

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190906303V01

FCC REPORT (BLE)

Applicant: Wiko SAS

Address of Applicant: 1, rue Capitaine Dessemond – 13007 Marseille – France.

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: W-V800

Trade mark: WIKO

FCC ID: 2AM86W-V800

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Sep., 2019

Date of Test: 18 Sep., to 14 Oct., 2019

Date of report issued: 31 Oct., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	15 Oct., 2019	Original
01	31 Oct., 2019	Update Page 12, 16

Test Engineer

Winner Many Date: Tested by: 31 Oct., 2019

Reviewed by: 31 Oct., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
•	5.1	CLIENT INFORMATION	_
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	_
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	6
	5.8	LABORATORY LOCATION	6
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	_
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	32
Q	FIIT	CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Wiko SAS
Address:	1, rue Capitaine Dessemond – 13007 Marseille – France.
Manufacturer/Factory:	Shenzhen Tinno Mobile Technology Corp.
Address:	4/F, H-3 Building, OCT Eastern Industrial Park. NO.1 XiangShan East Road, Nan Shan District, Shenzhen, P.R. China.

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	W-V800
Hardware version:	V1.0
Software version:	W-V800-CA-V01.07-20-9.0-GBL
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-5.1 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V-3900mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 250mA Output: DC 5.0V, 1.55A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE190906303V01

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Νc

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

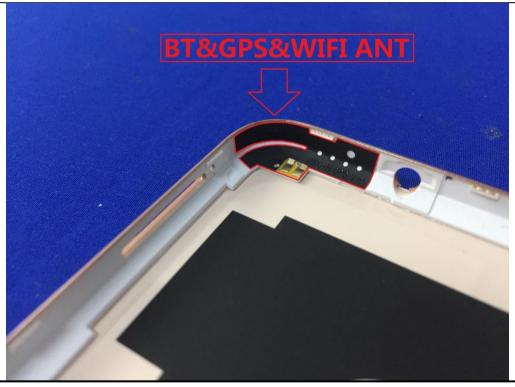
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

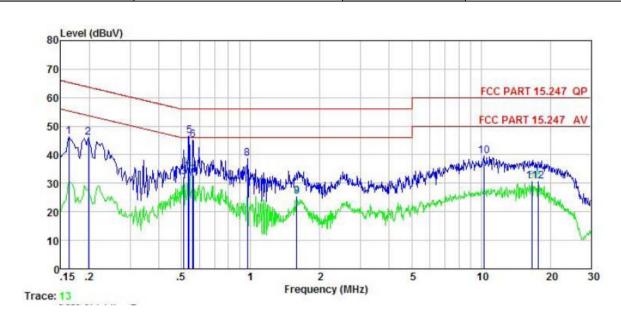

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

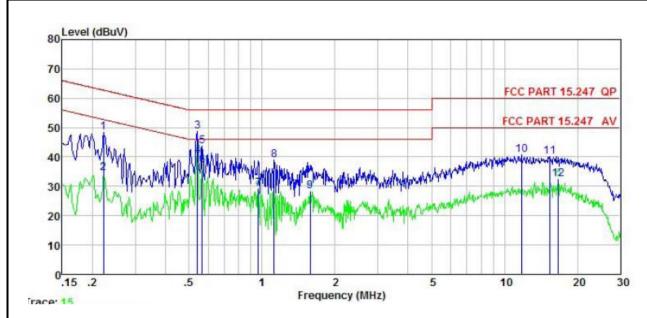
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -5.1 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:			dBuV)		
Littie	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logar				
Test procedure	line impedance stabili 50ohm/50uH coupling 2. The peripheral device through a LISN that p with 50ohm termination setup and photograph 3. Both sides of A.C. line interference. In order positions of equipmer	through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).			
Test setup:	LISN 40cm	BOCM LISN Filter	AC power		
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ane			
Test Instruments:	Refer to section 5.9 for de	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for de	Refer to section 5.3 for details			
Test results:	Passed				

Measurement Data:

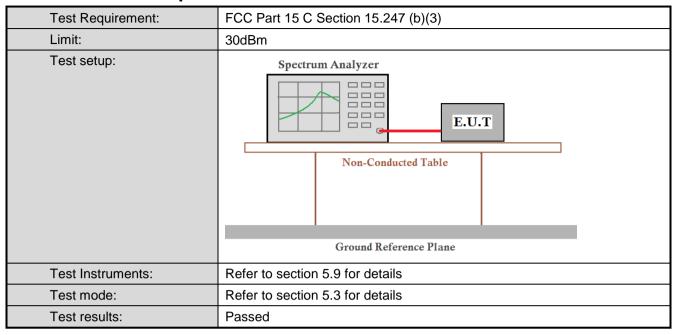
Product name:	Mobile Phone	Product model:	W-V800
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	dB	dBu₹	dBu∜	<u>d</u> B	
1	0.162	35.91	-0.44	10.77	46.24		-19.10	
2	0.198	35.66	-0.41	10.76	46.01	63.71	-17.70	QP
3	0.513	21.80	-0.39	10.76	32.17	46.00	-13.83	Average
4	0.538	25.17	-0.39	10.76	35.54	46.00	-10.46	Average
5	0.541	36.29	-0.39	10.76	46.66	56.00	-9.34	QP
6	0.561	34.87	-0.39	10.76	45.24	56.00	-10.76	QP
7	0.567	22.46	-0.39	10.76	32.83	46.00	-13.17	Average
8	0.968	28.25	-0.38	10.86	38.73		-17.27	
1 2 3 4 5 6 7 8 9	1.585	14.74	-0.40	10.93	25.27	46.00	-20.73	Average
10	10.288	29.25		10.94	39.58		-20.42	
11	16.573	20.48	-0.78	10.91	30.61			Average
12	17.755	20.67	-0.85	10.92	30.74			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

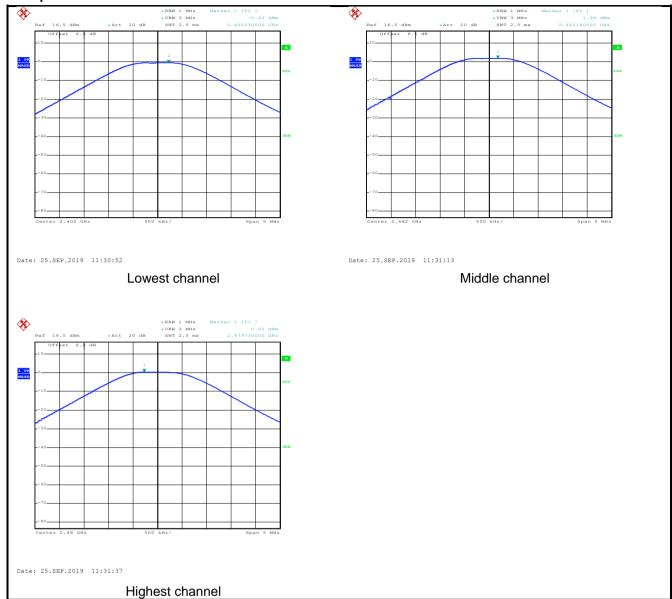
Product name:	Mobile Phone	Product model:	W-V800
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu∛	dBu∜	<u>d</u> B	
1	0.222	38.27	-0.67	10.76	48.36	62.74	-14.38	QP
2	0.222	24.58	-0.67	10.76	34.67	52.74	-18.07	Average
3	0.541	38.48	-0.65	10.76	48.59	56.00	-7.41	QP
4	0.541	30.23	-0.65	10.76	40.34	46.00	-5.66	Average
5	0.567	33.67	-0.65	10.76	43.78	56.00	-12.22	
1 2 3 4 5 6 7 8 9	0.567	27.07	-0.65	10.76	37.18	46.00		Average
7	0.963	18.95	-0.63	10.86	29.18	46.00		Average
8	1.123	28.68	-0.64	10.88	38.92		-17.08	
9	1.577	18.13	-0.66	10.93	28.40			
10	11.745	30.71	-0.80	10.92	40.83		-19.17	
11	15.307	30.01	-0.85	10.90	40.06		-19.94	
12	16.661	22.56	-1.03	10.91	32.44			Average

Notes

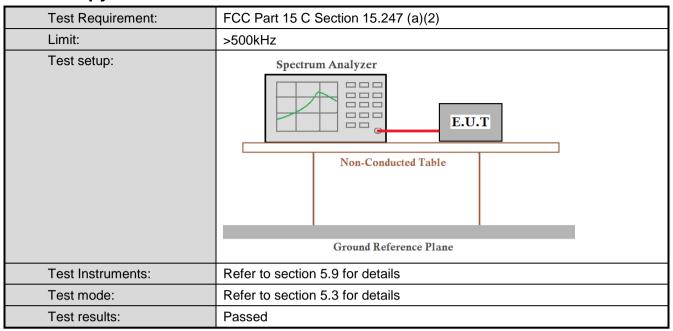
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



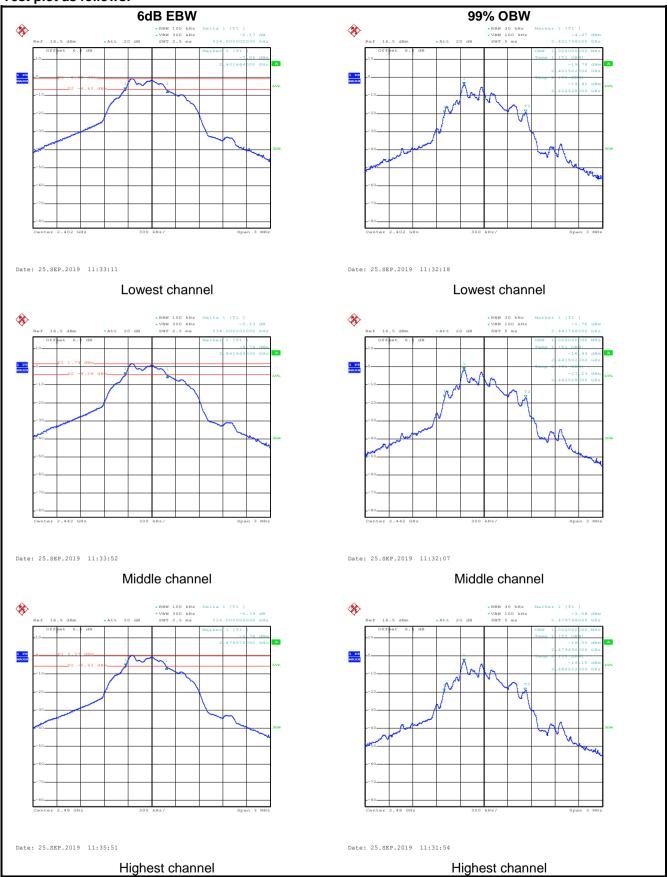
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.42		
Middle	1.99	30.00	Pass
Highest	0.51		



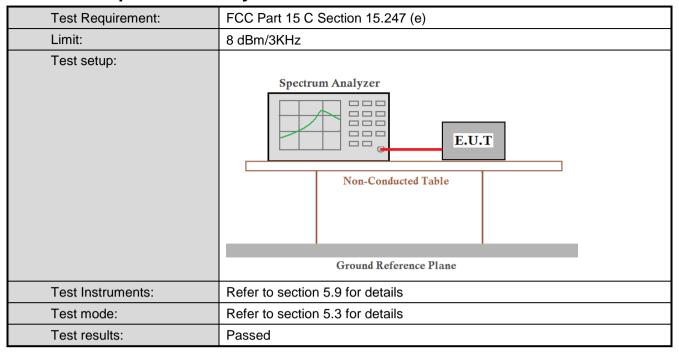
Test plot as follows:

6.4 Occupy Bandwidth



Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.534			
Middle	0.534	>500	Pass	
Highest	0.516			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.026			
Middle	1.026	N/A	N/A	
Highest	1.026			



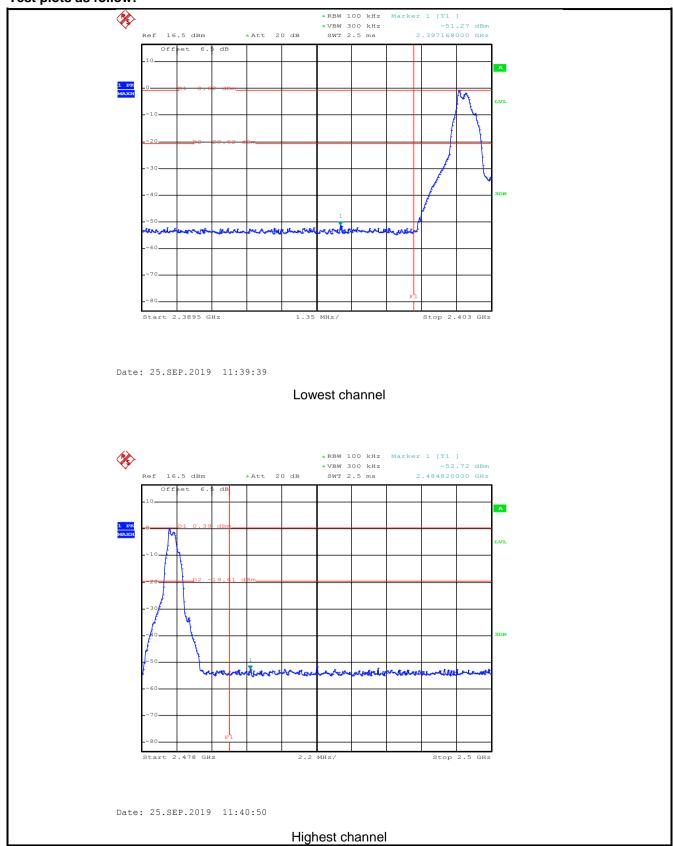
Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

mododi omoni batai			
Test CH	Power Spectral Density (dBm)	Limit(dBm/3KHz)	Result
Lowest	-15.73		
Middle	-16.28	8.00	Pass
Highest	-16.92		

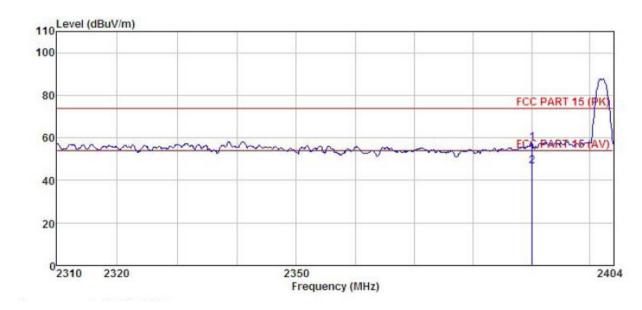
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

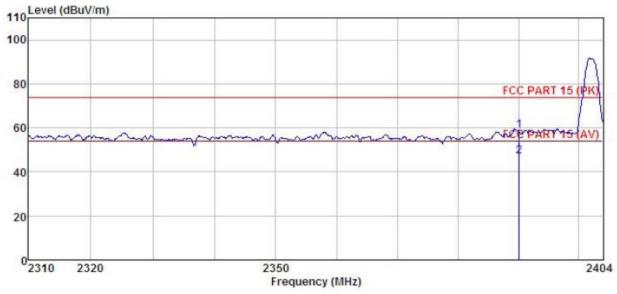
Test plots as follow:



6.6.2 Radiated Emission Method

0.0.2	Radiated Ellission i	VIELITOU					
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209					
	Test Frequency Range:	2.3GHz to 2.5GHz					
	Test Distance:	3m					
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	
			RMS	1MHz	3MHz	Average Value	
	Limit:	Frequer	icy L	imit (dBuV/m @3		Remark	
		Above 10	GHz —	54.00 74.00		Average Value Peak Value	
	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both hori: make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emi the limit sof the EU have 10 ce	antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. In horizontal and vertical polarizations of the antenna are set to ee the measurement. Each suspected emission, the EUT was arranged to its worst eand then the antenna was tuned to heights from 1 meter to 4 ers and the rota table was turned from 0 degrees to 360 degrees and the maximum reading. Itest-receiver system was set to Peak Detect Function and crified Bandwidth with Maximum Hold Mode. Ite emission level of the EUT in peak mode was 10 dB lower than simit specified, then testing could be stopped and the peak values to each could be reported. Otherwise the emissions that did not to 10 dB margin would be re-tested one by one using peak, quasitation of the entertail of the reported in a data.				
	Test setup:	AE (T	umtable) Grou Test Receive	Horn Antenna 3m Pre- Amplifier Con	Antenna Tower		
	Test Instruments:	Refer to section	n 5.9 for deta	ails			
	Test mode:	Refer to section	on 5.3 for deta	ails			
	Test results:	Passed					

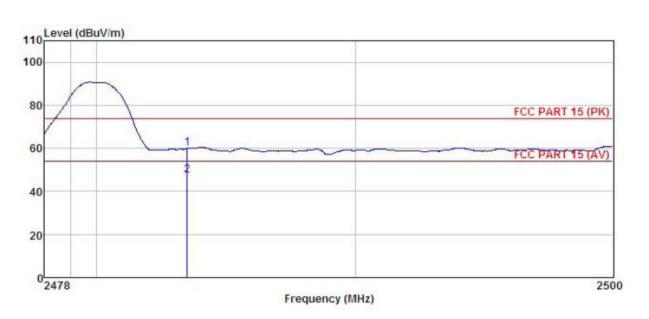
Product Name:	Mobile Phone	Product Model:	W-V800
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					57.66 46.87			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

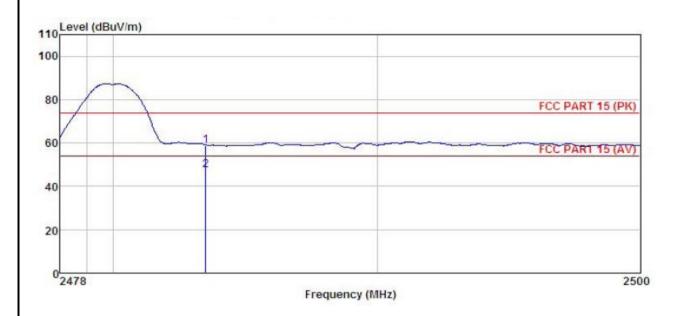
Product Name:	Mobile Phone	Product Model:	W-V800					
Test By:	Yaro	Test mode:	BLE Tx mode					
Test Channel:	Lowest channel	Polarization:	Horizontal					
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%					
Level (dBuV/m)								


	Read Freq Level		Antenna Factor				Limit Line		
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBu√/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	W-V800
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB		
1	2483.500 2483.500		75 02 07 00 00 00 00 00	100,000		59.96 47.49			Peak Average	

Remark:

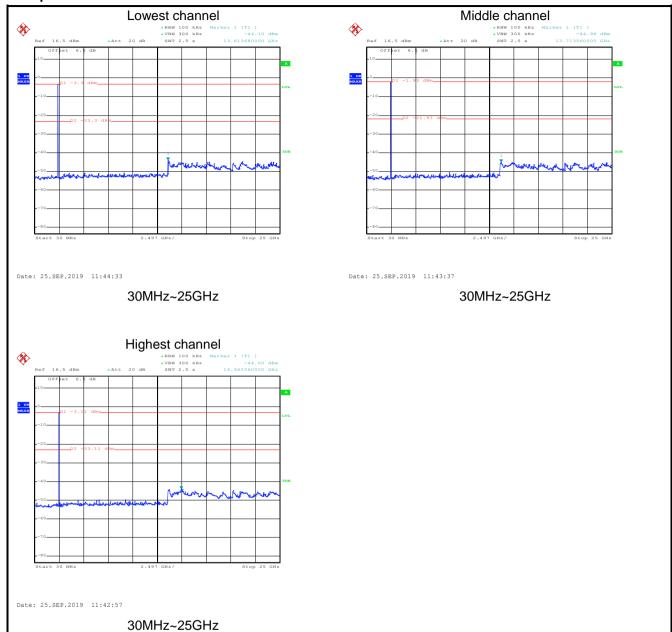
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	W-V800
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Rea Freq Leve		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

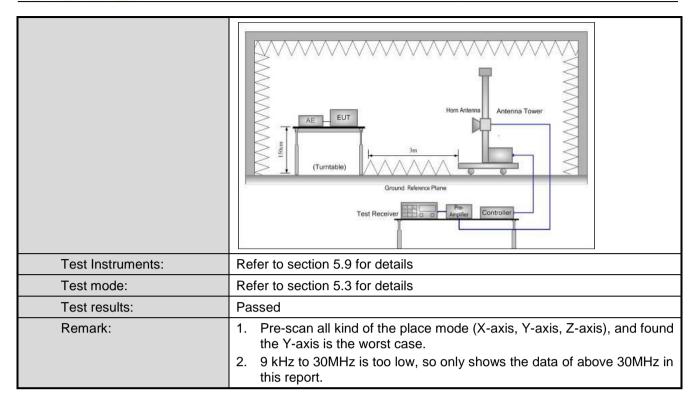
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

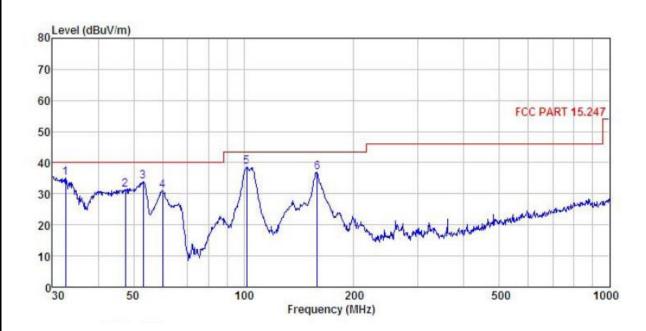
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209	<u> </u>		
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
	Above 10112	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	y L	imit (dBuV/m @)3m)		Remark
	30MHz-88M		40.0			Quasi-peak Value
	88MHz-216N		43.5			Quasi-peak Value
	216MHz-960I		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	lz —	54.0			Average Value
Test Procedure:			74.0			Peak Value table 0.8m(below
	highest rad 2. The EUT antenna, w tower. 3. The antenn the ground Both horize make the n 4. For each s case and t meters and to find the n 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 n which was mo na height is was to determinate and very neasurement suspected en when the ante then the ante deceiver syste Bandwidth wit sion level of the would be re margin wou	neters away unted on the formula waried from one the maximitical polarization of the Enna was tuned ding. The was turned ding. The was set of the EUT in pertent the EUT in pertent the EUT of the E	from the top of a me met um valitions of EUT was do not be from 0 to Pealold Moak more stop wise the done be	ne intervariant of the areas arranged areas areas degree areas ped	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m 1m			Search Antenn Test ceiver —	1

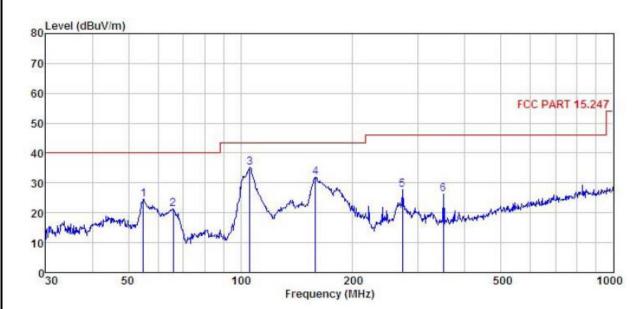


Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	W-V800
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

			Ant enna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	32.634	53.14	10.92	0.91	29.96	35.01	40.00	-4.99	QP
2	47.492	47.65	12.20	1.27	29.84	31.28	40.00	-8.72	QP
23456	53.131	50.63	11.78	1.32	29.81	33.92	40.00	-6.08	QP
4	60.069	48.11	11.40	1.38	29.77	31.12	40.00	-8.88	QP
5	102.001	53.93	12.35	1.96	29.51	38.73	43.50	-4.77	QP
6	158.668	54.16	9.24	2.57	29.14	36.83	43.50	-6.67	QP


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	W-V800	
Test By:	Yaro	Test mode:	BLE Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃	Huni: 57%

						Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBu∀/m	<u>d</u> B	
54.835	41.46	11.60	1.36	29.80	24.62	40.00	-15.38	QP
66.034	40.22	9.36	1.41	29.75	21.24	40.00	-18.76	QP
106.013	50.67	11.98	2.01	29.48	35.18	43.50	-8.32	QP
158.668	49.10	9.24	2.57	29.14	31.77	43.50	-11.73	QP
272.278	40.34	13.12	2.87	28.50	27.83	46.00	-18.17	QP
350.477	37.04	14.60	3.10	28.56	26.18	46.00	-19.82	QP
	54.835 66.034 106.013 158.668 272.278	Freq Level MHz dBuV 54.835 41.46 66.034 40.22 106.013 50.67 158.668 49.10 272.278 40.34	Freq Level Factor MHz dBuV dB/m 54.835 41.46 11.60 66.034 40.22 9.36 106.013 50.67 11.98 158.668 49.10 9.24 272.278 40.34 13.12	Freq Level Factor Loss MHz dBuV dB/m dB 54.835 41.46 11.60 1.36 66.034 40.22 9.36 1.41 106.013 50.67 11.98 2.01 158.668 49.10 9.24 2.57 272.278 40.34 13.12 2.87	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 54.835 41.46 11.60 1.36 29.80 66.034 40.22 9.36 1.41 29.75 106.013 50.67 11.98 2.01 29.48 158.668 49.10 9.24 2.57 29.14 272.278 40.34 13.12 2.87 28.50	MHz dBuV dB/m dB dB dBuV/m 54.835 41.46 11.60 1.36 29.80 24.62 66.034 40.22 9.36 1.41 29.75 21.24 106.013 50.67 11.98 2.01 29.48 35.18 158.668 49.10 9.24 2.57 29.14 31.77 272.278 40.34 13.12 2.87 28.50 27.83	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 54.835 41.46 11.60 1.36 29.80 24.62 40.00 66.034 40.22 9.36 1.41 29.75 21.24 40.00 106.013 50.67 11.98 2.01 29.48 35.18 43.50 158.668 49.10 9.24 2.57 29.14 31.77 43.50 272.278 40.34 13.12 2.87 28.50 27.83 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 54.835 41.46 11.60 1.36 29.80 24.62 40.00 -15.38 66.034 40.22 9.36 1.41 29.75 21.24 40.00 -18.76 106.013 50.67 11.98 2.01 29.48 35.18 43.50 -8.32 158.668 49.10 9.24 2.57 29.14 31.77 43.50 -11.73

Remark:

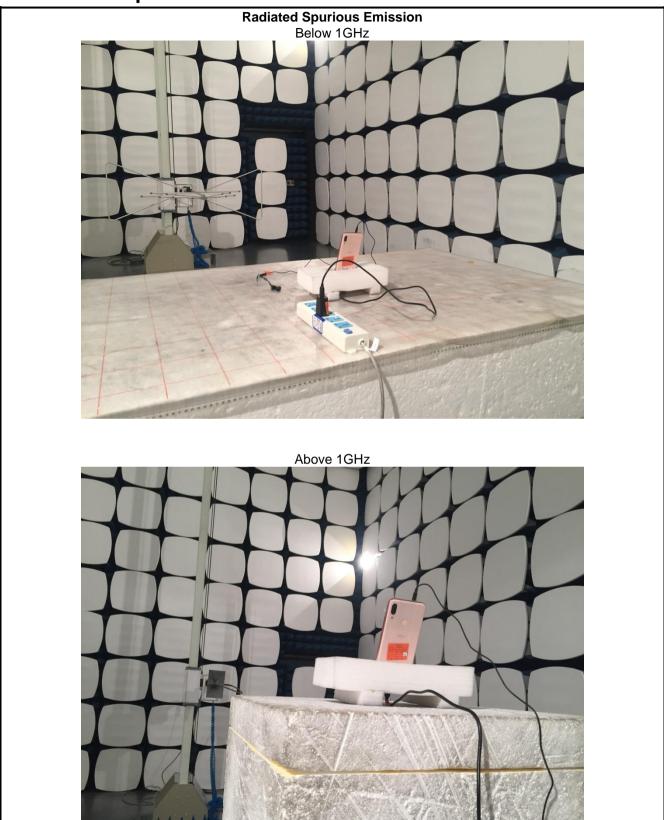
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	48.15	30.85	6.80	41.81	43.99	74.00	-30.01	Vertical			
4804.00	48.81	30.85	6.80	41.81	44.65	74.00	-29.35	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	40.42	30.85	6.80	41.81	36.26	54.00	-17.74	Vertical			
4804.00	40.39	30.85	6.80	41.81	36.23	54.00	-17.77	Horizontal			
			Test ch	nannel: Midd	dle channel						

	Test channel: Middle channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	48.67	31.20	6.86	41.84	44.89	74.00	-29.11	Vertical			
4884.00	48.26	31.20	6.86	41.84	44.48	74.00	-29.52	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	40.67	31.20	6.86	41.84	36.89	54.00	-17.11	Vertical			
4884.00	40.16	31.20	6.86	41.84	36.38	54.00	-17.62	Horizontal			

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.52	31.63	6.91	41.87	45.19	74.00	-28.81	Vertical
4960.00	48.71	31.63	6.91	41.87	45.38	74.00	-28.62	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	40.26	31.63	6.91	41.87	36.93	54.00	-17.07	Vertical
4960.00	40.85	31.63	6.91	41.87	37.52	54.00	-16.48	Horizontal


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No. CCISE190906301.

----End of report-----