
|          |    |       |    |                        |
| -10 dBm  |    |       |    |                        |
|          |    |       |    |                        |
| -20 dBm- |    |       |    |                        |
| -30 dBm  |    |       |    |                        |
|          |    |       |    |                        |
| -40 dBm  |    |       |    | -                      |
| -50 dBm  |    |       |    | -                      |
|          |    |       |    |                        |
| -60 dBm  |    |       |    | _                      |
|          |    |       |    |                        |

Date: 21.JAN.2021 20:06:23

KSIGN®

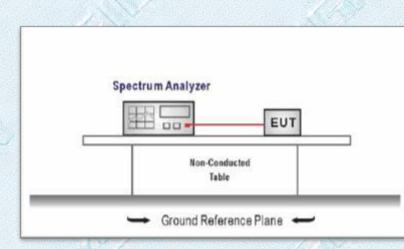
2441 MHz



Date: 21.JAN.2021 20:06:37

2480 MHz






## 3.4. 99% Occupied Bandwidth & 20dB Bandwidth

Limit

| Test Item | Limit                       | Frequency Range(MHz) |
|-----------|-----------------------------|----------------------|
| Bandwidth | <=1 MHz<br>(20dB bandwidth) | 2400~2483.5          |

Test Configuration



## **Test Procedure**

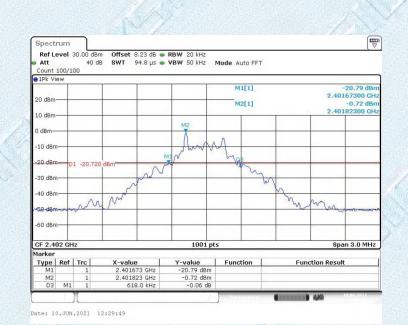
- 1. The Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
  - 20dB Bandwidth
  - (1) Set RBW = 30 kHz.
  - (2) Set the video bandwidth (VBW)  $\ge$  3 RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.

99% Occupied Bandwidth

- (1) Set RBW = 20 kHz.
- (2) Set the video bandwidth (VBW) =100 kHz.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

#### Test Mode


Please refer to the clause 2.3.

## Test Results

Page 22 of 70

KSIGN®

| Test Mode:                | DH5                       |          | Self Strange |         |
|---------------------------|---------------------------|----------|--------------|---------|
| Channel frequenc<br>(MHz) | y 20dB Bandwidth<br>[MHz] | FL[MHz]  | FH[MHz]      | Result  |
| 2402                      | 0.618                     | 2401.673 | 2402.291     | PASS    |
| 2441                      | 0.618                     | 2440.673 | 2441.291     | PASS    |
| 2480                      | 0.624                     | 2479.667 | 2480.291     | PASS    |
|                           | 240                       | 2 MHz    |              | JUNE CO |





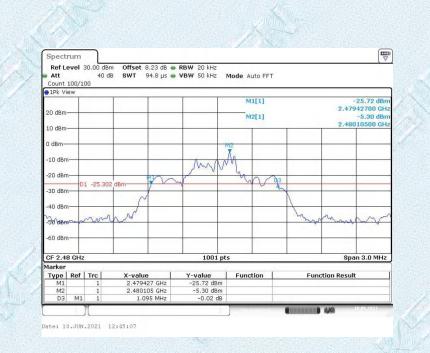


<sup>2480</sup> MHz



KSIGN®

| Test Mode: 2DH             | -15                     |                                                                                                                | 56.85°   |        |
|----------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------|--------|
| Channel frequency<br>(MHz) | 20dB Bandwidth<br>[MHz] | FL[MHz]                                                                                                        | FH[MHz]  | Result |
| 2402                       | 1.092                   | 2401.430                                                                                                       | 2402.522 | PASS   |
| 2441                       | 1.092                   | 2440.430                                                                                                       | 2441.522 | PASS   |
| 2480                       | 1.095                   | 2479.427                                                                                                       | 2480.522 | PASS   |
|                            |                         | The second s |          |        |



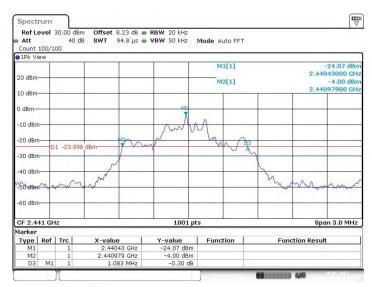






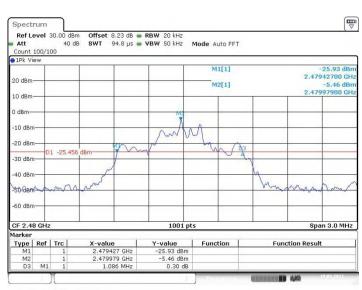

2480 MHz




KSIGN®

| Test Mode: 3               | DH5                       |          | 528°     |        |  |
|----------------------------|---------------------------|----------|----------|--------|--|
| Channel frequency<br>(MHz) | / 20dB Bandwidth<br>[MHz] | FL[MHz]  | FH[MHz]  | Result |  |
| 2402                       | 1.089                     | 2401.427 | 2402.516 | PASS   |  |
| 2441                       | 1.083                     | 2440.430 | 2441.513 | PASS   |  |
| 2480                       | 1.086                     | 2479.427 | 2480.513 | PASS   |  |
|                            | 240                       | 2 MHz    |          |        |  |

Spectrum Ref Level 30.00 dBm Att 40 dB Offset SWT 8.23 dB 👄 RBW 20 kHz 94.8 μs 👄 VBW 50 kHz Mode Auto FFT Count 100/10 1Pk Vi M1[1] 2.401 20 dBm M2[1] 10 dBm 0 dB -10 dBm -20 dBm D1 -23.83 -30 dBn 40 dBr stra m -60 dBn Span 3.0 MHz 1001 pts CF 2.402 arke 2.401427 GHz 2.401982 GHz 1.089 MHz Y-value -24.36 dBm -3.83 dBm -0.18 dB Type Ref Trc M1 1 Function Function Result Ma 10 1


Date: 10.JUN.2021 12:47:23

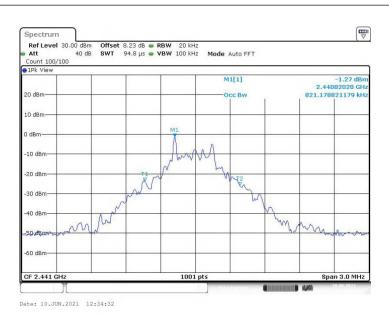




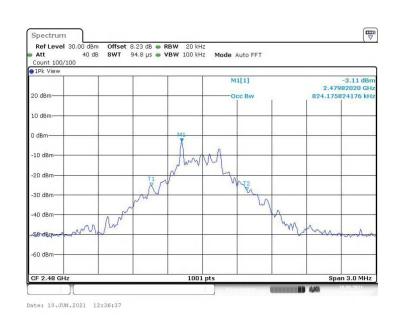
Date: 10.JUN.2021 12:50:10


#### 2480 MHz




Date: 10.JUN.2021 12:52:02

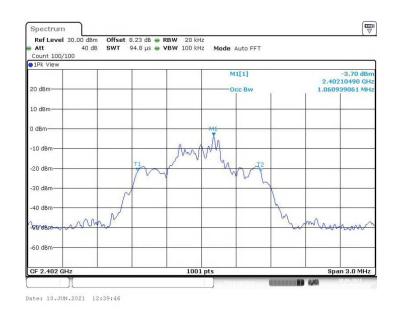
KSIGN®


| Test Mode:               | DH  | 5             |          | Self Strange |         |
|--------------------------|-----|---------------|----------|--------------|---------|
| Channel frequer<br>(MHz) | ісу | 99% OCB [MHz] | FL[MHz]  | FH[MHz]      | Verdict |
| 2402                     |     | 0.818         | 2401.562 | 2402.381     | PASS    |
| 2441                     |     | 0.821         | 2440.562 | 2441.384     | PASS    |
| 2480                     |     | 0.824         | 2479.559 | 2480.384     | PASS    |
|                          |     |               | 2402 MHz |              |         |



#### 2441 MHz








Page 30 of 70

KSIGN®

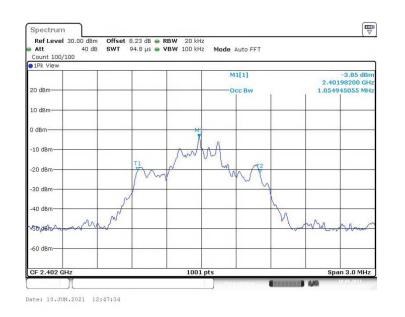
| U                        | 1010/6 |               |          | ALCONTRACTOR |        |
|--------------------------|--------|---------------|----------|--------------|--------|
| Test Mode:               | 2D     | H5            |          | Star -       |        |
| Channel frequei<br>(MHz) | ncy    | 99% OCB [MHz] | FL[MHz]  | FH[MHz]      | Result |
| 2402                     |        | 1.061         | 2401.452 | 2402.512     | PASS   |
| 2441                     |        | 1.064         | 2440.449 | 2441.512     | PASS   |
| 2480                     |        | 1.07          | 2479.446 | 2480.515     | PASS   |
|                          |        | 2             | 2402 MHz |              |        |







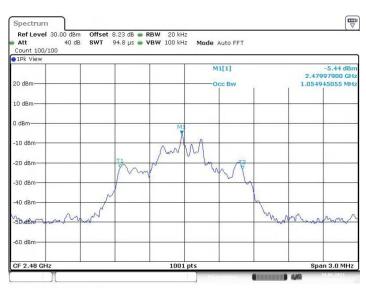
#### 2480 MHz




Date: 10.JUN.2021 12:45:18

Page 32 of 70

KSIGN®


| Test Mode:               | 3DI | H5            |          | Star .   |        |
|--------------------------|-----|---------------|----------|----------|--------|
| Channel frequen<br>(MHz) | су  | 99% OCB [MHz] | FL[MHz]  | FH[MHz]  | Result |
| 2402                     |     | 1.055         | 2401.449 | 2402.503 | PASS   |
| 2441                     |     | 1.055         | 2440.449 | 2441.503 | PASS   |
| 2480                     |     | 1.055         | 2479.446 | 2480.500 | PASS   |
|                          |     |               | 2402 MHz | 3        |        |





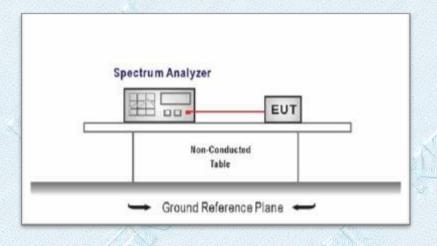


#### 2480 MHz



Date: 10.JUN.2021 12:52:13

# 3.5. Carrier Frequencies Separation


## LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

| Test Item          | Limit                                                               | Frequency Range(MHz) |  |  |
|--------------------|---------------------------------------------------------------------|----------------------|--|--|
| Channel Separation | >25KHz or >two-thirds of the 20 dB<br>bandwidth<br>Which is greater | 2400~2483.5          |  |  |

## Test Configuration



## Test Procedure

1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.

## 2. Spectrum Setting:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW)  $\ge$  3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test, and found the middle channel which is the worse case, so only show the test date for worse case.

## Test Mode

Please refer to the clause 2.3.

## **Test Results**



а

| est Mode: | DH5 Hopping               |                                                  |                 |                                                    |               |  |
|-----------|---------------------------|--------------------------------------------------|-----------------|----------------------------------------------------|---------------|--|
| Test Mode | Result[MHz]               |                                                  | Limit[MHz]      |                                                    | Result        |  |
| DH5       |                           | 1.319                                            |                 | 75                                                 | PASS          |  |
|           |                           | DH5 Hoppi                                        | ng Mode         |                                                    |               |  |
|           |                           |                                                  |                 |                                                    |               |  |
| AR I      |                           |                                                  | S               |                                                    |               |  |
|           |                           | 18                                               |                 |                                                    |               |  |
|           | pectrum                   | 642                                              |                 | [<br>Ţ                                             | a Contraction |  |
|           | Ref Level 30.00 dBm Offse | t 8.23 dB 👄 RBW 100 kHz<br>18.9 µs 👄 VBW 300 kHz | Mode Auto FFT   | ( \                                                |               |  |
|           | ount 100/100<br>Pk View   |                                                  |                 |                                                    |               |  |
| 20        | ) dBm                     |                                                  | M1[1]           | 6.15 dBn<br>2.44084203 GH<br>0.25 df<br>1.31884 MH | z<br>3        |  |
| 10        | I dBm                     |                                                  |                 | D2                                                 |               |  |
| 0         | dBm                       |                                                  |                 |                                                    |               |  |
| =1        | 9-dBm                     |                                                  |                 |                                                    |               |  |
| -2        | 0 dBm                     |                                                  |                 |                                                    |               |  |
| -3        | 0 dBm                     |                                                  |                 |                                                    |               |  |
| -4        | 0 dBm                     |                                                  |                 |                                                    |               |  |
| -5        | 0 dBm                     |                                                  |                 |                                                    | 623           |  |
| -6        | 0 dBm                     |                                                  |                 |                                                    |               |  |
| st        | art 2.4405 GHz            | 691 p                                            | ts<br>Measuring | Stop 2.4425 GHz                                    |               |  |
|           | e: 21.JAN.2021 19:38:08   |                                                  |                 |                                                    |               |  |