

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0108-310

Page: 1 of 36

Radio Test Report

FCC ID:2AM8GCHAMELEON7

Original Grant

TBR-C-202202-0108-310 Report No.

Applicant Guangzhou Lie Dun Electronics Technology CO., Ltd

Equipment Under Test (EUT)

EUT Name RUGGEDIZED HAND-HELD DEVICE

Model No. **CHAMELEON 7**

Series Model No.

Brand Name CHAMELEON

Sample ID 202202 0108-01-1& 202202 0108-01-2

Receipt Date 2022-07-13

Test Date 2022-07-13 to 2022-09-22

Issue Date 2022-12-30

Standards FCC Part 15 Subpart C 15.247

Test Method ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer

IVAN SU fay Lai. **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Mode	17
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Mode	20
	7.6 Test Data	20
8.	BANDWIDTH TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	22
	8.6 Test Data	22

Report No.: TBR-C-202202-0108-310 Page: 3 of 36

9.	PEAK OUTPUT POWER	23
	9.1 Test Standard and Limit	
	9.2 Test Setup	23
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	23
10.	POWER SPECTRAL DENSITY	
	10.1 Test Standard and Limit	24
	10.2 Test Setup	24
	10.3 Test Procedure	24
	10.4 Deviation From Test Standard	24
	10.5 Antenna Connected Construction	24
	10.6 Test Data	24
11.	ANTENNA REQUIREMENT	25
	11.1 Test Standard and Limit	25
	11.2 Deviation From Test Standard	25
	11.3 Antenna Connected Construction	
	11.4 Test Data	25
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202202-0108-310 Page: 4 of 36

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0108-310	Rev.01	Initial issue of report	2022-12-30
	400		
103	3	LODGE THE PROPERTY OF	13
4033	(MO)	The same of the sa	0033
33 0000			
(III)		33	TUDE
	(33 W	WORDS TO THE	
The same of the sa	600		COURS OF STREET
mby mor	3	The same	m33 400
(10)	ADD:		MODE
		THE CHIME	
	THE PARTY OF		1000

Page: 5 of 36

1. General Information about EUT

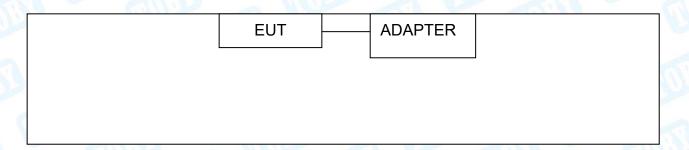
1.1 Client Information

Applicant		Guangzhou Lie Dun Electronics Technology CO., Ltd
Address : No.4 plant of No.43 Town, Panyu District		No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District, Guangzhou, Guangdong, China
Manufacturer		Guangzhou Lie Dun Electronics Technology CO., Ltd
Address		No.4 plant of No.43 South International Trade Avenue, Hualong Town, Panyu District, Guangzhou, Guangdong, China

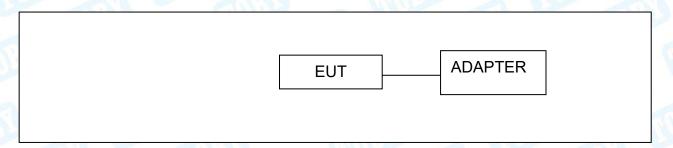
1.2 General Description of EUT (Equipment Under Test)

EUT Name	ŀ	RUGGEDIZED HAND-HELD DEVICE			
Model(s) No.		CHAMELEON 7			
WURT .		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 5.0 (BLE): 40 channels		
Product		Antenna Gain:	2.13dBi PIFA Antenna		
Description		Modulation Type:	GFSK		
	1	Bit Rate of Transmitter:	1/2Mbps		
Power Rating :		For adapter: (Model:MX15W-0502000UX) Input: AC 100V-240V, 50/60Hz 0.3A Output: DC 5V, 2000mA DC 3.85V by 7100mAh Li-ion battery			
Software Version	on :				
Hardware Version	:	QH6601 MB V1.1			
	1				

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.


Report No.: TBR-C-202202-0108-310 Page: 6 of 36

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 36

1.4 Description of Support Units

Equipment Information									
Name Model FCC ID/VOC Manufacturer Used "√"									
Adapter √									
Cable Information									
Number Shielded Type Ferrite Core Length Note									
		3 (1)							
		Model FCC ID/VOC Cable Information	Model FCC ID/VOC Manufacturer Cable Information						

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	Charging+TX Mode (BLE 1M Channel 00)				
	For Radiated Test				
Final Test Mode Description					
Mode 2	TX Mode (BLE 1M Channel 00)				
Mode 3	TX 1Mbps Mode (Channel 00/19/39)				
Mode 4	TX 2Mbps Mode (Channel 00/19/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 36

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version		QRCT3	THE WAY
Frequency	2402 MHz	2440MHz	2480 MHz
BLE 1M	DEF	DEF	DEF
BLE 2M	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

PILLING A		
Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 36

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0108-310 Page: 10 of 36

2. Test Summary

Standard Section FCC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	202202_0108-01-1	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202202_0108-01-1	PASS	N/A
FCC 15.203	Antenna Requirement	202202_0108-01-2	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	202202_0108-01-2	PASS	N/A
T TE	99% Occupied bandwidth	202202_0108-01-2	PASS	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	202202_0108-01-2	PASS	N/A
FCC 15.247(e)	Power Spectral Density	202202_0108-01-2	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	202202_0108-01-2	PASS	N/A
FCC 15.207(a)	Conducted Unwanted Emissions	202202_0108-01-2	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	202202_0108-01-2	PASS	N/A
1000	On Time and Duty Cycle	202202_0108-01-2		N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0108-310 Page: 11 of 36

Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
MIDD	Compliance				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
	Inc				
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	Sonoma	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 26, 2022	Feb.25, 2023
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 26, 2022	Feb.25, 2023
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted E	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
The same	DARE!! Instruments	RadiPowerRPR300 6W	17I00015SNO26	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR300 6W	17I00015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR300 6W	17I00015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR300 6W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

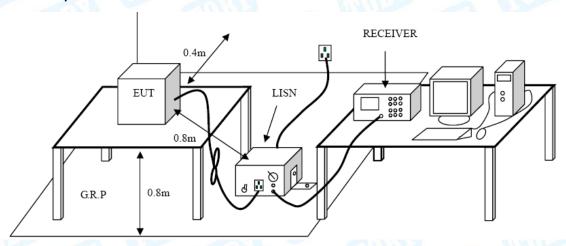
Page: 12 of 36

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

F	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- •LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 13 of 36

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 36

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

Genera	al field strength limits at frequencies	s Below 30MHz
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

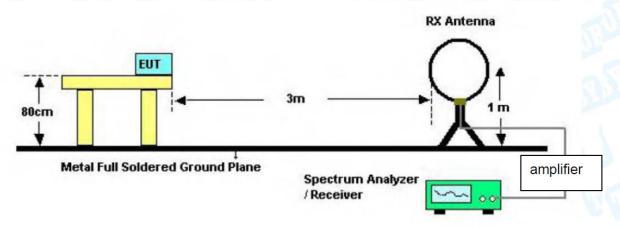
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

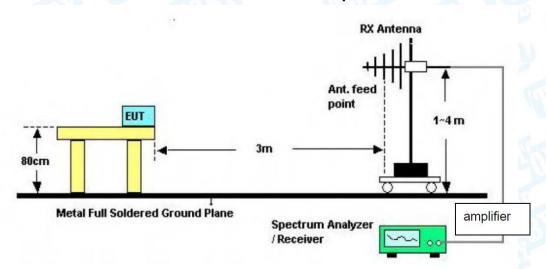
General field	General field strength limits at frequencies above 30 MHz							
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)						
30~88	100	3						
88~216	150	3						
216~960	200	3						
Above 960	500	3						

General field streng	gth limits at frequencies	Above 1000MHz
Frequency	Distance of	3m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54
	LINE TO THE STATE OF THE STATE	

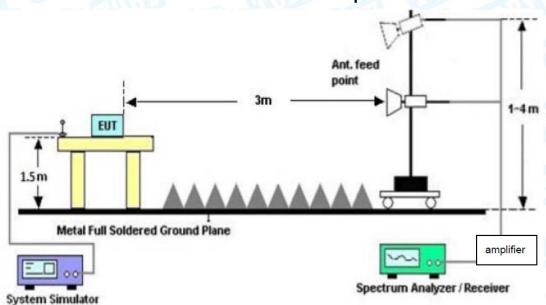
Note

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

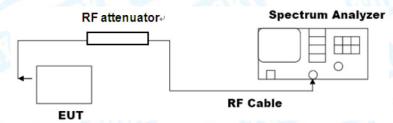

Page: 15 of 36

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 16 of 36

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 17 of 36

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix B.

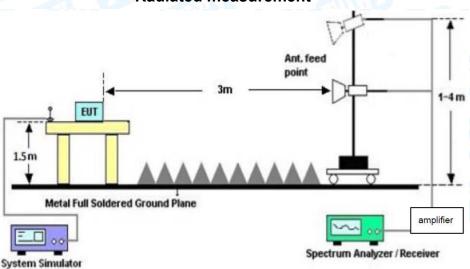
Page: 18 of 36

7. Restricted Bands Requirement

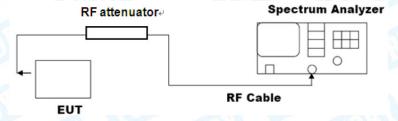
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance N	leters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)			
2310 ~2390	74	54			
2483.5 ~2500	74	54			
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)			
2310 ~2390	-41.20	-21.20			
2483.5 ~2500	-41.20	-21.20			


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 19 of 36

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 20 of 36

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

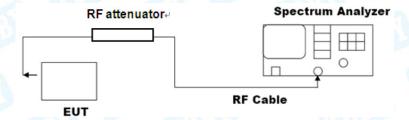
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Page: 21 of 36

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth (DTS bandwidth)	>=500 KHz	2400~2483.5
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

Page: 22 of 36

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

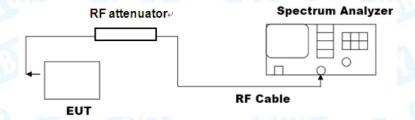
Please refer to the description of test mode.

8.6 Test Data

Page: 23 of 36

9. Peak Output Power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

---RBW≥DTS bandwidth

● The following procedure shall be used when an instrument with a resolution bandwidth that is greater than

the DTS bandwidth is available to perform the measurement:

- a) Set the RBW≥DTS bandwidth.
- b) Set VBW≥[3*RBW].
- c) Set span≥[3*RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

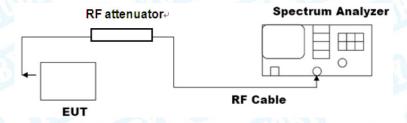
Please refer to the description of test mode.

9.6 Test Data

Page: 24 of 36

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 25 of 36

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

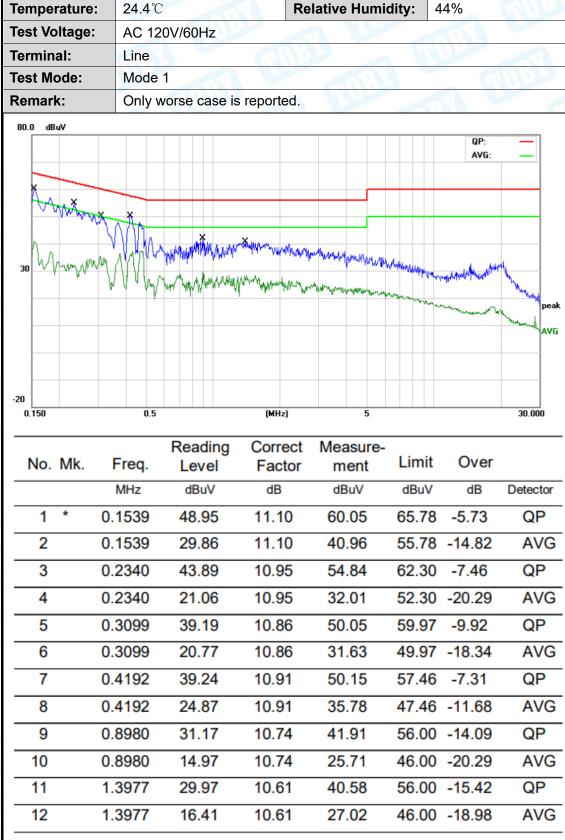
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.13dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.


Antenna Type	
⊠Permanent attached antenna	
☐Unique connector antenna	0.00
☐Professional installation antenna	MODE

Page: 26 of 36

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.4℃		Relative Humidity	/: 44%	
Test Voltage:	AC 120V/60)Hz			CALL
Terminal:	Neutral	W.	0		
Test Mode:	Mode 1			Milliam	
Remark:	Only worse	case is reported	i		Mary .
30 dBuV		Market March	Maria Maria Maria Maria Manda Maria	QP: AVG:	peak
0.150	0.5		Measure-		30.000
No. Mk.	Freq. Lev		ment Limi		
	MHz dBu		dBuV dBu\		Detector
1 0	.1539 49.3	10.99	60.38 65.7	8 -5.40	QP
2 0	.1539 25.1	10.99	36.17 55.7	8 -19.61	AVG
3 0	.1785 47.3	39 11.06	58.45 64.5	5 -6.10	QP
4 0	.1785 28.4	11.06	39.48 54.5	5 -15.07	AVG
5 0	.2340 43.9	96 11.07	55.03 62.3	0 -7.27	QP
6 0	.2340 19.8	33 11.07	30.90 52.3	0 -21.40	AVG
7 0	.2700 40.8	34 11.01	51.85 61.1	2 -9.27	QP
8 0	.2700 19.6	32 11.01	30.63 51.1	2 -20.49	AVG
9 * 0	.3699 42.6	9 10.92	53.61 58.5	0 -4.89	QP
10 0	.3699 25.2	25 10.92	36.17 48.5	0 -12.33	AVG
11 0	.4218 39.3	10.89	50.19 57.4	1 -7.22	QP
12 0	.4218 23.5	10.89	34.47 47.4	1 -12.94	AVG
Remark:					

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 28 of 36

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

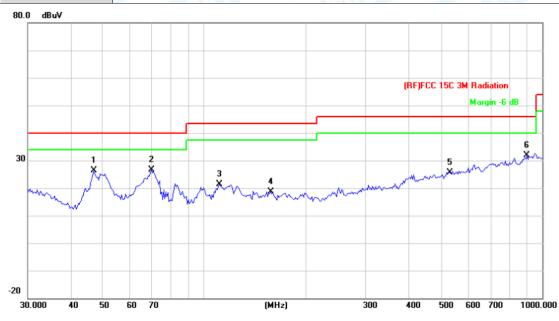
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

•			3.5℃			A	A STATE OF THE PARTY OF THE PAR	Relati	ive Ηι	ımidity:	46	5%			
Гes	t Vol	tage:	Α	AC 120V/60Hz											
Ant	. Pol		Н	lorizo	ontal		BILL				MILLER			9	
Гes	t Mo	de:	N	1ode	2	1						CT.	111	19	
Rer	nark		С	nly v	vors	e ca	ase i	s reported	d.\\\	No.		167			A
80.0	D dBu\	v													
											(RF)FC	C 15C 3	M Rad	iation	
			-										Marg	jin -6 d	В
						┲									4
30						1						5		6	<u>۸</u>
		1 X	4				3			4 *		ستنس	www	~ ~~~	w
	month	Ŋ	\ \		Ey M	- 4	3 X	- Parkey Manual M	N. M. Mary	wyw.	was a				
		MANA M	\w~√^	~~~		Ver.		m .	2144				+		
													-		
-20															
30	0.000	40	50	60 7	0 80			(MHz)		30	00 400	500	600	700	1000.0
	No.	Mk.	Fre	eq.		ead .eve	ing el	Correct Factor		sure- ent	Limit	Ov	er/		
_			MH	lz	(dBu\	V	dB	dB	uV	dBuV	d	В	Det	ector
_	1	*	46.99	947	4	0.4	7	-16.73	23	.74	40.00	-16	5.26	р	eak
-	2		71.08	302	3	32.9	7	-16.28	16	.69	40.00	-23	3.31	р	eak
-;	3	1	09.0	284	3	32.0	8	-15.26	16	.82	43.50	-26	6.68	ре	eak
	4	2	65.6	757	3	32.8	37	-10.65	22	.22	46.00	-23	3.78	ре	eak
-	5	5	39.4	773	2	28.7	'2	-3.30	25	.42	46.00	-20).58	р	eak
_	6	7	04.2	050	_	28.1	1	0.57	28	7.4	46.00	47	7.29	n/	eak

^{1.} Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)


Report No.: TBR-C-202202-0108-310 Page: 29 of 36

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 30 of 36

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	an su	
Ant. Pol.	Vertical		
Test Mode:	Mode 2	III I	
Remark:	Only worse case is repo	orted.	

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		46.9947	43.05	-16.73	26.32	40.00	-13.68	peak
2	*	69.6003	42.91	-16.32	26.59	40.00	-13.41	peak
3		110.5687	36.62	-15.32	21.30	43.50	-22.20	peak
4		157.0072	32.63	-13.96	18.67	43.50	-24.83	peak
5		531.9633	28.96	-3.26	25.70	46.00	-20.30	peak
6		900.1471	29.17	2.66	31.83	46.00	-14.17	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

31 of 36 Page:

Above 1-25GHz

Temperature:	23.5℃ Relative Humidity: 46%
Test Voltage:	DC 3.85V
Ant. Pol.	Horizontal
Test Mode:	BLE(1Mbps) Mode TX 2402 MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit.

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1	*	4804.169	32.31	12.31	44.62	54.00	-9.38	AVG
2		4804.296	41.65	12.31	53.96	74.00	-20.04	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 3.85V	The same of the sa	
Ant. Pol.	Vertical		The state of the s
Test Mode:	BLE(1Mbps) Mode TX 24	02 MHz	2017
Remark:	No report for the emission	which more than 10 dE	B below the
	prescribed limit.		

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4804.225	41.90	12.31	54.21	74.00	-19.79	peak
2	*	4804.225	31.38	12.31	43.69	54.00	-10.31	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

32 of 36 Page:

Temperature:	23.5℃	Relative Humidity:	54%
Test Voltage:	DC 3.85V		THU:
Ant. Pol.	Horizontal		0.1
Test Mode:	BLE(1Mbps) Mode TX 2440	MHz	

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4880.158	41.83	12.79	54.62	74.00	-19.38	peak
2	*	4880.158	31.26	12.79	44.05	54.00	-9.95	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 3.85V		
Ant. Pol.	Vertical		
Test Mode:	BLE(1Mbps) Mode TX 2440	MHz	

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4880.108	42.38	12.79	55.17	74.00	-18.83	peak
2	*	4880.328	30.83	12.79	43.62	54.00	-10.38	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

33 of 36 Page:

Temperature:	23.5 ℃	Relative Humidity:	46%			
Test Voltage:	DC 3.85V		LINE S			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	BLE(1Mbps) Mode TX 248	0 MHz				

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4960.108	39.39	13.29	52.68	74.00	-21.32	peak
2	*	4960.232	30.67	13.29	43.96	54.00	-10.04	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 3.85V	A WILL			
Ant. Pol.	Vertical				
Test Mode:	BLE(1Mbps) Mode TX 2480	MHz			

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4960.283	41.09	13.29	54.38	74.00	-19.62	peak
2	*	4960.283	32.40	13.29	45.69	54.00	-8.31	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

 5. No report for the emission which more than 20dB below the prescribed limit.

34 of 36 Page:

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	DC 3.85V		DIVI-				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE(2Mbps) Mode TX 2402	2 MHz					
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4803.735	43.27	12.31	55.58	74.00	-18.42	peak
2	*	4804.048	32.65	12.31	44.96	54.00	-9.04	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	DC 3.85V		MAN				
Ant. Pol.	Vertical	Vertical					
Test Mode:	BLE(2Mbps) Mode	TX 2402 MHz					
Remark:	No report for the er prescribed limit.	nission which more than 10 dl	B below the				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4803.856	43.27	12.31	55.58	74.00	-18.42	peak
2	*	4804.017	33.30	12.31	45.61	54.00	-8.39	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

 5. No report for the emission which more than 20dB below the prescribed limit.

35 of 36 Page:

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 3.85V		THU:
Ant. Pol.	Horizontal		
Test Mode:	BLE(2Mbps) Mode TX 2440) MHz	

N	o. Mi	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1	*	4880.138	31.85	12.79	44.64	54.00	-9.36	AVG
2		4880.247	42.82	12.79	55.61	74.00	-18.39	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	DC 3.85V					
Ant. Pol.	Vertical	Vertical				
Test Mode:	BLE(2Mbps) Mode TX 2440	MHz	100			

N	o. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4880.217	43.49	12.79	56.28	74.00	-17.72	peak
2	*	4880.351	32.17	12.79	44.96	54.00	-9.04	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 36 of 36

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 3.85V		THU:
Ant. Pol.	Horizontal		10.17
Test Mode:	BLE(2Mbps) Mode TX 2480	MHz	

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4960.287	43.55	13.29	56.84	74.00	-17.16	peak
2	*	4960.354	32.38	13.30	45.68	54.00	-8.32	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 3.85V	The state of the s	
Ant. Pol.	Vertical		MILLOR
Test Mode:	BLE(2Mbps) Mode TX 2480) MHz	

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dBm	dB	Detector
1		4960.384	42.21	13.30	55.51	74.00	-18.49	peak
2	*	4960.415	32.39	13.30	45.69	54.00	-8.31	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----