# KSIGN (Guangdong) Testing Co., Ltd.

KSIGN

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

|                                 | TEST REPORT                                                                                                                                                                        |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Report No. ·····                | KS2102S00365E02                                                                                                                                                                    |  |  |  |
| FCC ID:                         | 2AM8GCHAMELEONH                                                                                                                                                                    |  |  |  |
| Applicant                       | GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED                                                                                                                               |  |  |  |
| Address                         | No.4 plant of No.43 South International Trade Avenue,Hualong<br>Town,Panyu District,Guangzhou,Guangdong,China                                                                      |  |  |  |
| Manufacturer                    | GUANGZHOU LIE DUN ELECTRONICS TECHNOLOGY CO. LIMITED                                                                                                                               |  |  |  |
| Address                         | No.4 plant of No.43 South International Trade Avenue,Hualong<br>Town,Panyu District,Guangzhou,Guangdong,China                                                                      |  |  |  |
| Product Name:                   | Chameleon-H                                                                                                                                                                        |  |  |  |
| Trade Mark······                | CHAMELEON                                                                                                                                                                          |  |  |  |
| Model/Type reference······      | E9XG-A05-M                                                                                                                                                                         |  |  |  |
| Listed Model(s) ·····:          | 1                                                                                                                                                                                  |  |  |  |
| Standard ·····:                 | FCC Part 15, Subpart E (15.407:2017)                                                                                                                                               |  |  |  |
| Date of receipt of test sample: | Mar. 02, 2021                                                                                                                                                                      |  |  |  |
| Date of testing                 | Mar. 02, 2021~Mar. 17, 2021                                                                                                                                                        |  |  |  |
| Date of issue                   | Mar. 17, 2021                                                                                                                                                                      |  |  |  |
| Result:                         | Pass                                                                                                                                                                               |  |  |  |
| Compiled by:                    | ngdong) Tar in Human                                                                                                                                                               |  |  |  |
| (Printed name+signature)        | Rory Huang                                                                                                                                                                         |  |  |  |
| Supervised by:                  | E E 8 1                                                                                                                                                                            |  |  |  |
| (Printed name+signature)        | Eder Zhan KSIGN Ger. Man                                                                                                                                                           |  |  |  |
| Approved by:                    | Tom Cont Lus                                                                                                                                                                       |  |  |  |
| (Printed name+signature)        | Cary Luo                                                                                                                                                                           |  |  |  |
| Testing Laboratory Name······:  | KSIGN(Guangdong) Testing Co., Ltd.                                                                                                                                                 |  |  |  |
| Address                         | West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu<br>Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen,<br>Guangdong, People's Republic of China |  |  |  |
|                                 |                                                                                                                                                                                    |  |  |  |

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.



# TABLE OF CONTENTS

Page

| 1. TEST SUMMARY                                     |               | 3  |
|-----------------------------------------------------|---------------|----|
| 1.1. TEST STANDARDS                                 |               |    |
| 1.2. Report version                                 |               | 3  |
| 1.3. TEST DESCRIPTION.                              |               | 4  |
| 1.4. Test Facility                                  |               | 5  |
| 1.5. MEASUREMENT UNCERTAINTY                        |               | 6  |
| 1.6. Environmental conditions                       |               | 6  |
| 2. GENERAL INFORMATION                              | 2007          | 7  |
| 2.1. GENERAL DESCRIPTION OF EUT                     |               |    |
| 2.2. OPERATION STATE                                | / N.S.        | 8  |
| 2.3. Measurement Instruments List.                  | A 1994        | 9  |
| 2.4. Test Software                                  |               | 9  |
| 3. TEST ITEM AND RESULTS                            |               | 10 |
| 3.1. ANTENNA REQUIREMENT                            |               | 10 |
| 3.2. CONDUCTED OUTPUT POWER TEST                    |               | 11 |
| 3.3. MAXIMUM POWER SPECTRAL DENSITY TEST            |               | 13 |
| 3.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH TEST | <u>N24</u>    | 20 |
| 3.5. FREQUENCY STABILITY MEASUREMENT                |               | 33 |
| 3.6. BAND EDGE EMISSIONS(RADIATED)                  | <u>(6,22)</u> | 35 |
| 3.7. RADIATED SPURIOUS EMISSIONS                    |               | 41 |
| 3.8. CONDUCTED EMISSION                             | <u></u>       | 52 |
| 3.9. CONDUCTED SPURIOUS EMISSION                    |               | 55 |
| 4. EUT TEST PHOTOS                                  |               | 71 |
| 5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL                |               | 73 |



# **1. TEST SUMMARY**

# 1.1. Test Standards

The tests were performed according to following standards:

**FCC Part 15, Subpart E(15.407)** - for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

**KDB 789033:** GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E .

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

# 1.2. Report version

| 01 Mar. 17, 2021 Original                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revised No. | Date of issue | Description                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01          | Mar. 17, 2021 | Original                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND A       | N/Y           |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               | N.Y                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | X             |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2           | N7            |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | N/Y           |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               | 1 × 2                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               | 15                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               | 35 · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.         |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 38 M          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>    |               | 1                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sim$      | N.            |                                          |
| THE PRODUCT OF A DATE OF A DAT |             |               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                          |



# **1.3. Test Description**

| FCC Part 15 Subpart E(15.407)          |              |        |               |  |  |  |  |
|----------------------------------------|--------------|--------|---------------|--|--|--|--|
| Test Item                              | Test require | Result | Test Engineer |  |  |  |  |
| Antenna Requirement                    | 15.203       | Pass   | Rory Huang    |  |  |  |  |
| Conducted Emission                     | 15.207       | Pass   | Rory Huang    |  |  |  |  |
| Band Edge Emissions                    | 15.407(b)    | Pass   | Rory Huang    |  |  |  |  |
| 26dB Bandwidth & 99% Bandwidth         | 15.407(a)    | Pass   | Rory Huang    |  |  |  |  |
| 6dB Bandwidth (only for UNII-3)        | 15.407(e)    | N/A    | N/A           |  |  |  |  |
| Maximum Conducted Output Power         | 15.407(a)    | Pass   | Rory Huang    |  |  |  |  |
| Maximum Power Spectral Density         | 15.407(a)    | Pass   | Rory Huang    |  |  |  |  |
| Transmitter Radiated Spurious Emission | 15.407(b)    | Pass   | Rory Huang    |  |  |  |  |
| Peak Excursion                         | 15.407(a)    | Pass   | Rory Huang    |  |  |  |  |
| Frequency Stability                    | 15.407(g)    | Pass   | Rory Huang    |  |  |  |  |
| Transmitter Power Control              | 15.407(h)(1) | N/A    | N/A           |  |  |  |  |
| Conducted Spurious Emission            | 15.407       | Pass   | Rory Huang    |  |  |  |  |

Note:

1. The measurement uncertainty is not included in the test result.

- 2. Transmit Power Control was not tested as the maximum EIRP is less than 500mW (27dBm) in U-NII Bands 2&3.
- 3. "N/A" is an abbreviation for "Not Applicable".



# 1.4. Test Facility

### Address of the report laboratory

### KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

### Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

### CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

### A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

### IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

### FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.



# 1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

| Test Items                              | Measurement Uncertainty | Notes |
|-----------------------------------------|-------------------------|-------|
| Transmitter power conducted             | 0.42 dB                 | (1)   |
| Transmitter power Radiated              | 2.14 dB                 | (1)   |
| Conducted spurious emissions 9kHz~40GHz | 1.60 dB                 | (1)   |
| Radiated spurious emissions 9kHz~40GHz  | 2.20 dB                 | (1)   |
| Conducted Emissions 9kHz~30MHz          | 3.20 dB                 | (1)   |
| Radiated Emissions 30~1000MHz           | 4.70 dB                 | (1)   |
| Radiated Emissions 1~18GHz              | 5.00 dB                 | (1)   |
| Radiated Emissions 18~40GHz             | 5.54 dB                 | (1)   |
| Occupied Bandwidth                      | 2.80 dB                 | (1)   |

**Note (1):** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

# 1.6. Environmental conditions

|                      | Temperature       | 15 °C to +35 °C                                                                                                 |
|----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| Normal               | Relative humidity | 20 % to 75 %.                                                                                                   |
|                      | Voltage           | The equipment shall be the nominal voltage for which the equipment was designed.                                |
| Extreme<br>Condition | Temperature       | Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer |
|                      | Voltage           | Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer |

| Normal Condition  | T <sub>N</sub> =Normal Temperature | 25 °C  |
|-------------------|------------------------------------|--------|
| Extreme Condition | T <sub>L</sub> =Lower Temperature  | -20 °C |
|                   | T <sub>H</sub> =Higher Temperature | 50 °C  |



# 2. GENERAL INFORMATION

# 2.1. General Description of EUT

| Test Sample Number:    | 1-1-1(Normal Sample),1-1-2(Engineering Sample )                                                | So |
|------------------------|------------------------------------------------------------------------------------------------|----|
| Product Name:          | Chameleon-H                                                                                    |    |
| Trademark:             | CHAMELEON                                                                                      |    |
| Model/Type reference:  | E9XG-A05-M                                                                                     |    |
| Listed models:         |                                                                                                |    |
| Model Difference:      |                                                                                                |    |
| Power Supply(Adapter): | AC/DC ADAPTER<br>MODEL:AD018A120150UV<br>INPUT:100-240V~ 50/60Hz 0.5A Max<br>OUTPUT:DC 12V1.5A | -  |
| Power supply(Battery): | DC 3.7V 10000mAh 37Wh                                                                          |    |
| Hardware version:      | V1.0                                                                                           |    |
| Software version:      | V1.0.0                                                                                         |    |

## Technical index for 5G WIFI

| Operation Band:            | ⊠U-NII-1                                                                                                                                                        | U-NII-2A U-NII-2C U-NII-3 |             |       | -NII-3 |     |          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-------|--------|-----|----------|
|                            | U-NII-1:                                                                                                                                                        | 5150MHz~5250MHz           |             |       |        |     |          |
| Operation Frequency Pange: | U-NII-2A:                                                                                                                                                       | 1                         | 1           |       |        |     |          |
|                            | U-NII-2C:                                                                                                                                                       | 1                         |             |       |        |     |          |
|                            | U-NII-3:                                                                                                                                                        | 1 X-                      |             |       |        |     | Se.      |
|                            | 802.11a                                                                                                                                                         | 🛛 20MHz                   |             |       |        | P   | 5        |
| Support bandwidth:         | 802.11n                                                                                                                                                         | 🛛 20MHz                   |             | 40MHz |        |     |          |
|                            | 802.11ac                                                                                                                                                        | 20MHz                     | $\boxtimes$ | 40MHz | ⊠ 80M  | 1Hz | □ 160MHz |
| Modulation:                | 802.11a: OFDM (QPSK, BPSK, 16QAM, 64QAM)<br>802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM)<br>802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM)                               |                           |             |       |        |     |          |
| Bit Rate of Transmitter:   | 802.11a: 6/9/12/18/24/36/48/54 Mbps<br>802.11n: up to 150Mbps<br>802.11ac: at most 433.3 Mbps                                                                   |                           |             |       |        |     |          |
| Max Peak Output Power:     | 802.11a: 8.27 dBm<br>802.11n (HT20): 8.03 dBm<br>802.11n (HT40): 6.81 dBm<br>802.11ac (HT20):7.85 dBm<br>802.11ac (HT40): 6.77 dBm<br>802.11ac (HT80): 5.03 dBm |                           |             |       |        |     |          |
| Antenna type:              | FPC Antenna                                                                                                                                                     |                           |             |       |        |     |          |
| Antenna gain:              | 0.9dBi                                                                                                                                                          |                           |             |       |        |     |          |



# 2.2. Operation state

### Frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

| Band Test<br>Channel | Teet            | 20MHz   |                    | 40MHz   |                    | 80MHz   |                    |
|----------------------|-----------------|---------|--------------------|---------|--------------------|---------|--------------------|
|                      | Channel         | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| and Contraction      | CH∟             | 36      | 5180               | 38      | 5190               |         |                    |
| T                    | СНм             | 44      | 5220               | -       |                    | 42      | 5210               |
|                      | CH <sub>H</sub> | 48      | 5240               | 46      | 5230               | -       | - 6                |

### > Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

| Mode                         | Data rate (worst mode) |  |
|------------------------------|------------------------|--|
| 802.11a                      | 6Mbps                  |  |
| 802.11n(HT20)                | MCSO                   |  |
| 802.11n(HT40)                | MCS0                   |  |
| 802.11ac(HT20)/(HT40)/(HT80) | MCS0                   |  |

#### Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

| 2.3.     | Meas | urement | t Instru | ments | List |
|----------|------|---------|----------|-------|------|
| 1. 1. 1. |      | dienen  |          |       |      |

| Tonscend JS0806-2 Test system |                                                             |          |          |            |            |  |  |  |  |
|-------------------------------|-------------------------------------------------------------|----------|----------|------------|------------|--|--|--|--|
| Item                          | Test Equipment Manufacturer Model No. Serial No. Cal. Until |          |          |            |            |  |  |  |  |
| 1                             | Spectrum Analyzer                                           | R&S      | FSV40-N  | 101798     | 04/07/2021 |  |  |  |  |
| 2                             | Vector Signal Generator                                     | Agilent  | N5182A   | MY50142520 | 04/07/2021 |  |  |  |  |
| 3                             | Analog Signal Generator                                     | HP       | 83752A   | 3344A00337 | 04/07/2021 |  |  |  |  |
| 4                             | Power Sensor                                                | Agilent  | E9304A   | MY50390009 | 04/07/2021 |  |  |  |  |
| 5                             | Power Sensor                                                | Agilent  | E9300A   | MY41498315 | 04/07/2021 |  |  |  |  |
| 6                             | Wideband Radio<br>Communication Tester                      | R&S      | CMW500   | 157282     | 04/07/2021 |  |  |  |  |
| 7                             | Climate Chamber                                             | Angul    | AGNH80L  | 1903042120 | 04/07/2021 |  |  |  |  |
| 8                             | Dual Output DC Power Supply                                 | Agilent  | E3646A   | MY40009992 | 04/07/2021 |  |  |  |  |
| 9                             | RF Control Unit                                             | Tonscend | JS0806-2 | 1          | 04/07/2021 |  |  |  |  |

| Transmitter spurious emissions & Receiver spurious emissions |                                               |                        |                  |            |            |
|--------------------------------------------------------------|-----------------------------------------------|------------------------|------------------|------------|------------|
| Item                                                         | Test Equipment                                | Manufacturer           | Model No.        | Serial No. | Cal. Until |
| 1                                                            | EMI Test Receiver                             | R&S                    | ESR              | 102525     | 04/07/2021 |
| 2                                                            | High Pass Filter                              | Chengdu<br>E-Microwave | OHF-3-18-S       | 0E01901038 | 03/27/2021 |
| 3                                                            | High Pass Filter                              | Chengdu<br>E-Microwave | OHF-6.5-18-<br>S | 0E01901039 | 03/27/2021 |
| 4                                                            | Spectrum Analyzer                             | HP                     | 8593E            | 3831U02087 | 04/07/2021 |
| 5                                                            | Ultra-Broadband logarithmic<br>period Antenna | Schwarzbeck            | VULB 9163        | 01230      | 03/29/2023 |
| 6                                                            | Loop Antenna                                  | Beijin ZHINAN          | ZN30900C         | 18050      | 03/25/2021 |
| 7                                                            | Spectrum Analyzer                             | R&S                    | FSV40-N          | 101798     | 04/07/2021 |
| 8                                                            | Horn Antenna                                  | Schwarzbeck            | BBHA 9120 D      | 2023       | 03/29/2023 |
| 9                                                            | Pre-Amplifier                                 | Schwarzbeck            | BBV 9745         | 9745#129   | 04/07/2021 |
| 10                                                           | Pre-Amplifier                                 | EMCI                   | EMC051835S<br>E  | 980662     | 04/07/2021 |

| Item | Test Equipment    | Manufacturer | Model No. | Serial No.   | Cal. Until |
|------|-------------------|--------------|-----------|--------------|------------|
| 1    | LISN              | R&S          | ENV432    | 1326.6105.02 | 03/28/2021 |
| 2    | EMI Test Receiver | R&S          | ESR       | 102524       | 04/06/2021 |
| 3    | Manual RF Switch  | JS TOYO 🔊    |           | MSW-01/002   | 04/06/2021 |

Note:

1)The Cal. Interval was one year.2)The cable loss has calculated in test result which connection between each test instruments.

# 2.4. Test Software

| Software name                           | Model    | Version       |
|-----------------------------------------|----------|---------------|
| Conducted emission Measurement Software | EZ-EMC   | EMC-Con 3A1.1 |
| Radiated emission Measurement Software  | EZ-EMC   | FA-03A.2.RE   |
| Bluetooth and WIFI Test System          | JS1120-3 | 2.5.77.0418   |



# 3. TEST ITEM AND RESULTS

# 3.1. Antenna Requirement

## **Standard Requirement**

#### FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.



# 3.2. Conducted Output Power Test

## <u>Limit</u>

# FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

| FCC Part 15 Subpart E(15.407) |                                                                |                      |  |  |  |  |
|-------------------------------|----------------------------------------------------------------|----------------------|--|--|--|--|
| Test Item                     | Limit                                                          | Frequency Range(MHz) |  |  |  |  |
|                               | Fixed: 1 Watt (30dBm)<br>Mobile and Portable:<br>250mW (24dBm) | 5150~5250            |  |  |  |  |
| Conducted Output Power        | 250mW (24dBm)                                                  | 5250~5350            |  |  |  |  |
|                               | 250mW (24dBm)                                                  | 5470~5725            |  |  |  |  |
|                               | 1 Watt (30dBm)                                                 | 5725~5850            |  |  |  |  |

# **Test Configuration**



#### Test Procedure

- The EUT was tested according to according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5. Record the measurement data.

#### Test Mode

Please refer to the clause 2.2.

#### Test Result



| Band    | Test Mode                                | Channel<br>(MHz) | Output Power (dBm) | Limit(MHz) | Result                 |
|---------|------------------------------------------|------------------|--------------------|------------|------------------------|
|         |                                          | 5180             | 6.70               |            | 315                    |
|         | 802.11a                                  | 5220             | 7.45               |            |                        |
|         |                                          | 5240             | 8.27               |            |                        |
| S. C.   |                                          | 5180             | 6.39               | S.S.       |                        |
| ~       | 802.11n(HT20)                            | 5220             | 7.22               |            |                        |
|         |                                          | 5240             | 8.03               |            |                        |
|         | 802.11n(HT40)                            | 5190             | 5.79               | x          | 80                     |
| U-NII-1 |                                          | 5230             | 6.81               | 24         | Pass                   |
| 150     |                                          | 5180             | 6.23               | 2          |                        |
|         | 802.11ac(HT20)                           | 5220             | 7.08               |            |                        |
|         |                                          | 5240             | 7.85               |            | 5                      |
| 4       | 802.11ac(HT40)                           | 5190             | 5.54               |            | S.                     |
|         |                                          | 5230             | 6.77               | N. P       |                        |
|         | 802.11ac(HT80)                           | 5210             | 5.03               |            |                        |
|         | 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                  |                    |            | Station States and the |

Remark: The EUT provides one antennas for transmitting and receiving. Gain=0.90dBi< 6dBi So P<sub>out</sub>=P<sub>limit</sub>



# 3.3. Maximum Power Spectral Density Test

### Limit

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

| FCC Part 15 Subpart E(15.407) |                                                                                     |                      |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Test Item                     | Limit                                                                               | Frequency Range(MHz) |  |  |  |  |
|                               | Other than Mobile and<br>Portable : 17dBm/MHz<br>Mobile and Portable :<br>11dBm/MHz | 5150~5250            |  |  |  |  |
| Power Spectral Density        | 11dBm/MHz                                                                           | 5250~5350            |  |  |  |  |
| X                             | 11dBm/MHz                                                                           | 5470~5725            |  |  |  |  |
|                               | 30dBm/500kHz                                                                        | 5725~5850            |  |  |  |  |

### **Test Configuration**



### Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 1 MHz
- (5) Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

#### Test Mode

Please refer to the clause 2.2.

#### Test Result

KSIGN

| Band     | Test Mode      | Channel<br>(MHz) | Power Spectral Density<br>(dBm/MHz) | Limit(dBm/MHz) | Result |
|----------|----------------|------------------|-------------------------------------|----------------|--------|
|          | 100 A          | 5180             | 5.51                                |                | N.S.   |
|          | 802.11a        | 5220             | 5.79                                |                |        |
|          | Sec.           | 5240             | 7.37                                |                |        |
|          |                | 5180             | 4.7                                 |                |        |
| 100      | 802.11n(HT20)  | 5220             | 5.43                                | 11             |        |
|          |                | 5240             | 5.9                                 |                |        |
|          | 802.11n(HT40)  | 5190             | 1.97                                |                | Dees   |
| U-INII-I |                | 5230             | 3.38                                |                | rass   |
|          | 802.11ac(HT20) | 5180             | 5.13                                |                | - Nor  |
|          |                | 5220             | 6.48                                |                |        |
|          |                | 5240             | 7.04                                | 100 State      |        |
|          | 802.11ac(HT40) | 5190             | 2.94                                |                |        |
|          |                | 5230             | 3.34                                |                |        |
|          | 802.11ac(HT80) | 5210             | 0.63                                | 120            |        |



# Page 15 of 73

#### Report No.:KS2102S00365E02





### Page 16 of 73

#### Report No.:KS2102S00365E02





# Page 17 of 73

### Report No.:KS2102S00365E02





# Page 18 of 73

#### Report No.:KS2102S00365E02







# 3.4. 26dB Bandwidth and 99% Occupied Bandwidth Test

### Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

| FCC Part 15 Subpart C(15.407)         |         |           |  |  |  |
|---------------------------------------|---------|-----------|--|--|--|
| Test Item Limit Frequency Range (MHz) |         |           |  |  |  |
|                                       | N/A     | 5150~5250 |  |  |  |
| 26 dB Bandwidth                       |         | 5250~5350 |  |  |  |
|                                       |         | 5470~5725 |  |  |  |
| 6 dB Bandwidth                        | >500kHz | 5725~5850 |  |  |  |

# **Test Configuration**



### Test Procedure

- 1. According KDB 789033 D02 Section C
- 2. Connect the antenna port(s) to the spectrum analyzer input.
- 3. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = Channel center frequency

Span=2 x emission bandwidth

RBW = 1% to 5% of the emission bandwidth

VBW>3 x RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission, and use the 99 % power bandwidth function of the instrument

# The setting of the spectrum analyser as below:

| 26dB Bandwidth Test |                                            |  |  |  |
|---------------------|--------------------------------------------|--|--|--|
| Spectrum Parameters | Setting                                    |  |  |  |
| Attenuation         | Auto                                       |  |  |  |
| Span                | >26 dB Bandwidth                           |  |  |  |
| RBW                 | Approximately 1% of the emission bandwidth |  |  |  |
| VBW                 | VBW>RBW                                    |  |  |  |
| Detector            | Peak                                       |  |  |  |
| Trace               | Max Hold                                   |  |  |  |
| Sweep Time          | Auto                                       |  |  |  |
| 99%                 | Occupied Bandwidth Test                    |  |  |  |
| Spectrum Parameters | Setting                                    |  |  |  |
| Attenuation         | Auto                                       |  |  |  |
| RBW                 | 1% to 5% of the OBW                        |  |  |  |
| VBW                 | ≥ 3RBW                                     |  |  |  |
| Detector            | Peak                                       |  |  |  |
| Trace               | Max Hold                                   |  |  |  |

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

### Test Mode

Please refer to the clause 2.2.

# **Test Results**

KSIGN

| 11P       |                | No. 10 Carlos Marca a construction of the |                         |                                    |        |
|-----------|----------------|-------------------------------------------|-------------------------|------------------------------------|--------|
| Band      | Test Mode      | Channel<br>(MHz)                          | 26dB Bandwidth<br>[MHz] | 99% Occupied<br>bandwidth<br>(MHz) | Result |
|           | 200 B          | 5180                                      | 19.600                  | 16.983                             | Pass   |
|           | 802.11a        | 5220                                      | 19.680                  | 17.023                             | Pass   |
|           | S.             | 5240                                      | 20.080                  | 16.863                             | Pass   |
| - 12NS    | £              | 5180                                      | 20.280                  | 18.022                             | Pass   |
| Nov.      | 802.11n(HT20)  | 5220                                      | 19.600                  | 17.942                             | Pass   |
|           |                | 5240                                      | 20.160                  | 18.382                             | Pass   |
|           | 802.11n(HT40)  | 5190                                      | 40.400                  | 36.044                             | Pass   |
| U-NII-1   |                | 5230                                      | 40.720                  | 36.284                             | Pass   |
|           | 802.11ac(HT20) | 5180                                      | 20.080                  | 17.782                             | Pass   |
|           |                | 5220                                      | 20.120                  | 18.022                             | Pass   |
|           |                | 5240                                      | 19.960                  | 17.862                             | Pass   |
|           | 902 11cc/UT40) | 5190                                      | 40.320                  | 36.523                             | Pass   |
| 20 Deland | 002.11ac(H140) | 5230                                      | 40.880                  | 36.044                             | Pass   |
| No.       | 802.11ac(HT80) | 5210                                      | 79.680                  | 75.764                             | Pass   |







# Page 24 of 73





## Page 25 of 73

#### Report No.:KS2102S00365E02

