# Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0108-148

Page:

# **FCC Radio Test Report** FCC ID:2AM8GCHAMELEON5RV2

## **Original Grant**

TBR-C-202202-0108-148 Report No.

**Applicant** Guangzhou Lie Dun Electronics Technology CO., Ltd

**Equipment Under Test (EUT)** 

**EUT Name** RUGGEDIZED HAND-HELD DEVICE

Model No. CHAMELEON 5R V2 DUAL

Series Model No. CHAMELEON 5R V2 SINGLE

**Brand Name** CHAMELEON

Sample ID 202202 0108-01-3 & 202202 0108-01-4

**Receipt Date** 2022-07-13

**Test Date** 2022-07-13 to 2022-09-29

2022-12-28 **Issue Date** 

**Standards** 47 CFR FCC Part 2, Part 90

**Test Method** ANSI C63.26 2015

**Conclusions PASS** 

In the configuration tested, the EUT complied with the standards specified above,

**Test/Witness Engineer** 

: INAN SU **Engineer Supervisor** 

**Engineer Manager** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0



# Contents

| COI | N1EN15                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 6  |
|     | 1.4 Description of Support Units                             | 7  |
|     | 1.5 Description of Test Mode                                 | 7  |
|     | 1.6 Measurement Uncertainty                                  | 8  |
|     | 1.7 Test Facility                                            | 8  |
| 2.  | TEST SUMMARY                                                 | 9  |
| 3.  | TEST SOFTWARE                                                | 9  |
| 4.  | TEST EQUIPMENT                                               | 10 |
| 5.  | CONDUCTED RF OUTPUT POWER                                    | 12 |
| 677 | 5.1 Test Standard and Limit                                  |    |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 Deviation From Test Standard                             |    |
|     | 5.5 EUT Operating Condition                                  |    |
|     | 5.6 Test Data                                                |    |
| 6.  | PEAK-AVERAGE RATIO                                           | 13 |
|     | 6.1 Test Standard and Limit                                  |    |
|     | 6.2 Test Setup                                               |    |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 Deviation From Test Standard                             | 13 |
|     | 6.5 EUT Operating Condition                                  | 13 |
|     | 6.6 Test Data                                                | 13 |
| 7.  | OCCUPIED BANDWIDTH                                           | 14 |
|     | 7.1 Test Standard and Limit                                  | 14 |
|     | 7.2 Test Setup                                               |    |
|     | 7.3 Test Procedure                                           |    |
|     | 7.4 Deviation From Test Standard                             | 15 |
|     | 7.5 EUT Operating Condition                                  | 15 |
|     | 7.6 Test Data                                                | 15 |
| 8.  | OUT OF BAND EMISSION AT ANTENNA TERMINALS                    |    |
|     | 8.1 Test Standard and Limit                                  | 16 |
|     | 8.2 Test Setup                                               |    |
|     | 8.3 Test Procedure                                           |    |
|     | 8.4 Deviation From Test Standard                             | 17 |
|     | 8.5 EUT Operating Condition                                  | 17 |





|     | 8.6 Test Data                     | 17 |
|-----|-----------------------------------|----|
| 9.  | EMISSION MASK                     | 18 |
|     | 9.1 Test Standard and Limit       | 18 |
|     | 9.2 Test Setup                    |    |
|     | 9.3 Test Procedure                | 18 |
|     | 9.4 Deviation From Test Standard  | 18 |
|     | 9.5 EUT Operating Condition       | 18 |
|     | 9.6 Test Data                     | 18 |
| 10. | RADIATED OUTPUT POWER             | 19 |
|     | 10.1 Test Standard and Limit      | 19 |
|     | 10.2 Test Setup                   |    |
|     | 10.3 Test Procedure               | 20 |
|     | 10.4 Deviation From Test Standard |    |
|     | 10.5 EUT Operating Condition      |    |
|     | 10.6 Test Data                    | 20 |
| 11. | RADIATED OUT BAND OF EMISSIONS    | 21 |
|     | 11.1 Test Standard and Limit      |    |
|     | 11.2 Test Setup                   |    |
|     | 11.3 Test Procedure               |    |
|     | 11.4 Deviation From Test Standard | 22 |
|     | 11.5 EUT Operating Condition      | 22 |
|     | 11.6 Test Data                    | 22 |
| 12. | FREQUENCY STABILITY               | 23 |
|     | 12.1 Test Standard and Limit      | 23 |
|     | 12.2 Test Setup                   |    |
|     | 12.3 Test Procedure               |    |
|     | 12.4 Deviation From Test Standard | 24 |
|     | 12.5 EUT Operating Condition      | 24 |
|     | 12.6 Test Data                    | 24 |
| ATT | ACHMENT ARADIATED OUTPUT POWER    | 25 |
|     |                                   | 29 |



Report No.: TBR-C-202202-0108-148
Page: 4 of 32

# **Revision History**

| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Version    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TBR-C-202202-0108-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rev.01     | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2022-12-28  |
| MOBIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOD.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. W. W.    |
| UBA LOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Contract of the Contract of th |             |
| TUDE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WOOD!       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07         | THE PARTY OF THE P |             |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:11       |
| 9 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | (103) (103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J. William |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Guin      |
| On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YELLOW     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000        |
| THE PARTY OF THE P | 100        | 1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Course  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1133       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



Page: 5 of 32

# 1. General Information about EUT

# 1.1 Client Information

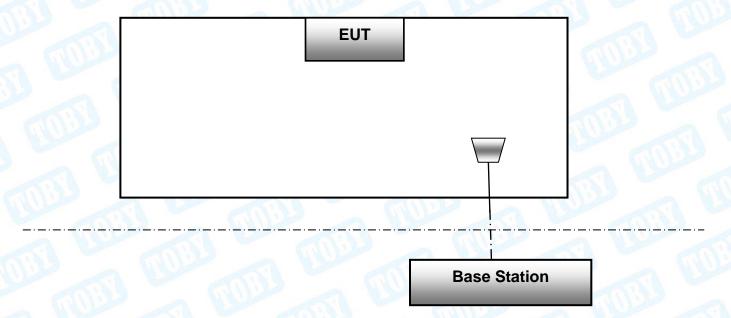
| Applicant    |    | Guangzhou Lie Dun Electronics Technology CO., Ltd                                                                  |
|--------------|----|--------------------------------------------------------------------------------------------------------------------|
| Address      | :  | No.4 plant of No.43 South International Trade Avenue, Hualong<br>Town, Panyu District, Guangzhou, Guangdong, China |
| Manufacturer | AM | Guangzhou Lie Dun Electronics Technology CO., Ltd                                                                  |
| Address      |    | No.4 plant of No.43 South International Trade Avenue, Hualong<br>Town, Panyu District, Guangzhou, Guangdong, China |

## 1.2 General Description of EUT (Equipment Under Test)

| EUT Name         | ): | RUGGEDIZED HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RUGGEDIZED HAND-HELD DEVICE                                                                      |  |  |  |  |  |  |  |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Models No.       | ė  | CHAMELEON 5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V2 DUAL, CHAMELEON 5R V2 SINGLE                                                                  |  |  |  |  |  |  |  |
| Model Difference |    | ALES A. P. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re identical in the same PCB, layout and electrical ference is appearance size, finger print and |  |  |  |  |  |  |  |
| 0.33             |    | and the second s | Frequency Bands:<br>LTE Band 26:TX: 814MHz-824MHz, RX: 859MHz-869MHz                             |  |  |  |  |  |  |  |
|                  |    | Antenna Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PIFA Antenna                                                                                     |  |  |  |  |  |  |  |
| Product          | 2  | Antenna Gain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5dBi                                                                                           |  |  |  |  |  |  |  |
| Description      | 3  | Modulation Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QPSK, 16QAM                                                                                      |  |  |  |  |  |  |  |
|                  |    | Bandwidth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LTE Band 26: 1.4MHz/3MHz/5MHz/10MHz                                                              |  |  |  |  |  |  |  |
|                  |    | LTE Category:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111111111111111111111111111111111111111                                                          |  |  |  |  |  |  |  |
| Power Rating     |    | For adapter: (Model:MX15W-0502000UX) Input: AC 100V-240V, 50/60Hz 0.3A Output: DC 5V, 2000mA DC 3.85V by 7100mAh Li-ion battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |  |  |  |  |  |  |  |
| Software Version |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |  |  |  |  |  |  |  |
| Hardware Version | 1  | : QH6601_MB_V1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |  |  |  |  |  |  |  |

### Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.




Page: 6 of 32

## (2) Channel List

| LTE Bar  | nd 26(1.4MHz)   | LTE Band 26(3MHz)  |                 |  |  |  |
|----------|-----------------|--------------------|-----------------|--|--|--|
| Channel  | Frequency (MHz) | Channel            | Frequency (MHz) |  |  |  |
| 26697    | 814.70          | 26705              | 815.50          |  |  |  |
| 26698    | 814.60          | 26706              | 814.60          |  |  |  |
|          |                 |                    |                 |  |  |  |
| 26739    | 818.90          | 26739              | 818.90          |  |  |  |
| 26740    | 819.00          | 26740              | 819.00          |  |  |  |
| 26741    | 819.10          | 26741              | 819.10          |  |  |  |
|          |                 | A MANAGEMENT       |                 |  |  |  |
| 26782    | 823.20          | 26774              | 822.40          |  |  |  |
| 26783    | 823.30          | 26775              | 822.50          |  |  |  |
| LTE Ba   | nd 26(5MHz)     | LTE Band 26(10MHz) |                 |  |  |  |
| Channel  | Frequency (MHz) | Channel            | Frequency (MHz) |  |  |  |
| 26715    | 816.50          |                    |                 |  |  |  |
| 26698    | 816.60          | 773 J              | G 100           |  |  |  |
| <b>3</b> | [ N             |                    |                 |  |  |  |
| 26739    | 818.90          | UNITED             |                 |  |  |  |
| 26740    | 819.00          | 26740              | 819.00          |  |  |  |
| 26741    | 819.10          |                    |                 |  |  |  |
|          |                 |                    | A WWW.          |  |  |  |
| 26764    | 822.40          |                    | (III) (III)     |  |  |  |
| 26765    | 821.50          | A THU              |                 |  |  |  |

## 1.3 Block Diagram Showing the Configuration of System Tested



The above block diagram of setup is the normal mode. And more detail please refer to the test setup of each test item of bellow.



Page: 7 of 32

## 1.4 Description of Support Units

The EUT has been tested as an independent unit.

## 1.5 Description of Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 v03r01 and ANSI C63.26 2015 Power Meas. License Digital Systems with maximum output power. Radiated measurements are performed by rotating the EUT in three different or tho-gonal test planes to find the maximum emission.

#### Remark:

- 1. The mark "v " means that this configuration is chosen for testing
- 2. The mark "--" means that this bandwidth is not supported.
- 3. The device is investigated from 30MHz to 10 times of fundamental signal for radiated

| ITEMS                                   | Band |     | Bar | ndwid | dth (M | Hz) |              | Mod  | ulation |   | RB#  |      | Tes         | t Cha | nne |
|-----------------------------------------|------|-----|-----|-------|--------|-----|--------------|------|---------|---|------|------|-------------|-------|-----|
|                                         |      | 1.4 | 3   | 5     | 10     | 15  | 20           | QPSK | 16QAM   | 1 | Half | Full | L           | М     | Н   |
| RF Output Power                         | 26   | V   | V   | V     | V      | -   |              | V    | ٧       | V | V    | V    | V           | ٧     | V   |
| Peak-to-Average Ratio                   | 26   | 11  | -   | -     | ٧      | 1   |              | V    | V       |   | 65   | V    | ) <b></b> ` | ٧     |     |
| 99% & -26 dB<br>Occupied Bandwidth      | 26   | v   | v   | v     | v      |     | 3            | V    | V       | ٧ |      |      | ٧           | v     | V   |
| Spurious Emissions at Antenna Terminal  | 26   | ٧   | V   | V     | v      | -   | -            | V    | v       | ٧ | 400  | V    | V           | ٧     | v   |
| Field Strength of<br>Spurious Radiation | 26   | V   | ٧   | ٧     | V      | M   | ) <b>-</b> - | V    | v       | V |      | N    |             | V     |     |
| Emission Masks                          | 26   | ٧   | ٧   | ٧     | ٧      |     |              | V    | V       | V | Mile | V    | ٧           | ٧     | ٧   |
| Frequency stability                     | 26   | V   | ٧   | ٧     | V      | \-  | -            | V    | V       | V |      | 100  |             | ٧     |     |

The EUT is LTE Category 1, 16QAM only supports 25%RB. So the 16QAM only test 25%RB.

#### Note:

- (1) During the testing procedure, the EUT is in link mode with base station emulator at maximum power level in each test mode.
- (2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on Z-plane as the normal use. Therefore only the test data of this Z-plane was used for radiated emission measurement test.



Page: 8 of 32

## 1.6 Measurement Uncertainty

| Test Item           | Parameters                           | Expanded Uncertainty (U <sub>Lab</sub> ) |
|---------------------|--------------------------------------|------------------------------------------|
| RF Power, conducted | 1                                    | ±0.82 dB                                 |
| Radiated Emission   | Level Accuracy:<br>9kHz to 30 MHz    | ±4.60 dB                                 |
| Radiated Emission   | Level Accuracy:<br>30MHz to 1000 MHz | ±4.50 dB                                 |
| Radiated Emission   | Level Accuracy:<br>Above 1000MHz     | ±4.20 dB                                 |

## 1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

## **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.



Report No.: TBR-C-202202-0108-148
Page: 9 of 32

# 2. Test Summary

| Test Item                              | Section in CFR 47   | Result |
|----------------------------------------|---------------------|--------|
| RF Output Power                        | 2.1046/90.635(b)    | PASS   |
| Peak-to-Average Ratio                  | KDB 971168 D01(5.7) | PASS   |
| 99% & -26 dB Occupied Bandwidth        | 2.1049/ 90.209      | PASS   |
| Spurious Emissions at Antenna Terminal | 2.1051 / 90.691     | PASS   |
| Field Strength of Spurious Radiation   | 2.1053 /90.691      | PASS   |
| Emission Masks                         | 2.1051 / 90.691     | PASS   |
| Frequency stability vs. temperature    | 2.1055 / 90.213     | PASS   |
| Frequency stability vs. voltage        | 2.1055 / 90.213     | PASS   |

# 3. Test Software

| Test Item          | Test Software | Manufacturer | Version No. |
|--------------------|---------------|--------------|-------------|
| Radiation Emission | EZ-EMC        | EZ           | FA-03A2RE   |



Report No.: TBR-C-202202-0108-148
Page: 10 of 32

# 4. Test Equipment

| Equipment               | Manufacturer       | Model No.             | Serial No.    | Last Cal.      | Cal. Due Date    |
|-------------------------|--------------------|-----------------------|---------------|----------------|------------------|
| EMI Test Receiver       | Rohde & Schwarz    | ESCI                  | 100321        | Jun. 23, 2022  | Jun. 22, 2023    |
| LIVIT TOST TROCCIVES    | Compliance         | Looi                  | 100321        | Juli. 20, 2022 | Jun. 22, 2023    |
| RF Switching Unit       | Direction Systems  | RSU-A4                | 34403         | Jun. 23, 2022  | Jun. 22, 2023    |
|                         | Inc                | (Collins)             |               | 03 20, 2022    | 00,111, 22, 2020 |
| AMN                     | SCHWARZBECK        | NNBL 8226-2           | 8226-2/164    | Jun. 22, 2022  | Jun. 21, 2023    |
| LISN                    | Rohde & Schwarz    | ENV216                | 101131        | Jun. 22, 2022  | Jun. 21, 2023    |
| Radiation Emission T    | est                |                       |               |                |                  |
| Equipment               | Manufacturer       | Model No.             | Serial No.    | Last Cal.      | Cal. Due Date    |
| Spectrum Analyzer       | Agilent            | E4407B                | MY45106456    | Jun. 23, 2022  | Jun. 22, 2023    |
| EMI Test Receiver       | Rohde & Schwarz    | ESPI                  | 100010/007    | Jun. 23, 2022  | Jun. 22, 2023    |
| Spectrum Analyzer       | Rohde & Schwarz    | FSV40-N               | 102197        | Jun. 23, 2022  | Jun. 22, 2023    |
| Bilog Antenna           | ETS-LINDGREN       | 3142E                 | 00117537      | Feb. 27, 2022  | Feb.26, 2024     |
| Horn Antenna            | ETS-LINDGREN       | 3117                  | 00143207      | Feb. 26, 2022  | Feb.25, 2024     |
| Horn Antenna            | ETS-LINDGREN       | BBHA 9170             | 1118          | Feb. 26, 2022  | Feb.25, 2024     |
| Loop Antenna            | SCHWARZBECK        | FMZB 1519 B           | 1519B-059     | Feb. 26, 2022  | Feb.25, 2024     |
| Pre-amplifier           | Sonoma             | 310N                  | 185903        | Feb. 26, 2022  | Feb.25, 2023     |
| Pre-amplifier           | HP                 | 8449B                 | 3008A00849    | Feb. 26, 2022  | Feb.25, 2023     |
| Pre-amplifier           | SKET               | LNPA_1840G-50         | SK201904032   | Feb. 26, 2022  | Feb.25, 2023     |
| Cable                   | HUBER+SUHNER       | 100                   | SUCOFLEX      | Feb. 26, 2022  | Feb.25, 2023     |
| Positioning Controller  | ETS-LINDGREN       | 2090                  | N/A           | N/A            | N/A              |
| Antenna Conducted E     | Emission           |                       | ***           |                |                  |
| Equipment               | Manufacturer       | Model No.             | Serial No.    | Last Cal.      | Cal. Due Date    |
| Spectrum Analyzer       | Agilent            | E4407B                | MY45106456    | Jun. 23, 2022  | Jun. 22, 2023    |
| Spectrum Analyzer       | Rohde & Schwarz    | FSV40-N               | 102197        | Jun. 23, 2022  | Jun. 22, 2023    |
| MXA Signal Analyzer     | Agilent            | N9020A                | MY47380425    | Sep. 01, 2022  | Aug. 31, 2023    |
| Vector Signal Generator | Agilent            | N5182A                | MY50141294    | Sep. 01, 2022  | Aug. 31, 2023    |
| Analog Signal Generator | Agilent            | N5181A                | MY48180463    | Sep. 01, 2022  | Aug. 31, 2023    |
|                         | DARE!! Instruments | RadiPowerRPR3006<br>W | 17I00015SNO26 | Sep. 01, 2022  | Aug. 31, 2023    |
| TOBY                    | DARE!! Instruments | RadiPowerRPR3006<br>W | 17I00015SNO29 | Sep. 01, 2022  | Aug. 31, 2023    |
| RF Power Sensor         | DARE!! Instruments | RadiPowerRPR3006<br>W | 17I00015SNO31 | Sep. 01, 2022  | Aug. 31, 2023    |
|                         | DARE!! Instruments | RadiPowerRPR3006<br>W | 17I00015SNO33 | Sep. 01, 2022  | Aug. 31, 2023    |
| Temperature and         | ZhengHang          | ZH-QTH-1500           | ZH2107264     | Jun. 22, 2022  | Jun. 21, 2023    |



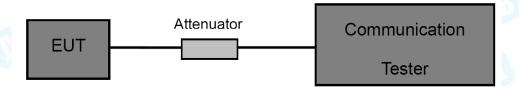
Report No.: TBR-C-202202-0108-148
Page: 11 of 32

| Humidity Chamber |  | 73 | Million |  |
|------------------|--|----|---------|--|



Page: 12 of 32

# 5. Conducted RF Output Power


### 5.1 Test Standard and Limit

5.1.1 Test Standard FCC part 2.1046 FCC Part 90.635(b)

#### 5.1.2 Test Limit

| RF Output Power            |          |
|----------------------------|----------|
| LTE Band 26(814MHz-824MHz) |          |
| 100W(50dBm)                | P. P. P. |

## 5.2 Test Setup



## 5.3 Test Procedure

- (1) The EUT is coupled to the Base Station with the suitable Attenuator, the path loss is calibrated to correct the reading.
- (2) A call is set up by the Base Station to the generic call set up procedure.
- (3) Set EUT at maximum power level through base station by power level command.
- (4) Then read record the power value from the Base Station in dBm.

## 5.4 Deviation From Test Standard

No deviation

## 5.5 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

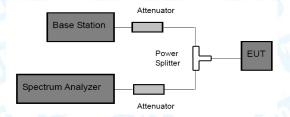
### 5.6 Test Data



Page: 13 of 32

## 6. Peak-Average Ratio

### 6.1 Test Standard and Limit


6.1.1 Test Standard FCC Part 90

#### 6.1.2 Test Limit

## **Peak-to-Average Ratio**

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

## 6.2 Test Setup



#### 6.3 Test Procedure

According with KDB 971168

- (1) The signal analyzer's CCDF measurement profile is enabled.
- (2) Frequency = carrier center frequency.
- (3) Measurement BW>Emission bandwidth of signal.
- (4) The signal analyzer was set to collect one million samples to generate the CCDF curve.
- (5) Set the EUT working in highest power level, measured and recorded the 0.1% as PAPR level.
- (6) The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which of the transmitter is operating at maximum power.

## 6.4 Deviation From Test Standard

No deviation

## 6.5 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

### 6.6 Test Data



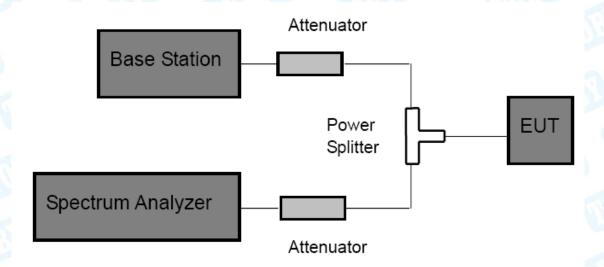
Page: 14 of 32

## 7. Occupied Bandwidth

### 7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 2.1049


FCC Part 90.209

## 7.1.2 Test Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as 99% power and -26dBC occupied bandwidths.

## 7.2 Test Setup



### 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) The resolution bandwidth of the Spectrum Analyzer is set to at least 1% of the occupied bandwidth. VBW= 3 times RBW.
- (3) The low, middle and the high channels are selected to perform tests respectively.
- (4) Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak; make a line whose value is 26dB lower than the peak; mark two points which the line intersected the waveform at; finally record the delta of the two points as the occupied bandwidth and the plot.
- (5) Set the Spectrum Analyzer Occupied bandwidth function to measure the 99% occupied bandwidth.



Page: 15 of 32

## 7.4 Deviation From Test Standard

No deviation

## 7.5 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

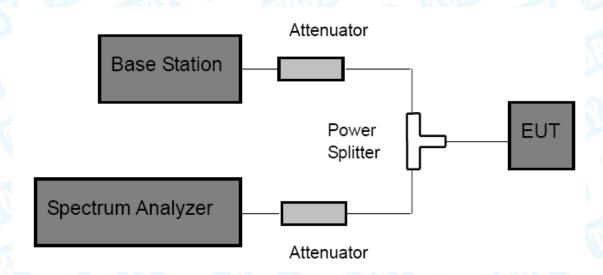
## 7.6 Test Data



TOBY Port of the Cotecna Group

Page: 16 of 32

## 8. Out of Band Emission at Antenna Terminals


## 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 2: 2.1051 FCC Part 90.691

#### 8.1.2 Test Limit

Rule Part 90.691 specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB." this becomes a constant specification limit of -13 dBm.

## 8.2 Test Setup





Page: 17 of 32

### 8.3 Test Procedure

1 The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.

2 The resolution bandwidth of the spectrum analyzer was set at 100 kHz when below 1GHz, 1MHz when above 1 GHz; sufficient scans were taken to show the out of band Emissions if any up to 10<sup>th</sup> harmonic.

3 For the out of band: Set the RBW=100 kHz, VBW=300 kHz when below 1 GHz, RBW =1 MHz, VBW=3 MHz when above 1 GHz, Start=30MHz, Stop= 10th harmonic.

4 Band Edge Requirements: In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter.

### 8.4 Deviation From Test Standard

No deviation

## 8.5 EUT Operating Condition

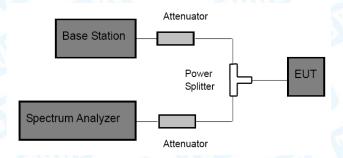
The EUT was continuously connected with the Base station and transmitting in the max power during the test.

### 8.6 Test Data



Page: 18 of 32

## 9. Emission Mask


#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 2: 2.1051 FCC Part 90.691

#### 9.1.2 Test Limit

Rule Part 90.691(a) specifies that "For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz."

## 9.2 Test Setup



#### 9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) Band Edge Requirements: In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter.

#### 9.4 Deviation From Test Standard

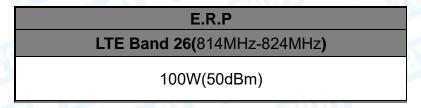
No deviation

## 9.5 EUT Operating Condition

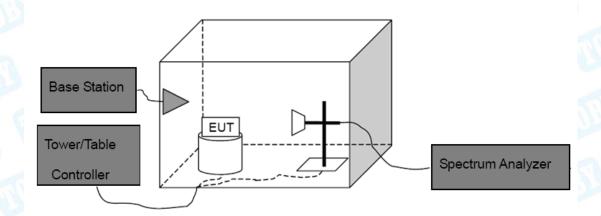
The EUT was continuously connected with the Base station and transmitting in the max power during the test.

### 9.6 Test Data

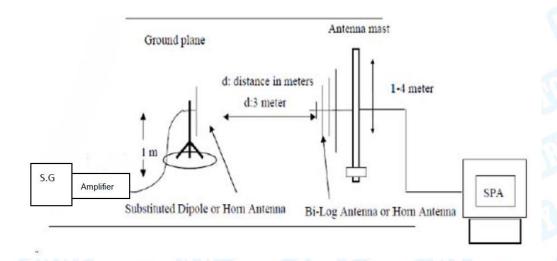



Page: 19 of 32

#### 10. **Radiated Output Power**


## 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 2.1046 FCC part 90.635(B)


10.1.2 Test Limit



## 10.2 Test Setup



**Above 1G** 



**Substituted Method** 



Page: 20 of 32

### 10.3 Test Procedure

(1) The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW=3 MHz, VBW=3 MHz and peak detector settings.

- (2) During the measurement, the EUT was enforced in maximum power and linked with the Base Station. The highest was recorded from analyzer power level (LVT) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- (3) Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to C63.26. The EUT was replaced by dipole antenna (for frequency below 1 GHz) or Horn antenna (for frequency above 1 GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a TX cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

Note: In test, the S.G Connect the Pre-amplifier(Sonoma 310N Pre-amplifier for frequency below 1 GHz, HP 8449B Pre-amplifier for frequency above 1 GHz)

Then the EUT's EIRP and ERP was calculated with the correction factor: ERP=S.G.Level +Antenna Gain Cord.(dBd)-Cable Loss(dB) EIRP=S.G.Level+Antenna Gain Cord.(dBi)-Cable Loss(dB)

#### 10.4 Deviation From Test Standard

No deviation

## 10.5 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

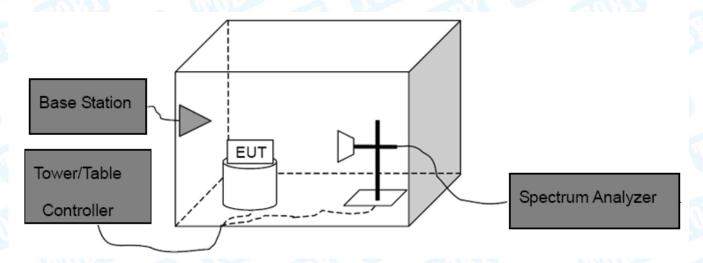
#### 10.6 Test Data

Please refer to the Attachment A. Measurement Data (worst case)



Page: 21 of 32

## 11. Radiated Out Band of Emissions


### 11.1 Test Standard and Limit

11.1.1 Test Standard FCC Part 2.1053 FCC Part 90.691

#### 11.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

## 11.2 Test Setup



#### 11.3 Test Procedure

- (1) The test system setup as show in the block diagram above.
- (2) The EUT was placed on an non-conductive rotating platform in an anechoic chamber. The radiated spurious emissions from 30MHz to 10<sup>th</sup> harmonious of fundamental frequency were measured at 3 m with a test antenna and a spectrum analyzer with RBW=1 MHz, VBW=1 MHz, peak detector settings.
- (3) During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- (4) When found the maximum level of emissions from the EUT. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB=10 log(TX power in Watts/0.001)-the absolute level Spurious attenuation limit in dB=43+10 log(power out in Watts)



Page: 22 of 32

## 11.4 Deviation From Test Standard

No deviation

# 11.5 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

## 11.6 Test Data

Please refer to the Attachment B. Measurement Data (worst case)



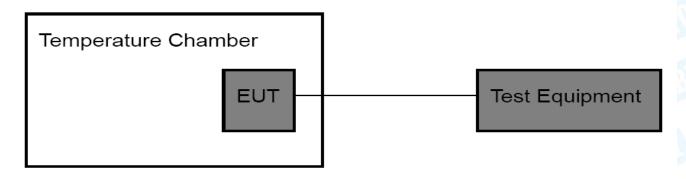
Page: 23 of 32

# 12. Frequency Stability

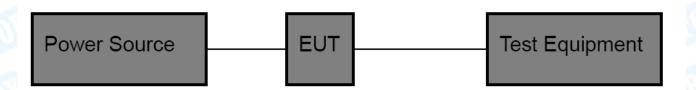
## 12.1 Test Standard and Limit

12.1.1 Test Standard FCC Part 2.1055(a)(1)(b) FCC Part 90.213

#### 12.1.2 Limit


According to the Sec. 90.213.(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table. Minimum Frequency Stability

[Parts per million (ppm)]


|                 |                | Mobile stations     |                        |  |  |  |
|-----------------|----------------|---------------------|------------------------|--|--|--|
| Frequency range | Fixed and base | Over 2 watts output | 2 watts or less output |  |  |  |
| (MHz)           | stations       | power               | power                  |  |  |  |
| 809-824         | 1.5            | 2.5                 | 2.5                    |  |  |  |

## 12.2 Test Setup

## For Temperature Test:



## For Voltage Test:





Page: 24 of 32

#### 12.3 Test Procedure

Test Procedures for Temperature Variation:

- (1) The EUT was set up in the thermal chamber and connected with the base station.
- (2) With power off, the temperature was decreased to -30 °C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (3) With power off, the temperature was raised in  $10^{\circ}$ C set up to  $50^{\circ}$ C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (4) If the EUT cannot be turned on at -30 $^{\circ}$ C, the testing lowest temperature will be raised in 10 $^{\circ}$ C step until the EUT can be turned on.

Test Procedures for Voltage Variation:

- (1) The EUT was placed in a temperature chamber at  $25\pm5^{\circ}$ C and connected with the base station.
- (2) Reduce the input voltage to specify extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.
- (3) The variation in frequency was measured for the worst case.

#### 12.4 Deviation From Test Standard

No deviation

## 12.5 EUT Operating Condition

The Equipment Under Test was set to Communication with the Base Station.

#### 12.6 Test Data





Page: 25 of 32

# ATTACHMENT A--RADIATED OUTPUT POWER

Test Results of the SINGLE

|            | Radiated Power (ERP) for LTE Band 26 / 1.4M |        |           |         |          |                   |            |       |  |  |  |  |  |  |
|------------|---------------------------------------------|--------|-----------|---------|----------|-------------------|------------|-------|--|--|--|--|--|--|
| Modulation | R                                           | В      | Channel   | Antenna | SG Level | Antenna<br>Factor | Cable Loss | EIRP  |  |  |  |  |  |  |
|            | Size                                        | offset |           | (H&V)   | (dBm)    | (dBd)             | (dB)       | (dBm) |  |  |  |  |  |  |
|            | 1                                           | 0      | Lowest    | Н       | 19.99    | 5.01              | 2.59       | 22.41 |  |  |  |  |  |  |
| QPSK       | 1                                           | O      | Lowest    | V       | 16.11    | 5.01              | 2.59       | 18.53 |  |  |  |  |  |  |
|            | 1                                           | 0      | Middle    | Н       | 18.30    | 4.82              | 2.59       | 20.53 |  |  |  |  |  |  |
| QFSK       |                                             | U      | Middle    | ٧       | 17.27    | 4.82              | 2.59       | 19.50 |  |  |  |  |  |  |
|            | 1                                           | 0      | Highest   | Н       | 17.99    | 4.45              | 2.59       | 19.85 |  |  |  |  |  |  |
|            |                                             |        |           | ٧       | 18.41    | 4.45              | 2.59       | 20.27 |  |  |  |  |  |  |
|            | 1                                           | 0      | Laurat    | Н       | 18.22    | 5.01              | 2.59       | 20.64 |  |  |  |  |  |  |
|            | Į.                                          | U      | Lowest    | V       | 16.62    | 5.01              | 2.59       | 19.04 |  |  |  |  |  |  |
| 16QAM      | 1                                           | 0      | Middle    | Н       | 17.76    | 4.82              | 2.59       | 19.99 |  |  |  |  |  |  |
| TOWAIN     | '                                           |        | Middle    | V       | 14.52    | 4.82              | 2.59       | 16.75 |  |  |  |  |  |  |
|            | 1                                           | 0      | Highest   | Н       | 20.90    | 4.45              | 2.59       | 22.76 |  |  |  |  |  |  |
|            | 1                                           |        | riigriest | V       | 14.39    | 4.45              | 2.59       | 16.25 |  |  |  |  |  |  |
|            |                                             |        |           | Limit   |          |                   |            |       |  |  |  |  |  |  |

|            |       | R      | adiated P | ower (ERP | ) for LTE Ba | nd 26 / 3M        |            |       |
|------------|-------|--------|-----------|-----------|--------------|-------------------|------------|-------|
| Modulation | R     | В      | Channel   | Antenna   | SG Level     | Antenna<br>Factor | Cable Loss | EIRP  |
|            | Size  | offset |           | (H&V)     | (dBm)        | (dBd)             | (dB)       | (dBm) |
| QPSK 1     | 1     | 0      | Lowest    | Н         | 21.72        | 5.01              | 2.59       | 24.14 |
|            | ı     | U      | Lowest    | V         | 18.55        | 5.01              | 2.59       | 20.97 |
|            | 1     | 0      | Middle    | Н         | 16.53        | 4.82              | 2.59       | 18.76 |
| QFSK       |       | U      | Middle    | V         | 15.21        | 4.82              | 2.59       | 17.44 |
|            | 1     | 1 0    | Highest   | Н         | 22.73        | 4.45              | 2.59       | 24.59 |
|            |       |        |           | V         | 15.02        | 4.45              | 2.59       | 16.88 |
|            | 1     | 1 0    | Lowest    | Н         | 21.73        | 5.01              | 2.59       | 24.15 |
|            | '     | · ·    | Lowest    | V         | 16.56        | 5.01              | 2.59       | 18.98 |
| 16QAM      | 1     | 0      | Middle    | Н         | 18.10        | 4.82              | 2.59       | 20.33 |
| IUQAW      | '     | U      | Middle    | V         | 16.68        | 4.82              | 2.59       | 18.91 |
| -          | 1     | 0      | Highest   | Н         | 22.45        | 4.45              | 2.59       | 24.31 |
|            | ı<br> | U      | riigriest | V         | 13.95        | 4.45              | 2.59       | 15.81 |
|            |       |        |           | Limit     |              |                   |            | 50    |



TOBY Part of the Cotena Group Report No.: TBR-C-202202-0108-148 Page: 26 of 32

|            |       | R      | adiated P | ower (ERP | ) for LTE Ba | nd 26 / 5M        |            | 1111111 |      |      |       |
|------------|-------|--------|-----------|-----------|--------------|-------------------|------------|---------|------|------|-------|
| Modulation | R     | В      | Channel   | Antenna   | SG Level     | Antenna<br>Factor | Cable Loss | EIRP    |      |      |       |
|            | Size  | offset |           | (H&V)     | (dBm)        | (dBd)             | (dB)       | (dBm)   |      |      |       |
|            | 1     | 0      | Lowest    | Н         | 18.16        | 5.01              | 2.59       | 20.58   |      |      |       |
| QPSK       | 1     | 0      | Lowest    | V         | 13.55        | 5.01              | 2.59       | 15.97   |      |      |       |
|            | 1     | 0      | Middle    | Н         | 17.32        | 4.82              | 2.59       | 19.55   |      |      |       |
| QF3N       |       | U      | Middle    | V         | 14.38        | 4.82              | 2.59       | 16.61   |      |      |       |
|            | 1     | 1 0    | Highest   | Н         | 21.44        | 4.45              | 2.59       | 23.30   |      |      |       |
|            |       |        |           | V         | 14.23        | 4.45              | 2.59       | 16.09   |      |      |       |
|            | 1     | 1 0    | Laurat    | Н         | 17.32        | 5.01              | 2.59       | 19.74   |      |      |       |
|            | ı     | U      | Lowest    | V         | 17.60        | 5.01              | 2.59       | 20.02   |      |      |       |
| 16QAM      | 1     | 1      | 1         | 1         | 0            | Middle            | Н          | 22.21   | 4.82 | 2.59 | 24.44 |
| IOQAIVI    | ı     | U      | iviluule  | V         | 13.78        | 4.82              | 2.59       | 16.01   |      |      |       |
|            | 1     | 0      | Highest   | Н         | 22.74        | 4.45              | 2.59       | 24.60   |      |      |       |
|            | 1     | U      | Highest - | V         | 18.23        | 4.45              | 2.59       | 20.09   |      |      |       |
|            | Limit |        |           |           |              |                   |            |         |      |      |       |

|            | Radiated Power (ERP) for LTE Band 26 / 10M |        |          |         |          |                   |            |       |       |  |  |  |
|------------|--------------------------------------------|--------|----------|---------|----------|-------------------|------------|-------|-------|--|--|--|
| Modulation | RB                                         |        | Channel  | Antenna | SG Level | Antenna<br>Factor | Cable Loss | EIRP  |       |  |  |  |
|            | Size offset                                | offset |          | (H&V)   | (dBm)    | (dBd)             | (dB)       | (dBm) |       |  |  |  |
| QPSK       | 1                                          | 1 0    | 0        | Middle  | Н        | 19.57             | 5.01       | 2.59  | 21.99 |  |  |  |
| QFSK       | ļ                                          |        | ivildale | V       | 18.24    | 5.01              | 2.59       | 20.66 |       |  |  |  |
| 16QAM      | 1                                          | 0      | Middlo   | Н       | 20.35    | 4.82              | 2.59       | 22.58 |       |  |  |  |
| IOQAIVI    | 1                                          |        | Middle   | V       | 18.66    | 4.82              | 2.59       | 20.89 |       |  |  |  |
| Limit      |                                            |        |          |         |          |                   |            |       |       |  |  |  |





## Test Results of the DUAL

|            | Radiated Power (ERP) for LTE Band 26 / 1.4M |        |           |         |          |                   |            |       |  |  |  |  |
|------------|---------------------------------------------|--------|-----------|---------|----------|-------------------|------------|-------|--|--|--|--|
| Modulation | R                                           | В      | Channel   | Antenna | SG Level | Antenna<br>Factor | Cable Loss | EIRP  |  |  |  |  |
|            | Size                                        | offset |           | (H&V)   | (dBm)    | (dBd)             | (dB)       | (dBm) |  |  |  |  |
|            | 1                                           | 0      | Lowest    | Н       | 19.92    | 5.01              | 2.59       | 22.34 |  |  |  |  |
| QPSK       | Į                                           | U      | Lowest    | V       | 15.85    | 5.01              | 2.59       | 18.27 |  |  |  |  |
|            | 1                                           | 0      | Middle    | Н       | 20.14    | 4.82              | 2.59       | 22.37 |  |  |  |  |
| QFSK       |                                             | U      | Middle    | V       | 13.92    | 4.82              | 2.59       | 16.15 |  |  |  |  |
|            | 1                                           | 1 0    | Highest   | Н       | 17.64    | 4.45              | 2.59       | 19.50 |  |  |  |  |
|            |                                             |        |           | V       | 19.48    | 4.45              | 2.59       | 21.34 |  |  |  |  |
|            | 1                                           | 0      | 1         | Н       | 18.38    | 5.01              | 2.59       | 20.80 |  |  |  |  |
|            | ı                                           | O      | Lowest    | V       | 15.29    | 5.01              | 2.59       | 17.71 |  |  |  |  |
| 16QAM      | 1                                           | 0      | Middle    | Н       | 21.06    | 4.82              | 2.59       | 23.29 |  |  |  |  |
| IOQAW      | I .                                         |        | Milaule   | V       | 17.21    | 4.82              | 2.59       | 19.44 |  |  |  |  |
| -          | 1                                           | 0      | ∐ighost   | Н       | 20.29    | 4.45              | 2.59       | 22.15 |  |  |  |  |
|            | 1                                           | 0      | Highest - | V       | 16.42    | 4.45              | 2.59       | 18.28 |  |  |  |  |
|            | Limit                                       |        |           |         |          |                   |            |       |  |  |  |  |

|            | 4761  |        |           |           | <u> </u>     | # # # 1 P. 1 P. 1 |            |       |  |  |
|------------|-------|--------|-----------|-----------|--------------|-------------------|------------|-------|--|--|
|            |       | R      | adiated P | ower (ERP | ) for LTE Ba | nd 26 / 3M        |            |       |  |  |
| Modulation | R     | В      | Channel   | Antenna   | SG Level     | Antenna<br>Factor | Cable Loss | EIRP  |  |  |
|            | Size  | offset |           | (H&V)     | (dBm)        | (dBd)             | (dB)       | (dBm) |  |  |
|            | 1     | 0      | Lowest    | Н         | 20.49        | 5.01              | 2.59       | 22.91 |  |  |
| QPSK       | '     |        | Lowest    | V         | 17.65        | 5.01              | 2.59       | 20.07 |  |  |
|            | 1     | 0      | Middle    | Н         | 20.17        | 4.82              | 2.59       | 22.40 |  |  |
| QF3N       |       | U      |           | V         | 18.14        | 4.82              | 2.59       | 20.37 |  |  |
|            | 1     | 1 0    | Highest   | Н         | 18.05        | 4.45              | 2.59       | 19.91 |  |  |
|            |       |        |           | V         | 15.39        | 4.45              | 2.59       | 17.25 |  |  |
|            | 1     | 1 0    | Lowest    | Н         | 21.15        | 5.01              | 2.59       | 23.57 |  |  |
|            | Į     | U      | Lowest    | V         | 16.37        | 5.01              | 2.59       | 18.79 |  |  |
| 16QAM      | 1     | 0      | Middle    | Н         | 19.45        | 4.82              | 2.59       | 21.68 |  |  |
| IUQAW      | Į.    | U      | ivildale  | V         | 13.80        | 4.82              | 2.59       | 16.03 |  |  |
|            | 1     | 0      | Highest   | Н         | 22.84        | 4.45              | 2.59       | 24.70 |  |  |
|            | 1     | U      | Highest   | V         | 17.93        | 4.45              | 2.59       | 19.79 |  |  |
|            | Limit |        |           |           |              |                   |            |       |  |  |





|            |      | R      | adiated P | ower (ERP | ) for LTE Ba | nd 26 / 5M        |            |       |
|------------|------|--------|-----------|-----------|--------------|-------------------|------------|-------|
| Modulation | R    | В      | Channel   | Antenna   | SG Level     | Antenna<br>Factor | Cable Loss | EIRP  |
|            | Size | offset |           | (H&V)     | (dBm)        | (dBd)             | (dB)       | (dBm) |
|            | 4    |        | Lowest    | Н         | 16.67        | 5.01              | 2.59       | 19.09 |
| QPSK       | 1    | 0      | Lowest    | V         | 14.56        | 5.01              | 2.59       | 16.98 |
|            | 1    | 0      | Middle    | Н         | 17.89        | 4.82              | 2.59       | 20.12 |
| QF3N       |      | U      |           | V         | 15.18        | 4.82              | 2.59       | 17.41 |
|            | 1    | 1 0    | Highest   | Н         | 21.81        | 4.45              | 2.59       | 23.67 |
|            |      |        |           | V         | 15.61        | 4.45              | 2.59       | 17.47 |
|            | 1    | 1 0    | 1         | Н         | 22.19        | 5.01              | 2.59       | 24.61 |
|            |      | U      | Lowest    | V         | 13.79        | 5.01              | 2.59       | 16.21 |
| 16QAM      | 1    | 0      | Middle    | Н         | 16.67        | 4.82              | 2.59       | 18.90 |
| TOQAW      | ı    | U      | Middle    | V         | 18.95        | 4.82              | 2.59       | 21.18 |
|            | 1    | 0      | Highost   | Н         | 19.61        | 4.45              | 2.59       | 21.47 |
|            | 1    | U      | Highest - | V         | 17.89        | 4.45              | 2.59       | 19.75 |
|            |      |        |           | Limit     |              |                   |            | 50    |

|            | Radiated Power (ERP) for LTE Band 26 / 10M |   |         |         |          |                   |            |       |  |  |  |  |
|------------|--------------------------------------------|---|---------|---------|----------|-------------------|------------|-------|--|--|--|--|
| Modulation | RB                                         |   | Channel | Antenna | SG Level | Antenna<br>Factor | Cable Loss | EIRP  |  |  |  |  |
|            | offset                                     |   | (H&V)   | (dBm)   | (dBd)    | (dB)              | (dBm)      |       |  |  |  |  |
| QPSK       | 1                                          | 0 | Middle  | Н       | 20.16    | 5.01              | 2.59       | 22.58 |  |  |  |  |
| QPSK       | ļ                                          |   | Middle  | V       | 15.34    | 5.01              | 2.59       | 17.76 |  |  |  |  |
| 160014     | 1                                          | 0 | Middle  | Н       | 21.48    | 4.82              | 2.59       | 23.71 |  |  |  |  |
| 16QAM      | M 1 0                                      |   | Middle  | V       | 17.71    | 4.82              | 2.59       | 19.94 |  |  |  |  |
|            | Limit                                      |   |         |         |          |                   |            |       |  |  |  |  |



Page: 29 of 32

# ATTACHMENT B--RADIATED OUT BAND OF EMISSIONS

Measurement Data (worst case)

Test Results of the SINGLE

|                    | Carried Control       | miles in            |                                    | 1                  | J. Hilliam                 |             | 18     |
|--------------------|-----------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|--------|
| Test mode:         | LTE BAND 26           | 6 1.4MHz(RB s       | ize 1 & RB offs                    | set 0) for QPS     | K                          |             |        |
| Channel:           | Middle                |                     |                                    |                    |                            |             |        |
|                    |                       | Sp                  | ourious Emissio                    | n                  |                            |             |        |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |
| 1638.45            | Horizontal            | -56.12              | 14.94                              | 6.12               | -35.06                     | 20.0        |        |
| 2457.51            | Н                     | -66.39              | 13.87                              | 7.86               | -44.66                     | -13.00      | Pass   |
| 3276.84            | Н                     | -71.20              | 14.49                              | 9.54               | -47.17                     | (Min        |        |
| 1638.45            | Vertical              | -37.93              | 8.02                               | 3.97               | -25.94                     |             |        |
| 2457.51            | V                     | -46.50              | 10.47                              | 5.05               | -30.98                     | -13.00      | Pass   |
| 3276.84            | V                     | -54.82              | 16.92                              | 5.98               | -31.92                     |             |        |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss

|                    |                       | O BRUE              |                                    |                    | 100                        |             | 1:30   |
|--------------------|-----------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|--------|
| Test mode:         | LTE BAND 26           | 3MHz(RB size        | e 1 & RB offse                     | t 0) for QPSK      |                            |             |        |
| Channel:           | Middle                |                     |                                    |                    |                            |             |        |
|                    |                       | Sp                  | ourious Emissio                    | n                  |                            |             |        |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |
| 1638.45            | Horizontal            | -57.87              | 14.94                              | 6.12               | -36.81                     |             |        |
| 2457.51            | Н                     | -68.18              | 13.87                              | 7.86               | -46.45                     | -13.00      | Pass   |
| 3276.84            | Н                     | -68.17              | 14.49                              | 9.54               | -44.14                     |             | 13.    |
| 1638.45            | Vertical              | -35.69              | 8.02                               | 3.97               | -23.70                     |             |        |
| 2457.51            | V                     | -48.43              | 10.47                              | 5.05               | -32.91                     | -13.00      | Pass   |
| 3276.84            | V                     | -57.47              | 16.92                              | 5.98               | -34.57                     |             | 11.    |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss



Page: 30 of 32

|                    |                       |                     | THE PARTY OF THE P | CIII               |                            | 7 110       |        |
|--------------------|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|-------------|--------|
| Test mode:         | LTE BAND 26           | 6 5MHz(RB size      | e 1 & RB offse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t 0) for QPSK      |                            |             |        |
| Channel:           | Middle                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            |             |        |
|                    |                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            |             |        |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |
| 1638.45            | Horizontal            | -52.62              | 14.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.12               | -31.56                     |             | 2.0    |
| 2457.51            | Н                     | -64.26              | 13.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.86               | -42.53                     | -13.00      | Pass   |
| 3276.84            | H                     | -70.12              | 14.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.54               | -46.09                     |             |        |
| 1638.45            | Vertical              | -39.43              | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.97               | -27.44                     |             | 1 100  |
| 2457.51            | V                     | -45.16              | 10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.05               | -29.64                     | -13.00      | Pass   |
| 3276.84            | V                     | -56.79              | 16.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.98               | -33.89                     |             |        |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss

| MU                 | 10 W                  |                     | 11                                 | WILL ST            |                            | O. C. C.    |           |
|--------------------|-----------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|-----------|
| Test mode:         | LTE BAND 26           | 6 10MHz(RB si       | ze 1 & RB offs                     | et 0) for QPSI     | <b>(</b>                   |             |           |
| Channel:           | Middle                |                     |                                    |                    |                            |             |           |
|                    |                       | Sp                  |                                    |                    |                            |             |           |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result    |
| 1638.45            | Horizontal            | -57.28              | 14.94                              | 6.12               | -36.22                     |             | A Comment |
| 2457.51            | Н                     | -63.75              | 13.87                              | 7.86               | -42.02                     | -13.00      | Pass      |
| 3276.84            | Н                     | -68.49              | 14.49                              | 9.54               | -44.46                     |             | an B.     |
| 1638.45            | Vertical              | -37.57              | 8.02                               | 3.97               | -25.58                     |             |           |
| 2457.51            | V                     | -46.34              | 10.47                              | 5.05               | -30.82                     | -13.00      | Pass      |
| 3276.84            | V                     | -55.03              | 16.92                              | 5.98               | -32.13                     | N. C. C.    | 1777      |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss



Page: 31 of 32

#### Test Results of the DUAL

|                    |                                                      | CHILD P.            |                                    |                    |                            |             |        |  |  |
|--------------------|------------------------------------------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|--------|--|--|
| Test mode:         | LTE BAND 26 1.4MHz(RB size 1 & RB offset 0) for QPSK |                     |                                    |                    |                            |             |        |  |  |
| Channel:           | Middle                                               |                     |                                    |                    |                            |             |        |  |  |
|                    |                                                      | Sp                  |                                    |                    |                            |             |        |  |  |
| Frequency<br>(MHz) | Polarization<br>(H&V)                                | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |  |  |
| 1638.45            | Horizontal                                           | -55.37              | 14.94                              | 6.12               | -34.31                     |             | ~ 1    |  |  |
| 2457.51            | Н                                                    | -66.61              | 13.87                              | 7.86               | -44.88                     | -13.00      | Pass   |  |  |
| 3276.84            | Н                                                    | -68.78              | 14.49                              | 9.54               | -44.75                     | DHO.        |        |  |  |
| 1638.45            | Vertical                                             | -38.42              | 8.02                               | 3.97               | -26.43                     |             |        |  |  |
| 2457.51            | V                                                    | -45.37              | 10.47                              | 5.05               | -29.85                     | -13.00      | Pass   |  |  |
| 3276.84            | V                                                    | -54.60              | 16.92                              | 5.98               | -31.70                     |             |        |  |  |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss

|            | LTT DAND OF  | 2 01411 (DD :     | 4000 (         |               |          |              |        |  |
|------------|--------------|-------------------|----------------|---------------|----------|--------------|--------|--|
| Test mode: |              | 6 3MHz(RB size    | e 1 & RB offse | t 0) for QPSK |          |              |        |  |
| Channel:   | Middle       |                   |                |               |          |              |        |  |
|            |              | Spurious Emission |                |               |          |              |        |  |
| Frequency  | Polarization | Read Level        | Antenna        | Cable Loss    | Emission | Limit (dBm)  | Result |  |
| (MHz)      | (H&V)        |                   | Correct        | (dB)          | Level    | Limit (dbin) | Result |  |
|            | (Παν)        | (dBm)             | Factor (dBi)   | (ub)          | (dBm)    |              |        |  |
| 1638.45    | Horizontal   | -53.43            | 14.94          | 6.12          | -32.37   |              | 0411   |  |
| 2457.51    | Н            | -63.83            | 13.87          | 7.86          | -42.10   | -13.00       | Pass   |  |
| 3276.84    | Н            | -68.46            | 14.49          | 9.54          | -44.43   |              |        |  |
| 1638.45    | Vertical     | -37.55            | 8.02           | 3.97          | -25.56   |              | an B   |  |
| 2457.51    | V            | -46.06            | 10.47          | 5.05          | -30.54   | -13.00       | Pass   |  |
| 3276.84    | V            | -54.20            | 16.92          | 5.98          | -31.30   |              |        |  |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss



Page: 32 of 32

| MAG                |                       |                     | MAL                                |                    |                            | A Alle      |        |
|--------------------|-----------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|--------|
| Test mode:         | LTE BAND 26           | 6 5MHz(RB size      | e 1 & RB offse                     | t 0) for QPSK      |                            |             |        |
| Channel:           | Middle                |                     |                                    |                    |                            |             |        |
|                    |                       |                     |                                    |                    |                            |             |        |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |
| 1638.45            | Horizontal            | -58.06              | 14.94                              | 6.12               | -37.00                     |             | 2.0    |
| 2457.51            | Н                     | -64.61              | 13.87                              | 7.86               | -42.88                     | -13.00      | Pass   |
| 3276.84            | H                     | -68.22              | 14.49                              | 9.54               | -44.19                     |             |        |
| 1638.45            | Vertical              | -40.18              | 8.02                               | 3.97               | -28.19                     | U. A.       | 1 100  |
| 2457.51            | V                     | -45.34              | 10.47                              | 5.05               | -29.82                     | -13.00      | Pass   |
| 3276.84            | V                     | -56.27              | 16.92                              | 5.98               | -33.37                     |             |        |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss

| MU                 | 10 W                  |                     | 11                                 | WILL ST            |                            | O. C. C.    |        |
|--------------------|-----------------------|---------------------|------------------------------------|--------------------|----------------------------|-------------|--------|
| Test mode:         | LTE BAND 26           | 6 10MHz(RB si       | ze 1 & RB offs                     | et 0) for QPSI     | <b>(</b>                   |             |        |
| Channel:           | Middle                |                     |                                    |                    |                            |             |        |
|                    |                       |                     |                                    |                    |                            |             |        |
| Frequency<br>(MHz) | Polarization<br>(H&V) | Read Level<br>(dBm) | Antenna<br>Correct<br>Factor (dBi) | Cable Loss<br>(dB) | Emission<br>Level<br>(dBm) | Limit (dBm) | Result |
| 1638.45            | Horizontal            | -54.72              | 14.94                              | 6.12               | -33.66                     | 100         | No.    |
| 2457.51            | Н                     | -64.65              | 13.87                              | 7.86               | -42.92                     | -13.00      | Pass   |
| 3276.84            | Н                     | -71.65              | 14.49                              | 9.54               | -47.62                     |             |        |
| 1638.45            | Vertical              | -40.53              | 8.02                               | 3.97               | -28.54                     |             |        |
| 2457.51            | V                     | -44.19              | 10.47                              | 5.05               | -28.67                     | -13.00      | Pass   |
| 3276.84            | V                     | -59.56              | 16.92                              | 5.98               | -36.66                     |             | 1777   |

Remark: 1, The testing has been conformed to 10\*819.0MHz=819.0MHz.

- 2, All other emissions more than 50 dB below the limit.
- 3, Emission Level= Read Level+ Antenna Correct Factor +Cable Loss

-----End of Report-----