

KSIGN (Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

	TEST REPORT			
Report No. ·····:	KS2102S00365E06			
FCC ID······	2AM8GCHAMELEONH			
Applicant:	GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED			
Address	No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District, Guangzhou, Guangdong, China			
Manufacturer	GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED			
Address	No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District,Guangzhou,China			
Product Name:	Chameleon-H			
Trade Mark······	CHAMELEON			
Model/Type reference:	E9XG-A05-M			
Listed Model(s) ·····:	N/A			
Standard:	FCC CFR Title 47 Part 2, Part 22 Subpart H, Part 24 Subpart E			
Date of receipt of test sample:	Mar. 01, 2021			
Date of testing	Mar. 01, 2021~Mar. 25, 2021			
Date of issue	Mar. 26, 2021			
Test Result	PASS			
Compiled by: (Printed name+signature)	Rory Huang			
Supervised by:	Sec. Fost			
(Printed name+signature)	Eder Zhan			
Approved by:	APPROVICION JUS			
(Printed name+signature)	Cary Luo			
Testing Laboratory Name ···:	KSIGN(Guangdong) Testing Co., Ltd.			
Address	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. SUMMARY	
1.1 TEST STANDARDS	3
1.2 REPORT VERSION	3
1 3 TEST DESCRIPTION	4
1 4 Test Eachity	5
1.5. Measurement Uncertainty	6
1.6. Environmental conditions	6
2. GENERAL INFORMATION	
2.1. CLIENT INFORMATION	7
2.2. GENERAL DESCRIPTION OF EUT	8
2.3. DESCRIPTION OF TEST MODES AND TEST FREQUENCY.	9
2.4. MEASUREMENT INSTRUMENTS LIST	
2.5. TEST SOFTWARE	
3. TEST ITEM AND RESULTS.	
3.1. CONDUCTED OUTPUT POWER	
3.2. Peak-to-Average Ratio	
3.3. OCCUPY BANDWIDTH	24
3.4. OUT OF BAND EMISSION AT ANTENNA TERMINALS.	
3.5. BAND EDGE COMPLIANCE	
3.6. RADIATED POWER MEASUREMENT	
3.7. RADIATED SPURIOUS EMISSION	
3.8. FREQUENCY STABILITY	
4. EUT TEST PHOTOS	
3. PROTOGRAPHS OF EUT CONSTRUCTIONAL	

1.1. Test Standards

FCC Rules Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Rules Part 24: PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 E March 2016:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

<u>ANSI C63.26: 2015:</u> American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version

Revised No.	Date of issue	Description
01	Mar. 26, 2021	Original
X		
18/		

1.3. Test Description

Test Item	Section in CFR 47 RSS Rule		Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c)	RSS-132(5.4) RSS-133(6.4)	Pass	Rory Huang
Peak-to-Average Ratio	Part 24.232 Part 27.50	RSS-132(5.4) RSS-133(6.4)	Pass	Rory Huang
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b)	RSS-GEN(6.6) RSS-133(6.5)	Pass	Rory Huang
Band Edge	Part 2.1051 Part 22.917 Part 24.238	RSS-132(5.5) RSS-133(6.5)	Pass	Rory Huang
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238	RSS-132(5.5) RSS-133(6.5)	Pass	Rory Huang
Frequency stability vs temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	RSS-GEN(6.11) RSS-132(5.3)	Pass	Rory Huang
Frequency stability vs voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235	RSS-GEN(6.11) RSS-132(5.3)	Pass	Rory Huang
ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	RSS-132(5.4) RSS-133(6.4)	Pass	Rory Huang
Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238	RSS-132(5.5) RSS-133(6.5)	Pass	Rory Huang
Receiver Spurious Emissions		RSS-GEN(7.1.3)	Pass	Rory Huang

Note:

The measurement uncertainty is not included in the test result.
There are dual-SIM cards(SIM1 ,SIM2),Only the worst test data SIM1 recorded in the report.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements and is documented in the Shenzhen General Testing & Inspection Technology Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for General Testing & Inspection laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted spurious emission 12.75-40GHz	2.03 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth	<u></u>	(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2. **GENERAL INFORMATION**

2.1. Client Information

Applicant:	GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED
Address:	No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District,Guangzhou,China
Manufacturer:	GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED
Address:	No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District, Guangzhou, China

2.2. General Description of EUT

		and the second second second
Test Sample Number:	1-1-1(Normal Sample),1-1-2(Engineering Sample)	
Product Name:	Chameleon-H	
Model/Type reference:	E9XG-A05-M	
Trademark:	CHAMELEON	
Listed Model(s):		
Power supply(Battery):	DC 3.7V 10000mAh 37Wh	
Power Supply(Adapter):	AC/DC ADAPTER MODEL:AD018A120150UV INPUT:100-240V~ 50/60Hz 0.5A Max OUTPUT:DC 12V1.5A	
Hardware version:	V1.0	
Software version:	V1.0	
GSM		
Operation Band:	GSM850: UL: 824MHz~849MHz, DL: 869MHz~894MHz PCS1900: UL: 1850MHz~1910, DL: 1930MHz~1990MHz	
Supported Type:	GSM/GPRS/EGPRS	
Modulation Type:	GMSK for GSM/GPRS, 8PSK for EGPRS	
Antenna Type:	FPC antenna	
Antenna Gain:	GSM850:1.0dBi PCS1900:1.1dBi	

2.3. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing.

Test Frequency:					
GSM 850		PCS 1900			
Channel	Frequency (MHz)	Frequency (MHz) Channel			
128	824.20	512	1850.20		
190	836.60	661	1880.00		
251	848.80	810	1909.80		

2.4. Measurement Instruments List

	Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	04/07/2021	
3	Analog Signal Generator	HP	83752A	3344A00337	04/07/2021	
4	Power Sensor	Agilent	E9304A	MY50390009	04/07/2021	
5	Power Sensor	Agilent	E9300A	MY41498315	04/07/2021	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2021	
7	Climate Chamber	Angul	AGNH80L	1903042120	04/07/2021	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	04/07/2021	
9	RF Control Unit	Tonscend	JS0806-2		04/07/2021	

Transmitter spurious emissions & Receiver spurious emissions					
Item	Test Equipment	Manufacturer	Model No.	Model No. Serial No.	
1	EMI Test Receiver	R&S	ESR	102525	04/07/2021
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/27/2021
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18- S	0E01901039	03/27/2021
4	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2021
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/25/2021
7	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Horn Antenna	Schwarzbeck	BBHA 9170	00943	25/11/2021

Page 10 of 49

Report No.: KS2102S00365E06

					ちちちん ちちちん そうけん ちょうごうしん ひゃくアンダー ひろ
10	Pre-Amplifier	Schwarzbeck	BBV 9721	9721-57	25/11/2021
11	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2021
12	Pre-Amplifier	EMCI	EMC051835 SE	980662	04/08/2021
13	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2021

Note:

The Cal. Interval was one year.
The cable loss has calculated in test result which connection between each test instruments.

2.5. Test Software

Software name Test System Test System	Model	Version
Test System	JS1120-3	2.5.77.0418
Test System	TST	V1.0.5
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE

3. TEST ITEM AND RESULTS

3.1. Conducted Output Power

LIMIT:

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II/WCDMA Band IV: 2W

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum PK burst power and maximum Avg. burst power.

TEST RESULTS

			Conducted Power (dBm)
GSN	1850	CH128	CH190	CH251
		824.20MHz	836.60MHz	848.80MHz
GSM		30.62	30.62	30.36
1. S. S.	1TXslot	30.60	30.59	30.33
GPRS	2TXslots	30.10	30.13	29.86
(GMSK)	3TXslots	28.62	28.68	28.42
	4TXslots	27.57	27.64	27.37
	1TXslot	26.05	25.95	25.82
EGPRS	2TXslots	24.96	24.81	24.63
(8PSK)	3TXslots	22.75	22.58	22.31
283	4TXslots	21.40	23.54	21.23

		Conducted Power (dBm)					
GSN	11900	CH512	CH661	CH810			
		1850.2MHz	1880.0MHz	1909.8MHz			
GSM		30.80	30.82	30.81			
	1TXslot	21.01	21.58	21.16			
GPRS	2TXslots	20.27	20.89	20.50			
(GMSK)	3TXslots	18.59	19.21	18.82			
	4TXslots	17.61	18.24	17.74			
	1TXslot	18.16	18.30	17.72			
EGPRS	2TXslots	17.04	17.29	16.76			
(8PSK)	3TXslots	14.61	14.95	14.41			
	4TXslots	13.47	13.73	13.18			

3.2. Peak-to-Average Ratio

LIMIT:

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13dB.

TEST CONFIGURATION

TEST PROCEDURE

- For Peak-to-Average Ratio
- 1. The testing follows FCC KDB 971168 v02r02 Section 5.7.1.
- 2. The EUT was connected to spectrum and communication tester via a splitter
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 5.ATT:40dB ,Offset:7.06dB for GSM850,ATT:40dB ,Offset:7.30dB for PCS1900
- 6.Record the deviation as Peak to Average Ratio.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	Peak-to-Average Ratio(dB)	Limit (dB)	Result
	128	824.20	8.46	13	
GSM 850	190	836.60	8.43	13	
	251	848.80	8.43	13	
	128	824.20	8.46	13	
GSM 850 GPRS	190	836.60	8.43	13	
of the	251	848.80	8.46	13	
	128	824.20	8.43	13	
GSM 850	190 💉	836.60	8.43	13	
201110	251	848.80	8.46	13	DASS
	512	1850.20	8.46	13	FASS
PCS 1900	661	1880.00	8.46	13	
1. S.	810	1909.80	8.46	13	
	512	1850.20	3.71	13	
GPRS	661	1880.00	3.57	13	
	810	1909.80	3.68	13	
	512	1850.20	6.99	13	
FGPRS	661	1880.00	6.99	13	
20110	810	1909.80	7.01	13	

Test Graph

Page 15 of 49

Page 16 of 49

Page 17 of 49

KSIGN(Guangdong) Testing Co., Ltd.

2021-03-03 11:49

Page 18 of 49

Page 20 of 49

Report No.: KS2102S00365E06

Page 21 of 49

Page 22 of 49

Report No.: KS2102S00365E06

Page 23 of 49

Report No.: KS2102S00365E06

3.3. Occupy Bandwidth

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW \geq 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.
- 4. ATT:40dB ,Offset:7.06dB for GSM850,ATT:40dB ,Offset:7.30dB for PCS1900

TEST	RESI	JLTS

EUT Mode Channel		Frequency (MHz)	99% Occupy bandwidth (MHz)	-26dB bandwidth (MHz)	
	128	824.20	0.247	0.316	
GSM 850	190	836.60	0.246	0.317	
125	251	848.80	0.244	0.322	
	128	824.20	0.241	0.312	
EGPRS850 (8PSK 1Slot)	190	836.60	0.240	0.310	
	251	848.80	0.242	0.319	
4 .3	512	1850.20	0.243	0.322	
PCS1900	661	1880.00	0.244	0.321	
	810	1909.80	0.247	0.318	
500004000	512	1850.20	0.244	0.321	
EGPRS1900 (8PSK 1Slot)	661	1880.00	0.240	0.312	
	810	1909.80	0.243	0.319	

Note: GSM&GPRS use the same modulation technical (GMSK), and with the same channels, so the 99% OBW and the -26dB of GPRS not performed.

Page 26 of 49

Page 27 of 49

Page 28 of 49

Page 29 of 49

3.4. Out of band emission at antenna terminals

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz; sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW = 1MHz VBW≥3 times RBW, Start=30MHz, Stop= 10th harmonic. ATT:40dB ,Offset:7.06dB for GSM850,ATT:40dB ,Offset:7.30dB for PCS1900

TEST RESULTS

Remark: We test all modulation type and record worst case at Voice mode (GSM850/PCS1900) .

3.5. Band Edge compliance

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. Set the RBW=10KHz, VBW = 30KHz, Sweep time= Auto for 2G system measurement.
- 3. ATT:40dB ,Offset:7.06dB for GSM850,ATT:40dB ,Offset:7.30dB for PCS1900

TEST RESULTS

		GSI	M 850			
Channel	Frequency	Max Measure	ement Results	Limit	1253	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict	
128	824.20	823.998	-25.62	-13.00	Pass	
251	848.80	849.018	-24.29	-13.00	Pass	
20 - Spurious	Emission GSM_GSM850_GSM_LCH_824.2MHz_N	TNVGSM	20 Spurious Emiss	ion GSM_GSM850_GSM_HCH_848.8MHz_NTNV	/ GSM	
		Monitor			Norter Norter Norter Norter 1.6000 Mrc 04.2068m 2.4.2068m	
-80	Frequency (MHz)	825 0 2021-03-03 15 35	-80 -80 848.0	Frequency (MHz)	850 0 2021-03-03 15:38	

GPRS 850 Max Measurement Results Frequency Channel Limit Verdict Frequency (dBm) Number (MHz) Values (dBm) (MHz) 824.20 -24.91 -13.00 128 823.986 Pass 849.002 251 848.80 -24.83 -13.00 Pass PRS_LCH_824.2MHz_NTNV__1 TX Slot 850_GPRS_HCH_848.8MHz_NTNV__1 TX Slo Spurious E 20 20 10 10 0 0 -10 -10 -20 -20 Level (dBm) -30 -40 -20 -30 -40 Marker: 1: 849.000 MHz -28.62dBm 2: 849.002 MHz -24.83dBm -24.91dBm -24.91dBm 2: 824.000 MH -27.15dBm -50 -50 -60 -60 -70 -70 -80 823.0 -80 848.0 825.0 850.0 Frequency (MHz) Frequency (MHz)

Page 35 of 49

Page 36 of 49

3.6. Radiated Power Measurement

LIMIT

GSM850/WCDMA Band V: 7W ERP

PCS1900/WCDMA Band II/WCDMA Band IV: 2W ERP

TEST CONFIGURATION

For the actual test configuration, please refer to the related Item – EUT Test Photos.

Below 1GHz

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

 The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga

We used N5182A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Remark:

1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

Measurement Data (worst case) :

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	100	V	31.36		
	120	Н	27.39		
GSM850	100	V	32.77	20 15	Bass
(GSM)	190	Н	25.39	30.45	Fass
a charles and	251	V	31.23	Sec. Sec.	
	201	H	27.47		
	128	V	30.84		X
		н	25.32	36	
GSM850	190	V	30.14	20 15	Pass
(GPRS)		Н	26.00	30.45	
	251	V	30.82		
		Н	26.75		
285	129	V	30.20		
No.	120	H	25.19		
GSM850	100	V	30.11	38 45	Dass
(EGPRS)	190	Н	26.56	50.45	1 000
	251	V	30.08		. S.
	251	Н	25.58	2	

Page 40 of 49

Mode	Mode Channel Antenna Pol.		EIRP	Limit (dBm)	Result
		V	31.04	. ,	
	512	Н	30.97		
PCS1900	004	V	30.76	00.00	
(GSM)	661	Н	30.51	33.00	Pass
128	040	V	30.05	100	
	810	КАН	31.63		
S S S	512	V	28.52	S.	1
	312	Н	25.38		
PCS1900	661	V	28.94	33.00	Pass
(GPRS)	001	Н	24.32	33.00	F d35
1	810	V	28.30		
		н	24.15		
	512	V	28.84		
Ser Contraction	512	н	24.20	5.00	
PCS1900	661	v	28.36	33.00	Pass
(EGPRS)	001	Н	25.03	00.00	1 433
	810	V	28.15		AN/
	010	Н	25.20		

3.7. Radiated Spurious Emission

LIMIT

-13dBm

TEST CONFIGURATION

For the actual test configuration, please refer to the related Item - EUT Test Photos.

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

8. Test frequency range should extend to 10th harmonic of highest fundamental frequency.

TEST RESULTS

Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. We test all modulation type and record worst case at Voice mode (GSM850/PCS1900).

Measurement Data (worst case):

		GS	M850		
Ohannal	Frequency	Spurious	Emission		N2
Channel 128 190	(MHz)	Polarization	Level (dBm)		Result
A.S.	1648.40	Vertical	-49.01		
100	2472.60	Vertical	-47.46		
120	1648.40	Horizontal	-54.31		
1	2472.60	Horizontal	-42.02		
Channel 128 190 251	1673.20	Vertical	-49.67		
	2509.80	Vertical	-42.15	12.00	Deite
190	1673.20	Horizontal	-53.25	-13.00	Pass
	2509.80	Horizontal	-40.02		
2	1697.60	Vertical	-47.69		
054	2546.40	Vertical	-42.03		
251	1697.60	Horizontal	-52.67		
NY A	2546.40	Horizontal	-35.52		2

Remark:

The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

		PC	S1900			
0	Frequency	Spurious	Emission			
Channel	(MHz)	Polarization	Level (dBm)		Result	
100 MAR	3700.40	Vertical	-49.21	6.8		
540	5550.60	Vertical	-47.56			
512	3700.40 Horiz	Horizontal	-54.58	6.8	Pass	
	5550.60	Horizontal	-42.04	in the second		
	3760.00	Vertical	-49.33			
664	5640.00	Vertical	-42.19	42.00		
001	3760.00	Horizontal	-53.13	-13.00		
	5640.00	Horizontal	-40.08			
6	3819.60	Vertical	-47.47			
040	5729.40	Vertical	-42.19			
810	3819.60	Horizontal	-52.55	Store Star		
	5729.40	Horizontal	-45.19			

Remark:

The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

3.8. Frequency stability

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10℃ increased per stage until the highest temperature of +50℃ reached.
- 7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark: We test all modulation type and record worst case at Voice mode

1. Temperature measurement:

Test Band: GSM850 Middle channel=190 channel=836.6MHz (Frequency Error VS. Voltage)										
			Freq. Error (Hz) Freq. vs. rated (ppm)			Limit	Limit			
Test Mode	Test Temp.	Test Volt.	LCH	мсн	нсн	LCH	мсн	нсн	(ppm)	Verdict
		LV	-0.0646	4.4877	5.1980	-0.0001	0.0054	0.0061	±2.50	PASS
GSM	NT	NV	2.8089	2.4860	6.1989	0.0034	0.0030	0.0073	±2.50	PASS
		HV	2.2923	3.3900	2.3246	0.0028	0.0041	0.0027	±2.50	PASS

Test Band: GSM850 Middle channel=190 channel=836.6MHz (Frequency Error VS. Temperature)										
Test Mode Tes	Test Volt.	Test Temp.	Freq. Error (Hz)			Freq. vs. rated (ppm)				
			LCH	МСН	нсн	LCH	мсн	нсн	Limit (ppm)	Verdict
		-20.00	-0.6457	2.4214	5.4886	-0.0008	0.0029	0.0065	±2.50	PASS
		-10.00	2.3569	2.8734	4.3909	0.0029	0.0034	0.0052	±2.50	PASS
		0.00	2.4860	5.1334	2.3246	0.0030	0.0061	0.0027	±2.50	PASS
		10.00	2.8089	4.0357	4.2294	0.0034	0.0048	0.0050	±2.50	PASS
		20.00	0.5166	1.9694	6.3280	0.0006	0.0024	0.0075	±2.50	PASS
		30.00	-0.8717	0.7426	5.1657	-0.0011	0.0009	0.0061	±2.50	PASS
		40.00	2.4214	3.1640	3.7774	0.0029	0.0038	0.0045	±2.50	PASS
		50.00	1.9049	2.1309	0.8394	0.0023	0.0025	0.0010	±2.50	PASS

Test Band: PCS1900 (Frequency Error VS. Voltage)										
Test Mode	Test Temp.	Test Volt.	Freq. Error (Hz)			Freq. vs. rated (ppm)			Limit	
			LCH	МСН	нсн	LCH	МСН	нсн	(ppm)	Verdict
GSM	NT	LV	1.2269	9.3952	2.0986	0.0007	0.0050	0.0011	±2.50	PASS
		NV	-0.0323	8.7818	5.9406	0.0000	0.0047	0.0031	±2.50	PASS
		HV	7.7163	7.7809	0.9363	0.0042	0.0041	0.0005	±2.50	PASS

Test Band: PCS1900 (Frequency Error VS. Temperature)											
Test Mode	Test Volt.	Test Temp.	Freq. Error (Hz)			Freq. vs. rated (ppm)				1997 - C	
			LCH	MCH	нсн	LCH	МСН	нсн	Limit (ppm)	Verdict	
		-20.00	7.4580	4.0034	6.4249	0.0040	0.0021	0.0034	±2.50	PASS	
		-10.00	6.8123	3.9712	4.1972	0.0037	0.0021	0.0022	±2.50	PASS	
		0.00	1.9372	5.9729	6.0375	0.0010	0.0032	0.0032	±2.50	PASS	
		10.00	4.3263	4.0680	2.2277	0.0023	0.0022	0.0012	±2.50	PASS	
		20.00	5.1334	3.4869	1.9694	0.0028	0.0019	0.0010	±2.50	PASS	
		30.00	5.1012	6.7477	2.3569	0.0028	0.0036	0.0012	±2.50	PASS	
		40.00	10.3960	9.1046	0.7749	0.0056	0.0048	0.0004	±2.50	PASS	
		50.00	1.0654	6.8123	3.9389	0.0006	0.0036	0.0021	±2.50	PASS	

Radiated Spurious Emission Measurement (Above 1GHz)

Please Refer to the External attachment for internal photos and external photos.

*THE END