

TEST REPORT No. I18Z62006-WMD04

for

Wiko SAS

SMART PHONE

Model Name: W-U300

FCC ID: 2AM86WU300AS

with

Hardware Version: V1.0

Software Version: W-U300-V01.28

Issued Date: 2018-12-10

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government..

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn, www.caict.ac.cn"/>www.caict.ac.cn, www.caict.ac.cn"/>www.caict.ac.cn, www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18Z62006-WMD04	Rev.0	1st edition	2018-12-10

CONTENTS

1.	TEST LABORATORY	. 4
1.1.	TESTING LOCATION	. 4
1.2.	TESTING ENVIRONMENT	. 4
1.3.	PROJECT DATA	. 4
1.4.	SIGNATURE	. 4
2.	CLIENT INFORMATION	. 5
2.1.	APPLICANT INFORMATION	. 5
2.2.	MANUFACTURER INFORMATION	. 5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 6
3.1.	ABOUT EUT	
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4.	NORMAL ACCESSORY SETTING	. 7
3.5.	GENERAL DESCRIPTION	. 7
4.	REFERENCE DOCUMENTS	.7
4.1.	REFERENCE DOCUMENTS FOR TESTING	.7
5.	LABORATORY ENVIRONMENT	. 8
6.	SUMMARY OF TEST RESULTS	.9
7.	TEST EQUIPMENTS UTILIZED	
	NEX A: MEASUREMENT RESULTS	
	.1 OUTPUT POWER (§22.913(A)/§24.232(C))	
	.2 FREQUENCY STABILITY (§2.1055/§22.355/§24.235)	
	.3 OCCUPIED BANDWIDTH (§2.1049(H)(I))	
	.4 EMISSION BANDWIDTH (§22.917(B)/§24.238(B))	
	.5 BAND EDGE COMPLIANCE (§22.917(B)/§24.238(B))	
	.6 CONDUCTED SPURIOUS EMISSION (§2.1057/§22.917/§24.238)	
А	.7 PEAK-TO-AVERAGE POWER RATIO (§24.232(D))	41
ANI	NEX B: ACCREDITATION CERTIFICATE	42

1. Test Laboratory

1.1. Testing Location

Location 1: CTTL(huayuan North Road)

Address:

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191

Location 2: CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China 100191

1.2. <u>Testing Environment</u>

Normal Temperature:	15-35 ℃
Relative Humidity:	20-80%

1.3. Project data

Testing Start Date:	2018-11-07
Testing End Date:	2018-12-07

1.4. Signature

Dong Yuan (Prepared this test report)

我是

Zhang Yufeng (Reviewed this test report)

人装融

Zhao Hui Lin Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Wiko SAS
Address /Post:	1, rue Capitaine Dessemond 13007 - Marseille - France.
Contact Person:	Laurent Dahan
Contact Email:	ldahan@wikomobile.com
Telephone:	33488089515
Fax:	33488089520

2.2. Manufacturer Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.	
Address /Post:	4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East	
Audress /FOSL	Road., Nan Shan District, Shenzhen, P.R. China	
Contact Person:	Jingwen.Guo	
Contact Email:	jingwen.guo@tinno.com	
Telephone:	0755-86095550	
Fax:	0755-86095551	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	SMART PHONE
Model	W-U300
FCC ID	2AM86WU300AS
Frequency	CDMA800MHz(BC0);CDMA1900MHz(BC1)
Antenna	Embedded
Extreme vol. Limits	3.55VDC to 4.35VDC (nominal: 3.8 VDC)
Extreme temp. Tolerance	-10°C to +55°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Date of receipt
UT02a	352798100012861	V1.0	W-U300-V01.28	2018-11-06
UT08a	352798100012841	V1.0	W-U300-V01.28	2018-11-06

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery

AE1

Model	C210AEBATT
Manufacturer	Ningbo Veken Battery Co.,Ltd
Capacitance	2500mAh

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery was used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of SMART PHONE with embedded antenna. It consists of Hand Telephone Set and normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

4. <u>Reference Documents</u>

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	V10-1-17
		Edition
FCC Part 22	PUBLIC MOBILE SERVICES	V10-1-17
		Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	V10-1-17
	MATTERS; GENERAL RULES AND REGULATIONS	Edition
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016
	Measurement and Performance Standards	
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital	v03r01
	Transmitters	

5. LABORATORY ENVIRONMENT

Shielding chamber did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %

6. SUMMARY OF TEST RESULTS

Items	List	Clause in FCC rules	Verdict
1	Output Power	22.913(a)/24.232(c)	Pass
2	Frequency Stability	2.1055/22.355/24.235	Pass
3	Occupied Bandwidth	2.1049(h)(i)	Pass
4	Emission Bandwidth	22.917(b)/24.238(b)	Pass
5	Band Edge Compliance	22.917(b)/24.238(b)	Pass
6	Conducted Spurious Emission	2.1057/22.917/24.238	Pass
7	Peak to Average Power Ratio	24.232(d)	Pass

7. Test Equipments Utilized

NO. NA	NAME	TYPE	SERIES	PRODUCE	CALIBRATIO	CAL DUE
	INAIVIE	ITPE	NUMBER	NUMBER R		DATE
1	Spectrum Analyzer	FSV30	101576	R&S	1 Year	2019-4-7
2	Wireless Communications Test Set	8960(E5515C)	GB4616031 3	Agilent	1 Year	2019-7-10
3	Climatic chamber	SH-641	92009050	ESPEC	2 Years	2019-12-21

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER (§22.913(a)/§24.232(c))

A.1.1 Summary

During the process of testing, the EUT was controlled via Agilent Wireless Communications Test Set (8960(E5515C)) to ensure max power transmission and proper modulation.

This result is max output power conducted measurements for the EUT.

In all cases, output power is within the specified limits.

A.1.2 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSV30 (average).

These measurements were done at 3 frequencies, 1851.25 MHz, 1880.0 MHz and 1908.75 MHz for PCS CDMA band, 824.7MHz, 836.52MHz and 848.31MHz for CDMA 800 band (bottom, middle and top of operational frequency range) for 1x RTT and 1xEVDO.

The measurement method is from KDB 971168 D01 5.2.1:

a) Set span to at least 1.5 times the OBW.

b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

c) Set VBW ≥ 3 × RBW.

d) Set number of points in sweep \geq 2 × span / RBW.

e) Sweep time = auto-couple.

f) Detector = RMS (power averaging).

g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle \geq 98%), then set the trigger to free run.

h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.

i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

A1.3 Measurement results

CDMA 800

Measurement result

		Channel power(dBm)				
Channel	Frequency(MHz)	1x RTT	1xEVDO			
			Rel0	RevA		
1013	824.70	23.29	23.53	23.57		
384	836.52	23.45	23.75	23.71		
777	848.31	23.43	23.71	23.70		

CDMA 1900

Measurement result

		Channel power(dBm)				
Channel	Frequency(MHz)		1xEVDO			
		1x RTT	Rel0	RevA		
25	1851.25	23.87	24.07	23.84		
600	1880.00	23.92	24.05	23.79		
1175	1908.75	24.05	24.12	23.94		

A.2 FREQUENCY STABILITY (§2.1055/§22.355/§24.235)

A.2.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of Agilent 8960(E5515C) Wireless Communications Test Set.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -10 $^\circ\!\mathbb{C}$.
- 3. With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on channel 384 for CDMA 800 and channel 600 for 1900 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -10[°]C to +50[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^\circ \rm C.$
- With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10[°]C decrements from +50[°]C to -10[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

A.2.2 Measurement Limit

A.2.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.55VDC and 4.35VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

For CDMA800, according to section. 22.355, frequency tolerance cab be maintained within 2.5ppm.

A.2.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec.

24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

For CDMA800, according to section. 22.355, frequency tolerance cab be maintained within 2.5ppm.

A.2.3 Measurement results

CDMA 800

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.55	3.12	0.004
3.8	3.32	0.004
4.35	4.21	0.005

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)		
-10	4.36	0.005		
0	5.21	0.006		
10	3.87	0.005		
20	5.47	0.007		
30	4.36	0.005		
40	4.62	0.006		
50	4.68	0.006		

CDMA 1900

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)		
3.55	6.36	0.003		
3.8	7.31	0.004		
4.35	8.24	0.004		

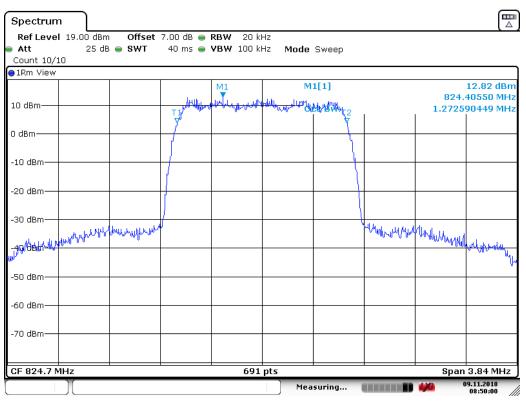
Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	9.31	0.005
0	7.32	0.004
10	7.08	0.004
20	8.06	0.004
30	8.34	0.004
40	7.46	0.004
50	7.21	0.004

A.3 OCCUPIED BANDWIDTH (§2.1049(h)(i))

A.3.1 Occupied Bandwidth Results

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the CDMA frequency band. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

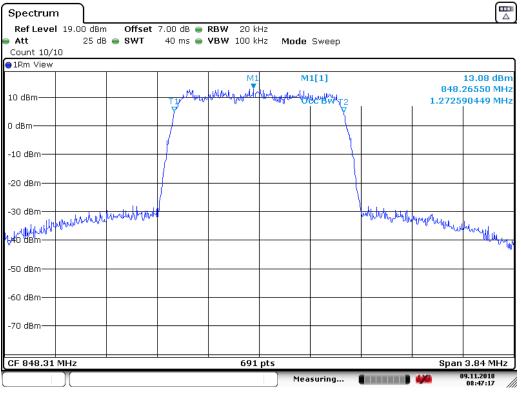

CDMA 800 (99% BW)

Channel	Occupied Bandwidth (99% BW)(MHz)
1013	1.273
384	1.267
777	1.273

ANALYZER SETTINGS: RBW=20 kHz, VBW=100 kHz

CDMA 800

Channel 1013-Occupied Bandwidth (99% BW)


Date: 9.NOV.2018 08:50:00

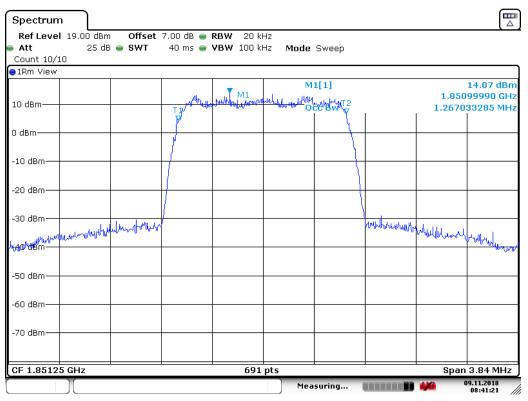
Channel 384-Occupied Bandwidth (99% BW)

Spectrum								
Ref Level 19.00 dBr	m Offset	7.00 dB 😑	RBW 20 k	Hz				
● Att 25 d	B 👄 SWT	40 ms 👄	VBW 100 ki	Hz Mode	Sweep			
Count 10/10								
●1Rm View								
				M	1[1]			13.85 dBm
10 10-		. Anna .	ամմմե, պ լյե է ձշ	Mr. Mturd	A.L.			58670 MHz
10 dBm		T III MAN	and a state of the	- William 90	WBWT2		1.2670	33285 MHz
		J			I Y			
0 dBm)			\vdash			
-10 dBm		1						
-20 dBm		1						
-20 UBIII		1						
		1				l l		
-30 dBm		(Set in the set		
-30 dBm	manalana					hannahan	Munder Hardland	
-AaverBHHWYAW							՝ ՝ Մուսքի	March March March March
AU *								0.00
-50 dBm								
00 0011								
50 ID								
-60 dBm								
-70 dBm								
CF 836.52 MHz			691	pts			-	3.84 MHz
				Mea	suring		4/4	9.11.2018 08:48:37

Channel 777-Occupied Bandwidth (99% BW)

Date: 9.NOV.2018 08:47:17

Date: 9.NOV.2018 08:48:37


CDMA 1900(99% BW)

Channel	Occupied Bandwidth (99% BW)(MHz)			
25	1.273			
600	1.273			
1175	1.267			

ANALYZER SETTINGS: RBW=20 kHz, VBW=100 kHz

CDMA 1900

Channel 25-Occupied Bandwidth (99% BW)

Date: 9.NOV.2018 08:41:21

Channel 600-Occupied Bandwidth (99% BW)

Spectrum	Γ								
Ref Leve	19.00 dBm	Offset	7.00 dB 👄 I	RBW 20 kł	Ηz				
👄 Att	25 dB	e swt	40 ms 👄 '	VBW 100 kł	Hz Mode	Sweep			
Count 10/1	10								
●1Rm View									
				M	1 M:	1[1]			13.06 dBm
10.10			in Marine	when when	with a filler	n and		1.879	98890 GHz
10 dBm			⊥1,000,0000	Carl Call - Carl	A and John St	SerBiv J2		1.2725	90449 MHz
			Ţ			۳, W			
0 dBm						1			
-10 dBm			1			4			
			1						
-20 dBm			1						
-20 0011									
			1				\		
-30 dBm							handba in het ist i		
-30 aBm	aluxus Maker	Munner					udownodradra	the worked the I	uhai
. .∦ ⊈ldBm	1000 -								W WWWWWWW
									Ť
-50 dBm									
-60 dBm									
-00 0611									
-70 dBm—									
CF 1.88 GF	l			691	pts		<u> </u>	Span	3.84 MHz
						suring		· ·	9.11.2018
						saringin		-	08:42:41

Channel 1175-Occupied Bandwidth (99% BW)

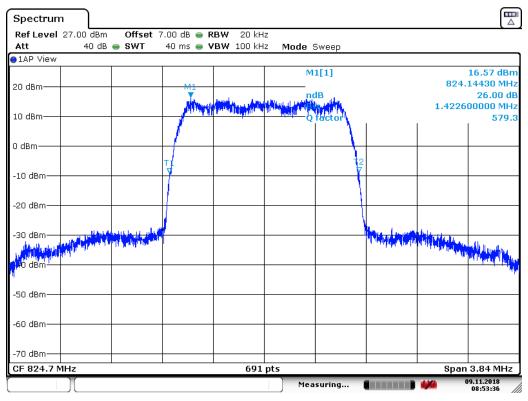
Date: 9.NOV.2018 08:44:56

Date: 9.NOV.2018 08:42:41

<u>A.4 EMISSION BANDWIDTH</u> (§22.917(b)/§24.238(b))

A.4.1Emission Bandwidth Results

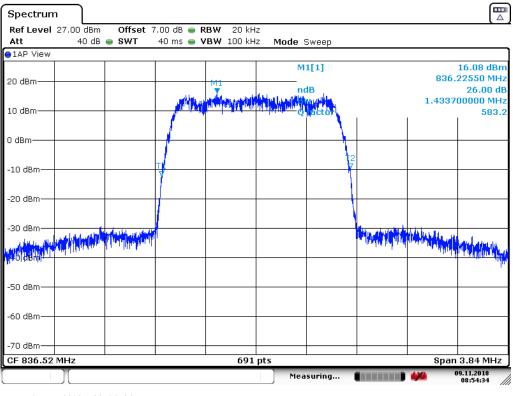
Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the CDMA 800, and CDMA 1900 band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.


CDMA 800 (-26dBc BW)

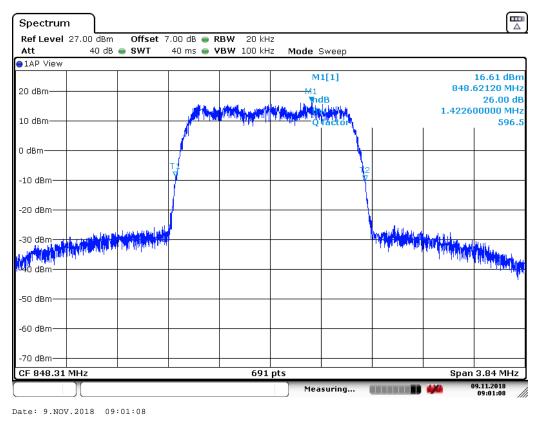
Channel	Emission Bandwidth (-26dBc BW)(MHz)					
1013	1.423					
384	1.434					
777	1.423					

ANALYZER SETTINGS: RBW=20 kHz, VBW=100 kHz

CDMA 800


Channel 1013-Emission Bandwidth (-26dBc BW)

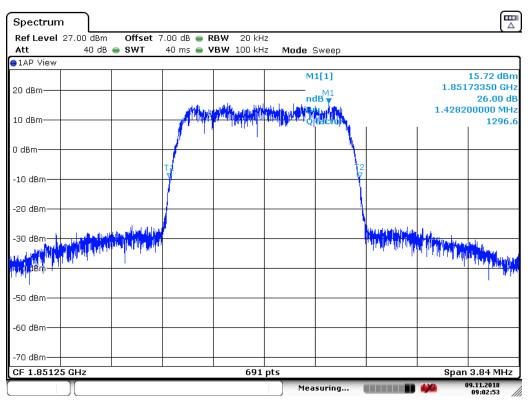
Date: 9.NOV.2018 08:53:36



Channel 384-Emission Bandwidth (-26dBc BW)

Date: 9.NOV.2018 08:54:34

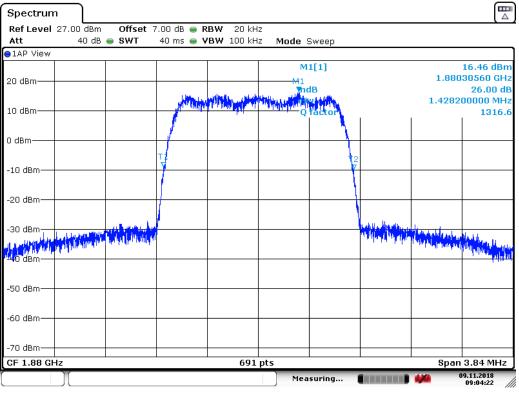
Channel 777-Emission Bandwidth (-26dBc BW)


CDMA 1900 (-26dBc)

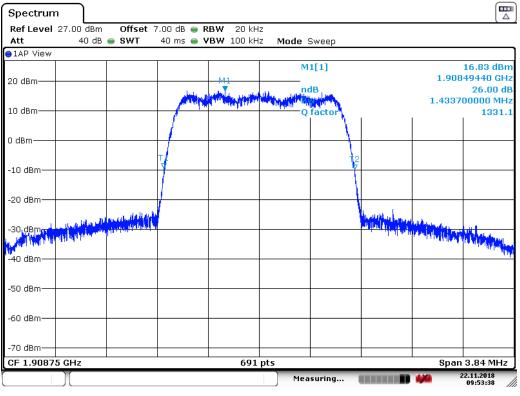
Channel	Emission Bandwidth (–26dBc BW)(MHz)					
25	1.428					
600	1.428					
1175	1.434					

ANALYZER SETTINGS: RBW=20 kHz, VBW=100 kHz

CDMA 1900


Channel 25-Emission Bandwidth (-26dBc BW)

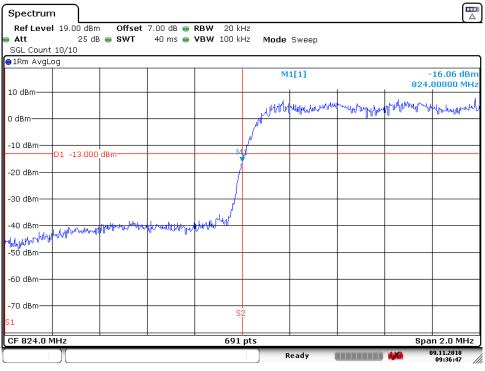
Date: 9.NOV.2018 09:02:54



Channel 600-Emission Bandwidth (-26dBc BW)

Date: 9.NOV.2018 09:04:22

Channel 1175-Emission Bandwidth (-26dBc BW)

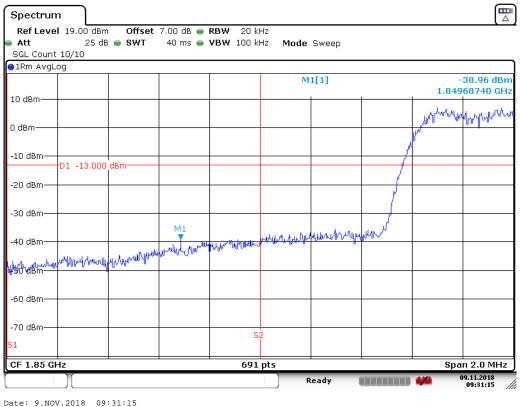

Date: 22.NOV.2018 09:53:38

A.5 BAND EDGE COMPLIANCE (§22.917(b)/§24.238(b))

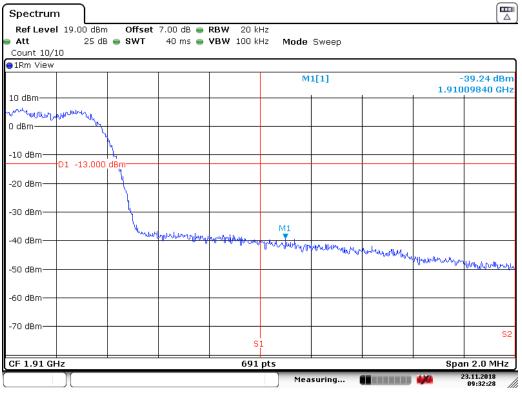
CDMA 800

BAND EDGE BLOCK-Channel 1013

Date: 9.NOV.2018 09:36:47


BAND EDGE BLOCK-Channel 777

Spectrum		
Ref Level 19.00 dBm Offset 7.00 dB Ref		
	BW 100 kHz Mode Sweep	
SGL Count 10/10 IRm AvqLoq		
	M1[1]	-13.26 dBm 849.00000 MHz
LO dBm		049.00000 MH2
Molony your water and the source of the sour	the office of th	
	May 1	
10 dBm	k	
D1 -13.000 dBm		
20 dBm	<u>\</u>	
30 dBm		
	WWWWWWWW had no en a	National Later
40 dBm		How water war
50 dBm		- Prove
60 dBm		
70 dBm		
	s2 St	
CF 849.0 MHz	691 pts	Span 2.0 MHz
	Ready	09.11.2018 09:35:15


Date: 9.NOV.2018 09:35:15

CDMA 1900 BAND EDGE BLOCK-Channel 25

BAND EDGE BLOCK-Channel 1175

Date: 23.NOV.2018 09:32:28

A.6 CONDUCTED SPURIOUS EMISSION (§2.1057/§22.917/§24.238)

A.6.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

CDMA 800 Transmitter

Channel	Frequency (MHz)
1013	824.70
384	836.52
777	848.31

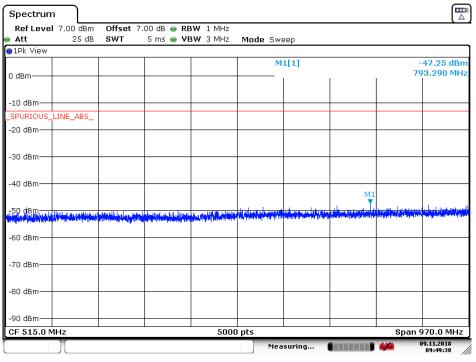
CDMA 1900 Transmitter

Channel	Frequency (MHz)
25	1851.25
600	1880.00
1175	1909.75

A. 6.2 Measurement Limit

Sec. 24.238 Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.



A. 6.3 Measurement result

CDMA 1900

A. 6.3.1 Channel 25: 30MHz -1GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 09:49:38

A.6.3.2 Channel 25: 1GHz –2.5GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Spectrum												
	26.70 dBm		5.70 dB 👄 R									
Att	30 dB	SWT	5 ms 😑 V	BW 3 MHz	Mode	9 SV	veep					
●1Rm View		1	1									
20 dBm						L M	1[1]	I		23.54 dBm 1.851250 GHz		
10 dBm												
0 dBm												
-10 dBm												
_SPURIOUS_I	LINE_ABS_											
-20 dBm												
-30 dBm												
-40 dBm						-						
-30-020			and here and starting	ار المحمد من المراجع المحمد محمد محمد المراجع	here a sale	-	ili ang ilitic las					
-60 dBm												
-70 dBm												
Start 1.0 G	Hz			5000	pts					p 2.5 GHz		
][Mea	suring		4/4	9.11.2018 09:56:30 //		

Date: 9.NOV.2018 09:56:30

A.6.3.3 Channel 25: 2.5GHz -7.5GHz

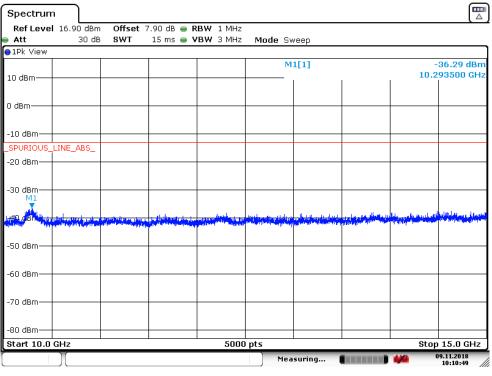
Spurious emission limit –13dBm.

Spectrum	<u> </u>								
	15.70 dBm		6.70 dB 👄 I	RBW 1 MHz					
Att	30 dB	SWT	15 ms 👄 '	VBW 3 MHz	Mode Sv	veep			
●1Rm View									
10 dBm					M	1[1]	1		43.35 dBm 25500 GHz
0 dBm									
-10 dBm—									
_SPURIOUS_I	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm								<u>M1</u>	
والتسفية فالمسال	والمراقق والاربران والمر		under der die unserenden		La Harrison			a strange with the	Malanating tal
and the second	and the second states of the								
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	Hz			5000) pts			Sto	p 7.5 GHz
)[Mea	suring		4/4 0	9.11.2018 10:03:30

Date: 9.NOV.2018 10:03:30

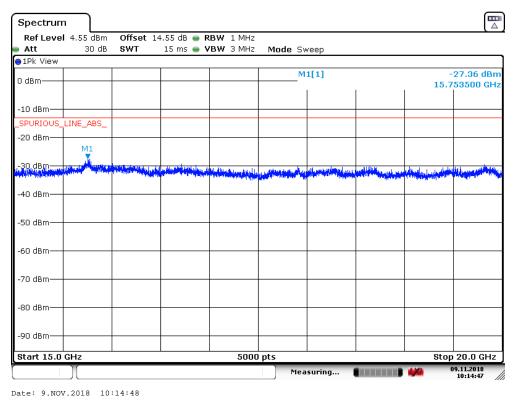
A.6.3.4 Channel 25: 7.5GHz –10GHz

Spurious emission limit –13dBm.


Spectrum									
Ref Level			7.90 dB 👄 F						
Att	30 dB	SWT	7.5 ms 🥃 🍾	BW 3 MHz	Mode Sv	veep			
⊜1Rm View			1	1					
					M	1[1]			40.60 dBn 05250 GH:
10 dBm								0.0	
0 dBm									
-10 dBm									
_SPURIOUS_L	INE_ABS_								
-20 dBm									
-30 dBm									
40 40					M1				
-40 dBm	مرالان المندوين والم	والمتعادية والمتعادية	ورا وورار وطلط والم	أربعه فمعهد أحمار		يسابعه فشيغا القانية		اللورية ومعريلا والم	ullinovillar.
-50 dBm	a shering a shering a sh		All a strengthere	an a fille an a fille an a sur a	dentifique.	n kalender steller	and the second product a second	and a spectra design of the	a digina da sa kata pana
-60 dBm									
70.10									
-70 dBm									
-80 dBm									
Start 7.5 G	Ηz			5000	pts	1	1	Stop	10.0 GHz
)[]				Mea	suring		4/4 0	09.11.2018 10:07:22

Date: 9.NOV.2018 10:07:22

A.6.3.5 Channel 25: 10GHz –15GHz


Spurious emission limit –13dBm.

Date: 9.NOV.2018 10:10:49

A.6.3.6 Channel 25: 15GHz –20GHz

Spurious emission limit –13dBm.

A. 6.3.7 Channel 600: 30MHz –1GHz

Spurious emission limit –13dBm.

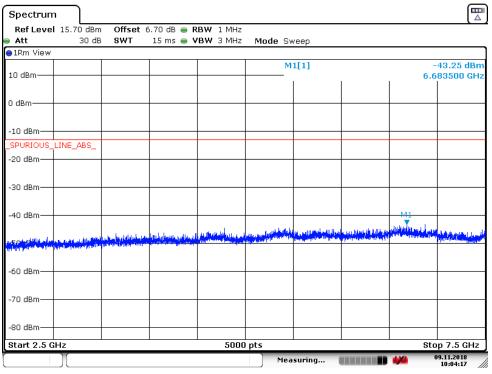
Spectrum	Γ								
	1 7.00 dBm	Offset 7.	00 dB 🔵 RB	W 1 MHz					
Att	25 dB	SWT	5 ms 👄 VB	SW 3 MHz	Mode Swe	зер			
⊖1Pk View									
					м	1[1]			48.10 dBm
0 dBm						1	I	/6	8.660 MHz
-10 dBm—									
SPURIOUS	LINE_ABS_								
-20 dBm—									
-30 dBm—									
-40 dBm									
							M1		
-50 dBm								a militaria si incidente di se	while a line of the state
-50 dBm nla na stalad Npm and stalad		dia biogenetrical	indistry of the parameters					and possible provides	
-60 dBm	10010	1.14	an an an an an fa						
00 00111									
-70 dBm									
-70 0011									
-80 dBm									
-80 uBili-									
-90 dBm									
CF 515.0 №	1Hz			5000				· · ·	70.0 MHz
					Mea	suring		4/4 0	9.11.2018 09:50:40

Date: 9.NOV.2018 09:50:41

A.6.3.8 Channel 600: 1GHz -2.5GHz

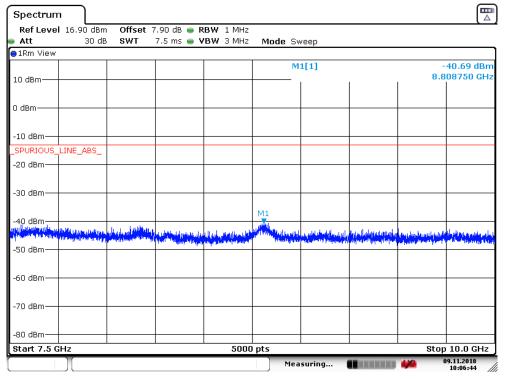
Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.


Spectrum											
	26.70 dBm		6.70 dB 👄 R								
Att	30 dB	SWT	5 m s 👄 🛛	BW 3 MHz	Mode S	Sweep					
●1Rm View			1								
					1	"##1			23.59 dBm 1.879750 GHz		
20 dBm						1	1	1.0	79730 GH2		
10 dBm											
0 dBm											
-10 dBm—											
_SPURIOUS_L	INE_ABS_										
-20 dBm											
-30 dBm											
00 40											
-40 dBm											
المتحد أبادا المراجعة	المراجع والعملين	data introduction	فيرابط فحواد الدا	enderthal and the		A STATE OF THE OWNER					
"-sů"ubriv	open open title of the										
-60 dBm											
-70 dBm											
CF 1.75 GH	z			5000	pts			Spa	n 1.5 GHz		
					Me	easuring		444	09.11.2018 09:54:51		

Date: 9.NOV.2018 09:54:51

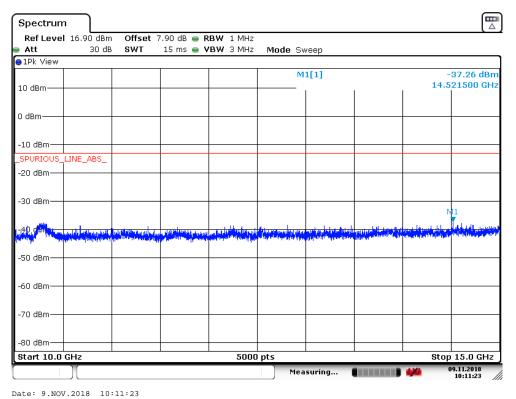
A.6.3.9 Channel 600: 2.5GHz -7.5GHz


Spurious emission limit –13dBm.

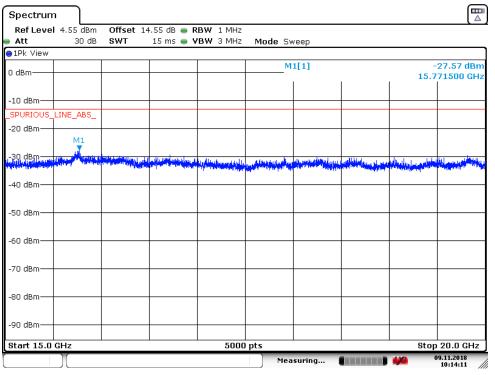
Date: 9.NOV.2018 10:04:17

A.6.3.10 Channel 600: 7.5GHz -10GHz

Spurious emission limit –13dBm.



Date: 9.NOV.2018 10:06:45


A.6.3.11 Channel 600: 10GHz -15GHz

Spurious emission limit –13dBm.

A.6.3.12 Channel 600: 15GHz –20GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 10:14:11

A. 6.3.13 Channel 1175: 30MHz –1GHz

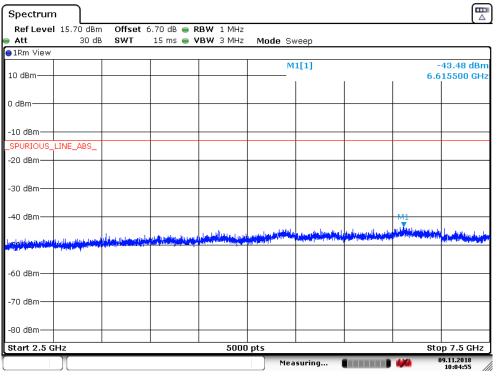
Spurious emission limit -13dBm.

Spectrum									
Ref Level			7.00 dB 😑 R						
Att Att	25 dB	SWT	5 ms 😑 V	BW 3 MHz	Mode Sw	еер			
●1Pk View				1	1				
					M	1[1]			47.42 dBm
0 dBm								81	L5.990 MHz
-10 dBm									
_SPURIOUS_L	INE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm								м1	
-50 dBm	at karakta b	attent made	ulation to a second	a				Y	i nha sinita di siste
August and Automation	the thurst part	Index of second		and an independent	langter artes of all a	a hailean ja haili a haili a h	a say ng katang karang ka	10,000-0101000	يتر الملجدين ميكان مطال
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
CF 515.0 M	Hz	·		5000) pts	·	·	Span 9	970.0 MHz
)[Mea	isuring		444	09.11.2018 09:51:23
ate: 9.NOV	.2018 09	:51:23							

A.6.3.14 Channel 1175: 1GHz -2.5GHz

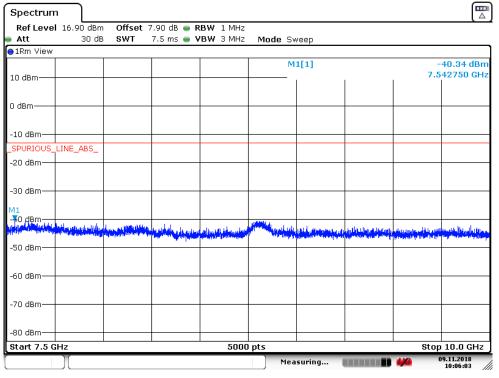
Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.


Spectrum	<u> </u>								
Ref Level	26.70 dBm	Offset (6.70 dB 😑 R	BW 1 MHz					
🖷 Att	30 dB	SWT	5 ms 😑 V	BW 3 MHz	Mode Sw	/еер			
o1Rm View									
20 dBm					M	¶1₩1	I		23.88 dBm 08550 GHz
10 dBm									
0 dBm									
-10 dBm									
_SPURIOUS_L	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm									
ildi adalariya in "-Sülübminin		la idea dia in		a de la contrata de la		Herbergh Hill	, Liber, Little and Alleford Product Street Street Products		
-60 dBm									
-70 dBm									
Start 1.0 G	Hz			5000	pts				p 2.5 GHz
	Л				Mea	suring		4/4	09.11.2018 09:53:13

Date: 9.NOV.2018 09:53:13

A.6.3.15 Channel 1175: 2.5GHz -7.5GHz


Spurious emission limit –13dBm.

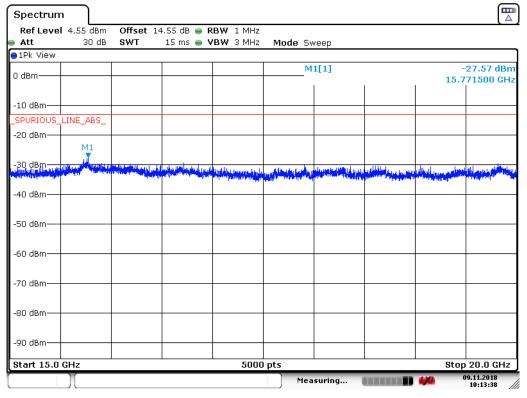
Date: 9.NOV.2018 10:04:55

A.6.3.16 Channel 1175: 7.5GHz –10GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 10:06:03

A.6.3.17 Channel 1175: 10GHz –15GHz


Spurious emission limit –13dBm.

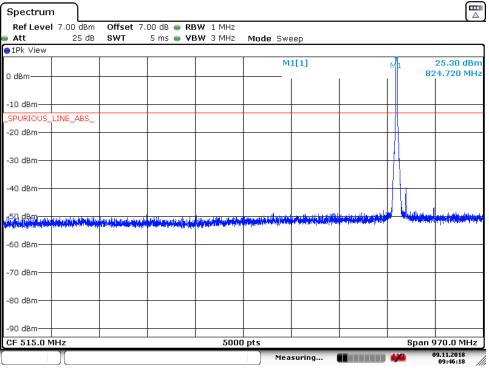
Spectrum									
	16.90 dBm		_	RBW 1 MHz					
Att	30 dB	SWT	15 ms 👄	VBW 3 MHz	Mode Sv	veep			
⊖1Pk View				1					
10 dBm						1[1]			37.16 dBm 90500 GHz
0 dBm									
-10 dBm									
_SPURIOUS_L	INE_ABS_								
-20 dBm									
-30 dBm									
-40 -21									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
Start 10.0 (GHz			5000	pts				15.0 GHz
][]				Mea	isuring		444)9.11.2018 10:12:01 //

Date: 9.NOV.2018 10:12:01

A.6.3.18 Channel 1175: 15GHz –20GHz

Spurious emission limit –13dBm.

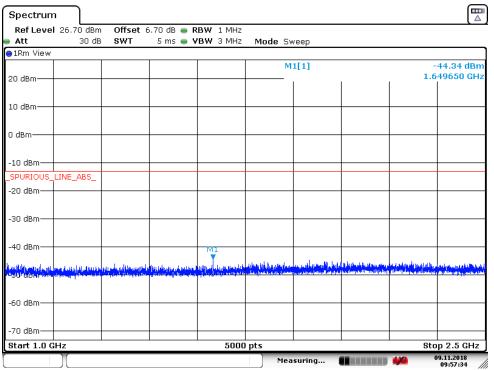
Date: 9.NOV.2018 10:13:38



CDMA 800

A. 6.3.19 Channel 1013: 30MHz -1GHz

Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 9.NOV.2018 09:46:18

A. 6.3.20 Channel 1013: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 09:57:34

A. 6.3.21 Channel 1013: 2.5GHz -7.5GHz

Spurious emission limit -13dBm.

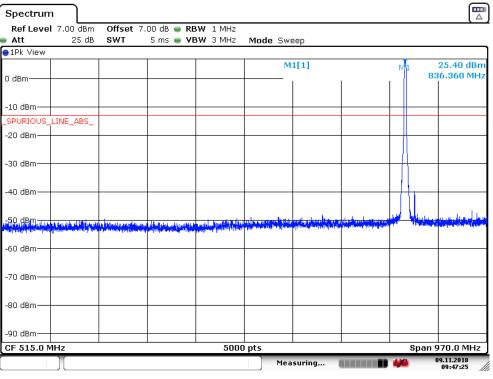
Spectrum	, J								
	15.70 dBm		5.70 dB 😑 R						
e Att	30 dB	SWT	15 ms 😑 V	BW 3 MHz	Mode Sv	veep			
⊖1Rm View									
10 dBm					M	1[1]	I		42.80 dBm 30500 GHz
0 dBm									
-10 dBm—									
_SPURIOUS_I	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm						M1			
	الدارين والم	الدينانيونا ليفأن للدر اللماريس	والملطة ويتروه فللزود	and the state of the	والمعطول والمعادية				والمتعمد بمططلونه والملا
		يمع بيابين المرجد إيدار	an hile dont (b) and the part	1.4.1.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Defection (Le	Long Contraction			
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	Hz			5000	l pts				p 7.5 GHz
					Mea	isuring		440	9.11.2018 10:02:29

Date: 9.NOV.2018 10:02:29

A. 6.3.22 Channel 1013: 7.5GHz - 10GHz

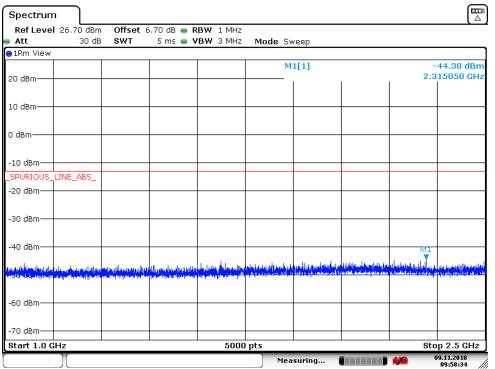
Spurious emission limit –13dBm.

Spectrum Ref Level	16.90 dBm	Offset	7.90 dB 👄 F	BW 1 MHz					
Att	30 dB		7.5 ms 😑 ۷		Mode Sv	veep			
1Rm View									
					М	1[1]			39.91 dBn
10 dBm						1	I	8.7	74750 GH:
0 dBm									
-10 dBm									
SPURIOUS_L	INE_ABS_								
-20 dBm									
20 40									
-30 dBm									
-40 dBm					M1				
	Sume to a later		الديد وأمري بالمؤسو بال	والمراجع والمراجع		a ala di Janati di Anata Ju		un sternet declarates	ورفعت بالتقالين
-50 dBm	an an that has not the second s	Nobel approximation of the second	and the second second second	Auto and American	"Hitshings	No. Sherney but a	delet a desperiente		forthelite productions
oo abiii									
-60 dBm									
-70 dBm									
-80 dBm									
Start 7.5 GF	łz		1	5000	pts	1	1	Stop	10.0 GHz
)(Mea	suring)9.11.2018 10:08:04


Date: 9.NOV.2018 10:08:04

A. 6.3.23 Channel 384: 30MHz –1GHz

Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

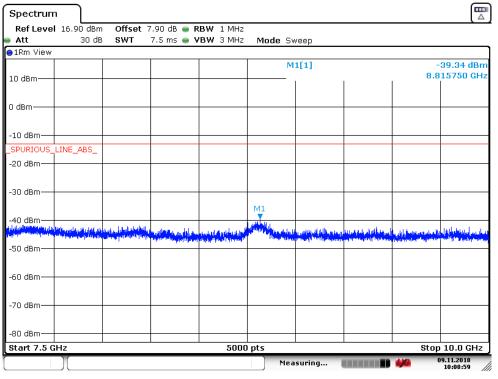
Date: 9.NOV.2018 09:47:25

A.6.3.24 Channel 384: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 09:58:34

A. 6.3.25 Channel 384: 2.5GHz -7.5GHz

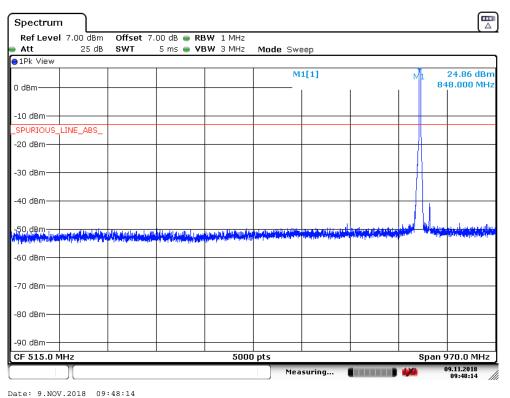

Spurious emission limit –13dBm.

Spectrum	ı)								
	15.70 dBm		6.70 dB 😑 R						
e Att	30 dB	SWT	15 ms 👄 🛛	BW 3 MHz	Mode Sv	veep			
⊖1Rm View									
10 dBm					M	1[1] 	1		43.46 dBm 99500 GHz
0 dBm									
-10 dBm									
SPURIOUS	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm						115-1		M1	
المحافظة التخافين المحتمدان	Longer and Learning	and the state	Addition and the owned					The state of the s	A Statistic Land
a popular in an an fair bar bar.	a ta an tha an that a state of the second								
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	HZ			5000					p 7.5 GHz
					Mea	suring		4/4	9.11.2018 10:01:53

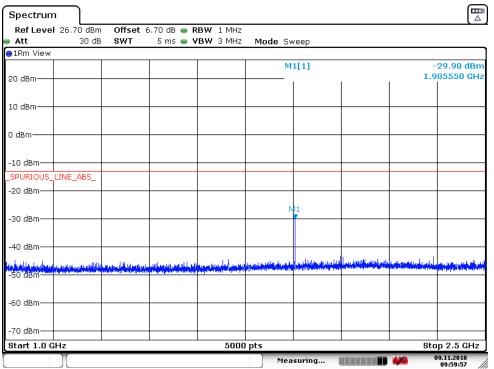
Date: 9.NOV.2018 10:01:53

A. 6.3.26 Channel 384: 7.5GHz – 10GHz

Spurious emission limit –13dBm.


Date: 9.NOV.2018 10:08:59

A. 6.3.27 Channel 777: 30MHz –1GHz


Spurious emission limit –13dBm.

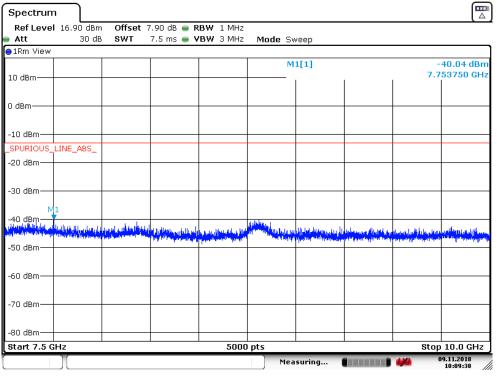
NOTE: peak above the limit line is the carrier frequency.

A. 6.3.28 Channel 777: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 09:59:57

A. 6.3.29 Channel 777: 2.5GHz -7.5GHz


Spurious emission limit –13dBm.

Spectrum	, J								
	15.70 dBm		5.70 dB 😑 R						
e Att	30 dB	SWT	15 ms 😑 V	BW 3 MHz	Mode Sv	veep			
●1Rm View									
10 dBm					M	1[1]	I		43.37 dBm 30500 GHz
0 dBm									
-10 dBm									
_SPURIOUS_I	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm								-M1	
		مقادية وأدبارين النفس		المرابعة المعطية وال	والمجال المعادين	and the second second	المتعربين والمعربة والمراب		فرابين المرابع المأمل أماليك
	and the second		Alkan sanshilanan s	and present the first strategy as well.	d speedle see		and the second second		teals, source Provide La
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	Hz		1	5000	pts	1	1	Sto	p 7.5 GHz
][suring			9.11.2018 10:01:09

Date: 9.NOV.2018 10:01:10

A. 6.3.30 Channel 777: 7.5GHz – 10GHz

Spurious emission limit –13dBm.

Date: 9.NOV.2018 10:09:38

A.7 PEAK-TO-AVERAGE POWER RATIO (§24.232(d))

Reference

FCC: CFR Part 24.232(d)

Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of § 24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to KDB 971168 D01:

a) Refer to instrument's analyzer instruction manual for details on how to use the power Statistics/CCDF function;

b) Set resolution/measurement bandwidth \geq signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms;

e) Record the maximum PAPR level associated with a probability of 0.1%.

A.7.1 Measurement limit

Not exceed 13 dB

A.7.2 Measurement results

CDMA 800

Measurement result

		PAPR(dB)			
Channel	Frequency(MHz)	1x RTT	1xE ^v	/DO	
			Rel0	RevA	
384	836.52	3.71	4.46	4.61	

CDMA 1900

Measurement result

		PAPR(dB)				
Channel	Frequency(MHz)		1xE'	VDO		
		1x RTT	Rel0	RevA		
600	1880.00	3.86	4.55	4.38		

ANNEX B: Accreditation Certificate

END OF REPORT