

EMC TEST REPORT No. I18Z60848-EMC02

for

Shenzhen Tinno Mobile Technology Corp.

smart phone

Model Name: C210AE

FCC ID: 2AM86WC210

with

Hardware Version: V0.3

Software Version: C210AE-V02

Issued Date: 2018-06-22

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn,

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18Z60848-EMC02	Rev.0	1st edition	2018-06-22

CONTENTS

1.	TEST LABORATORY4	ł
1.1.	TESTING LOCATION4	ŀ
1.2.	TESTING ENVIRONMENT4	ŀ
1.3.	PROJECT DATA4	ŀ
1.4.	SIGNATURE4	ŀ
2.	CLIENT INFORMATION	;
2.1.	CERTIFICATION MANAGER INFORMATION5	;
2.2.	APPLICANT INFORMATION5	;
2.3.	MANUFACTURER INFORMATION5	;
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)6	;
3.1.	ABOUT EUT6)
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST6)
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST6	;
3.4.	GENERAL DESCRIPTION7	,
3.5.	EUT SET-UPS7	,
4.	REFERENCE DOCUMENTS8	\$
4.1.	REFERENCE DOCUMENTS FOR TESTING8	\$
5.	LABORATORY ENVIRONMENT9)
6.	SUMMARY OF TEST RESULTS10)
6.1.	SUMMARY OF TEST RESULTS10)
6.2.	STATEMENTS10)
7.	TEST EQUIPMENTS UTILIZED11	l
TES	T SOFTWARE UTILIZED	
AN	NEX A: MEASUREMENT RESULTS12	2
	1 OUTPUT POWER12	
A	2 EMISSION LIMT	,
	NEX B: TEST LAYOUT19)

1. Test Laboratory

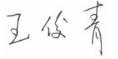
1.1. Testing Location

Location 2: CTTL(Shouxiang)

Address:

No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China 100191

1.2. Testing Environment


Normal Temperature:	15-35 ℃
Relative Humidity:	20-75%
Air pressure	980 - 1040 hPa

The climatic requirements above are general exclude the special requirements for dedicated test environments listed in section 5 and some specific test cases in other parts of this report.

1.3. Project data

Testing Start Date:	2018-06-13
Testing End Date:	2018-06-22

1.4. Signature

Wang Junqing (Prepared this test report) 张 颖

Zhang Ying (Reviewed this test report)

21 iz. k.2

Liu Baodian Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. Certification Manager Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.	
4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangSl		
Address /Post:	Road., Nan Shan District, Shenzhen, P.R. China	
Contact Person:	Robin.he	
Contact Email	robin.he@tinno.com	
Telephone:	0755 8609 5550 - 8804	
Fax:	1	

2.2. Applicant Information

Company Name:	Wiko SAS
Address /Post:	1, rue Capitaine Dessemond 13007 - Marseille - France.
Contact Person:	Laurent Dahan
Contact Email	ldahan@wikomobile.com
Telephone:	33488089515
Fax:	33488089520

2.3. Manufacturer Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.		
Address /Post:	4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East		
Address / Fost.	Road., Nan Shan District, Shenzhen, P.R. China		
Contact Person:	Jingwen.Guo		
Contact Email	jingwen.guo@tinno.com		
Telephone:	0755-86095550		
Fax:	0755-86095551		

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT	
Description	smart phone
FCC ID	2AM86WC210
Antenna	Internal
Power supply	Battery
Extreme vol. Limits	3.55VDC to 4.35VDC (nominal: 3.8VDC)
Note: Components list, ple	ase refer to documents of the manufacturer; it is also included in the
original test record of Telec	ommunication Metrology Center of MIIT of People's Republic of China.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT4	35796009002178	V0.3	C210AE-V02
*EUT ID: is used to identify the test sample in the lab internally.			

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Note
AE1	battery	1	/

AE1

Model	C210AEBATT
Manufacturer	Ningbo Veken Battery Co., Ltd
Capacitance	2500mAh
Nominal voltage	3.8V

*AE ID: is used to identify the test sample in the lab internally.

3.4. <u>General Description</u>

Equipment Under Test (EUT) is a model of smart phone with integrated antenna.

It supports CDMA Class 0, CDMA Class 1 and CDMA Class 10 with 1X RTT and EvDo, LTE FDD 13/25/26 and LTE TDD 41.

It has MP3, Camera, FM, USB memory, Bluetooth (EDR and BLE), Wi-Fi (802.11b/g/n) and GNSS functions.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. EUT set-ups

EUT Set-up No.	Combination of EUT and AE	Remarks
Set.10	EUT4 + AE1	ERP/EIRP/RSE tests

4. <u>Reference Documents</u>

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-16
		Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-16
		Edition
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016
	Measurement and Performance Standards	
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital	v02r02
	Transmitters	

5. LABORATORY ENVIRONMENT

Fully-anechoic chamber FAC-3 (9 meters×6.5 meters×4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

6. SUMMARY OF TEST RESULTS

6.1. Summary of test results

Abbreviations used in this clause:		
	Р	Pass
Verdict Column	F	Fail
	NA	Not applicable
	NM	Not measured
Location Column	1/2/3/4	The test is performed in test location 1, 2, 3 or 4 which
Location Column	1/2/3/4	are described in section 1.1 of this report

CDMA800

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Output Power	22.913(a.2)	5.4	Р	Shouxiang
2	Emission Limit	22.917(a), 2.1051	5.5	Р	Shouxiang

CDMA1900

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Output Power	24.232(c)	5.4	Р	Shouxiang
2	Emission Limit	24.238(a), 2.1051	5.5	Р	Shouxiang

6.2. Statements

The test cases listed in section 6.1 of this report for the EUT specified in section 3 were performed by TMC according to the standards or reference documents in section 4.1

The EUT met all applicable requirements of the standards or reference documents in section 4.1. This report only deals with the CDMA functions among the features described in section 3.

7. Test Equipments Utilized

NO.	NAME	ТҮРЕ	PRODUCER	SERIES	CAL. DUE	CAL.	
NO.				NUMBER	DATE	INTERVAL	
1.	EMI Antenna	VULB 9163	Schwarzbeck	9163-235	2018-11-30	3 Years	
2.	EMI Antenna	3117	ETS-Lindgren	00119024	2020-01-21	3 Years	
3.	EMI Antenna	3117	ETS-Lindgren	00058889	2021-01-12	3 Years	
4.	Signal Generator	N5183A	Agilent	MY49060052	2019-03-31	1 Year	
5.	Spectrum Analyzer	E4440A	Agilent	MY48250642	2019-03-31	1 Year	
6.	Universal Radio	E5515C	A sile st	MY48363198	2018-06-22	1. Veer	
0.	Communication Tester	E0010C	Agilent	101140303190	2010-00-22	1 Year	
7	Universal Radio	CMW500	R&S	143008	2018-12-26	1 Voor	
7.	Communication Tester	CIVIV/500	Rad	143008	2010-12-20	1 Year	

Test Software Utilized

Test Item	Test Software and Version	Software Vendor	
ERP/EIRP/RSE	Tile V7.2.3.5	ETS-Lindgren	

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference FCC: CFR Part 22.913

A.1.1 Summary

During the process of testing, the EUT was controlled via Agilent Universal Radio Communication Tester (E5515C) to ensure max power transmission and proper modulation.

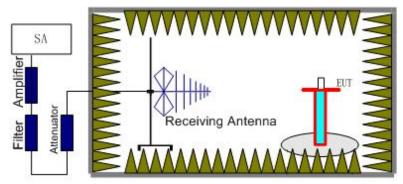
This result contains peak output power and ERP/EIRP measurements for the EUT.

In all cases, output power is within the specified limits.

A.1.2 Radiated

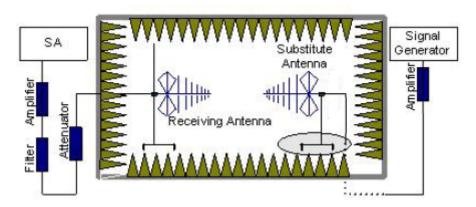
A.1.2.1 Description

This is the test for the maximum radiated power from the EUT.


Rule Part 22.913(a)(2) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Rule Part 24.232 specifies, "Mobile/portable stations are limited to 2 watts EIRP. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

A.1.2.2 Method of Measurement


The measurements procedures in TIA-603-E-2016 are used.

 EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. An amplifier should be connected to the Signal Source output port. And the cable should be connected between the amplifier and the substitution antenna.

The cable loss (P_{cl}), the substitution antenna Gain (G_a) and the amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power (EIRP) = $P_{Mea} - P_{Ag} - P_{cl} - G_a$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (Unit dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15. For test layout photo, please refer to Pic.1 in Annex B.

CDMA800- ERP

Limits

Band	Peak ERP (dBm)
CDMA800(BC0)	≤38.45dBm (7W)

Measurement result

1x RTT

Frequency	P _{Mea}	P _{cl}	P _{Ag}	Ga	Peak	Delerization
(MHz)	(dBm)	(dB)	(dB)	(dBi)	ERP(dBm)	Polarization
824.70	-23.03	2.26	45.79	0.95	19.30	Н
836.52	-21.96	2.26	45.66	0.82	20.11	V
848.31	-21.57	2.27	45.55	0.80	20.36	V

Sample calculation: 848.31MHz

 $Peak \; ERP \; (dBm) = P_{Mea} \; (-21.57 dBm) - G_a \; (-0.80 dBi) - P_{Ag} \; (-45.55 \; dB) - P_{cl} \; (2.27 \; dB) - 2.15 dBm$

Ev-Do

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a (dBi)	Peak ERP(dBm)	Polarization
824.70	-22.36	2.26	45.79	0.95	19.97	Н
836.52	-21.95	2.26	45.66	0.82	20.12	V
848.31	-22.29	2.27	45.55	0.80	19.64	V

Sample calculation: 836.52MHz

Peak ERP (dBm) = $P_{Mea}(-21.95dBm) - G_a (-0.82 dBi) - P_{Ag} (-45.66 dB) - P_{cl}(2.26 dB) - 2.15dBm$ = 20.12 dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

Note: Expanded measurement uncertainty for CDMA800 (BC0) is U = 4.92dB, k = 2.

CDMA1900- EIRP

Limits

Band	Peak EIRP (dBm)
CDMA1900(BC1)	≤33dBm (2W)

Measurement result

1x RTT

Frequency	P _{Mea}	P _{cl}	P_{Ag}	Ga	RMS	Delerization
(MHz)	(dBm)	(dB)	(dB)	(dBi)	EIRP(dBm)	Polarization
1851.25	-22.41	2.91	43.74	4.87	23.29	Н
1880.00	-20.94	2.85	43.75	4.82	24.78	Н
1908.75	-20.68	2.86	43.77	4.76	24.99	Н

Sample calculation: 1908.75MHz

Peak EIRP (dBm) = $P_{Mea}(-20.68dBm) - G_a (-4.76 dBi) - P_{Ag} (-43.77dB) - P_{cl} (2.86 dB)$

=24.99dBm

Ev-Do

Frequency	P _{Mea}	P _{cl}	P _{Ag}	Ga	RMS	Delerization
(MHz)	(dBm)	(dB)	(dB)	(dBi)	EIRP(dBm)	Polarization
1851.25	-22.50	2.91	43.74	4.87	23.20	Н
1880.00	-20.98	2.85	43.75	4.82	24.74	Н
1908.75	-20.72	2.86	43.77	4.76	24.95	Н

Sample calculation: 1908.75 MHz

Peak EIRP (dBm) = P_{Mea}(-20.72dBm) - G_a (-4.76 dBi) - P_{Ag} (-43.77dB) - P_{cl} (2.86 dB) =24.95dBm

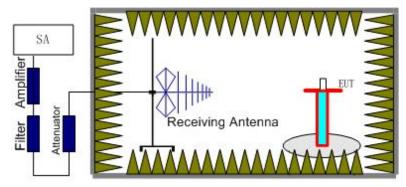
ANALYZER SETTINGS: RBW = VBW = 5MHz

Note: Expanded measurement uncertainty for CDMA1900 (BC1) is U = 4.92dB, k=2.

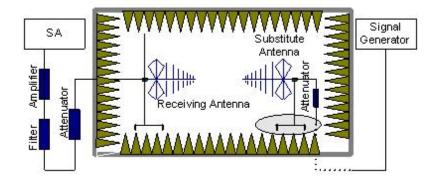
A.2 EMISSION LIMT

Reference

FCC: CFR 2.1051, Part 22.917(a), 24.238(a).


A.2.1 Measurement Method

The measurements procedures in TIA-603-E-2016are used. This measurement is carried out in fully-anechoic chamber 3.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set 1MHz as outlined in Part 22.917(a) and 24.238(a). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of CDMA800 and CDMA 1900.

The procedure of radiated spurious emissions is as follows:

 EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.
 An amplifier should be connected in for the test.
 The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.
 The measurement results are obtained as described below:
 Power (EIRP) = P_{Mea} P_{pl} G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 22.917(a) and 24.238(a) all specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the CDMA BC0 (836.52MHz, 848.31MHz and 824.7MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the CDMA BC0 or CDMA BC1 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The worst cases: CDMA BC0, Channel 384/836.52MHz

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CDMA BCU, Channel 384/836.52MHZ							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency	P _{Mea}	P _{pl}	Ga	Peak ERP	Limit	Polarity	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	i olanity	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1666.01	-59.15	3.58	5.20	-59.68	-13.00	Н	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2510.00	-49.05	4.63	6.12	-49.71	-13.00	Н	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3347.02	-53.56	5.32	7.83	-53.20	-13.00	Н	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4184.02	-55.18	6.17	9.08	-54.42	-13.00	V	
CDMA BC0, Channel 777/848.31MHz Frequency P _{Mea} P _{pl} G _a Peak ERP Limit Polarity (MHz) (dBm) (dB) (dBi) (dBm) (dBm) Polarity 1696.01 -60.59 3.60 5.15 -61.19 -13.00 H 2546.00 -53.38 4.66 6.18 -54.01 -13.00 H 3384.02 -55.65 5.35 7.92 -55.23 -13.00 H 3384.02 -56.17 6.25 9.14 -55.43 -13.00 H 5080.01 -55.56 6.72 10.01 -54.42 -13.00 H 5945.01 -53.37 7.47 10.51 -52.48 -13.00 H CDMA BC0, Channel 1013/824.7MHz Frequency P _{Mea} P _{pl} G _a Peak ERP Limit Polarity (MHz) (dBm) (dB) (dBi) (dBm) (dBm) Polarity 1648.01 -60.78	5028.01	-56.26	6.57	9.94	-55.04	-13.00	V	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5864.01	-53.96	7.28	10.53	-52.86	-13.00	Н	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CDMA BC0, Channel 777/848.31MHz							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency	P _{Mea}	P _{pl}	Ga	Peak ERP	Limit	Polarity	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	Fulanty	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1696.01	-60.59	3.60	5.15	-61.19	-13.00	Н	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2546.00	-53.38	4.66	6.18	-54.01	-13.00	Н	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3384.02	-55.65	5.35	7.92	-55.23	-13.00	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4238.02	-56.17	6.25	9.14	-55.43	-13.00	Н	
CDMA BC0, Channel 1013/824.7MHz Frequency P _{Mea} P _{pl} G _a Peak ERP Limit Polarity (MHz) (dBm) (dB) (dBi) (dBm) (dBm) Polarity 1648.01 -60.78 3.56 5.23 -61.26 -13.00 V 2474.00 -50.12 4.60 6.02 -50.85 -13.00 H 3300.02 -51.62 5.29 7.72 -51.34 -13.00 H 4119.02 -56.18 6.04 9.02 -55.35 -13.00 H 4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	5080.01	-55.56	6.72	10.01	-54.42	-13.00	Н	
Frequency (MHz) P _{Mea} (dBm) P _{pl} (dB) G _a (dBi) Peak ERP (dBm) Limit (dBm) Polarity 1648.01 -60.78 3.56 5.23 -61.26 -13.00 V 2474.00 -50.12 4.60 6.02 -50.85 -13.00 H 3300.02 -51.62 5.29 7.72 -51.34 -13.00 H 4119.02 -56.18 6.04 9.02 -55.35 -13.00 H 4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	5945.01	-53.37	7.47	10.51	-52.48	-13.00	Н	
(MHz) (dBm) (dB) (dBi) (dBm) (dBm) Polarity 1648.01 -60.78 3.56 5.23 -61.26 -13.00 V 2474.00 -50.12 4.60 6.02 -50.85 -13.00 H 3300.02 -51.62 5.29 7.72 -51.34 -13.00 H 4119.02 -56.18 6.04 9.02 -55.35 -13.00 H 4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	CDMA BC0,	Channel 101	3/824.7MHz					
(MHz) (dBm) (dB) (dBi) (dBm) (dBm) <th(< td=""><td>Frequency</td><td>P_{Mea}</td><td>P_{pl}</td><td>Ga</td><td>Peak ERP</td><td>Limit</td><td colspan="2">Polarity</td></th(<>	Frequency	P _{Mea}	P _{pl}	Ga	Peak ERP	Limit	Polarity	
2474.00 -50.12 4.60 6.02 -50.85 -13.00 H 3300.02 -51.62 5.29 7.72 -51.34 -13.00 H 4119.02 -56.18 6.04 9.02 -55.35 -13.00 H 4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	Fularity	
3300.02 -51.62 5.29 7.72 -51.34 -13.00 H 4119.02 -56.18 6.04 9.02 -55.35 -13.00 H 4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	1648.01	-60.78	3.56	5.23	-61.26	-13.00	V	
4119.02-56.186.049.02-55.35-13.00H4957.01-55.656.689.86-54.62-13.00H	2474.00	-50.12	4.60	6.02	-50.85	-13.00	Н	
4957.01 -55.65 6.68 9.86 -54.62 -13.00 H	3300.02	-51.62	5.29	7.72	-51.34	-13.00	Н	
	4119.02	-56.18	6.04	9.02	-55.35	-13.00	Н	
	4957.01	-55.65	6.68	9.86	-54.62	-13.00	Н	
5765.01 -53.93 7.24 10.55 -52.77 -13.00 H	5765.01	-53.93	7.24	10.55	-52.77	-13.00	Н	

Sample calculation: 1648.01MHz

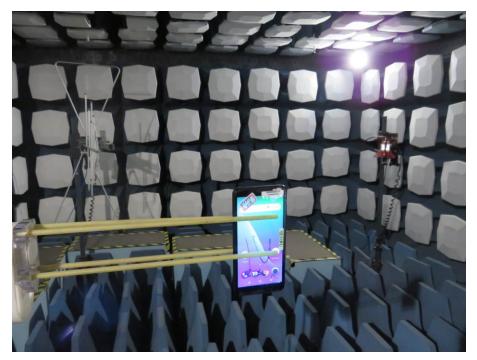
 $\label{eq:Peak ERP (dBm) = P_{Mea}(-60.78 \ dBm) - P_{cl} (3.56 dB) - G_{a} (-5.23 \ dBi) - 2.15 dBm$

= -61.26 dBm

CDMA BC1, Channel 25/1851.25MHz

Frequency	P _{Mea}	P _{pl}	Ga	Peak EIRP	Limit	Polarity		
(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)			
3707.02	-56.86	6.41	8.49	-54.78	-13.00	V		
5557.02	-46.05	7.19	10.59	-42.65	-13.00	Н		
7408.01	-52.75	8.14	12.09	-48.80	-13.00	V		
9260.01	-54.13	9.06	13.26	-49.93	-13.00	V		
11110.01	-46.22	9.79	13.18	-42.83	-13.00	V		
12957.01	-46.27	10.48	13.47	-43.28	-13.00	V		
CDMA BC1, Channel 600/1880.00MHz								
Frequency	P _{Mea}	P _{pl}	Ga	Peak EIRP	Limit	Delerity		
(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	Polarity		
3753.02	-57.36	6.28	8.55	-55.09	-13.00	V		
5641.02	-49.03	7.27	10.57	-45.73	-13.00	Н		
7526.01	-54.86	8.28	12.22	-50.92	-13.00	V		
9396.01	-54.12	9.04	13.34	-49.82	-13.00	V		
11286.01	-48.28	9.91	13.14	-45.05	-13.00	V		
13164.01	-48.22	10.66	13.73	-45.15	-13.00	V		
CDMA BC1, Channel 1175/1908.75MHz								
Frequency	P _{Mea}	P _{pl}	Ga	Peak EIRP	Limit	Polarity		
(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	Folding		
3834.02	-57.50	6.07	8.67	-54.90	-13.00	Н		
5733.02	-47.97	7.29	10.55	-44.71	-13.00	Н		
7641.01	-54.83	8.16	12.31	-50.68	-13.00	V		
9570.01	-53.57	9.29	13.33	-49.53	-13.00	Н		
11464.01	-47.04	9.90	13.11	-43.83	-13.00	V		
13334.01	-47.72	10.58	13.97	-44.33	-13.00	Н		

Sample calculation: 3834.02MHz


Peak ERP (dBm) = $P_{Mea}(-57.50 \text{ dBm}) - P_{cl}(6.07 \text{ dB}) - G_a(-8.67 \text{ dBi}) - 2.15 \text{ dBm}$ =-54.90dBm

Note: Expanded measurement uncertainty for this test item is U = 4.92 dB, k = 2.

No. I18Z60848-EMC02 Page 19 of 19

ANNEX B: TEST LAYOUT

Pic.1 Radiated spurious emission

END OF REPORT