

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	PART 15 SUBPART C TEST REPORT
	FCC PART 15.247
Report Reference No	
Compiled by (position+printed name+signat	ture): File administrators Zoey Cao
Supervised by (position+printed name+signat	ture): Project Engineer Amy Wen
	ture): RF Manager Eric Wang
Date of issue	: Mar. 16, 2024
Festing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name	: Shenzhen Newwear Technology Co.,Ltd
Address	Room 1603, Jinhua Building, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, P.R.C. China
Test specification	TESI
Standard	
	nology Co. 1 td. All rights reserved
Shenzhen CTA Testing Techi	
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testir	luced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its
This publication may be reprod Shenzhen CTA Testing Techno naterial. Shenzhen CTA Testir iability for damages resulting fr placement and context.	luced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testir iability for damages resulting fr	duced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testin iability for damages resulting fr placement and context. Equipment description	duced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its
This publication may be reprod Shenzhen CTA Testing Techno naterial. Shenzhen CTA Testir iability for damages resulting fr placement and context. Equipment description Frade Mark	Juced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ing Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its : Smart watch : Newwear : Shenzhen Newwear Technology Co.,Ltd
This publication may be reprod Shenzhen CTA Testing Techno naterial. Shenzhen CTA Testin iability for damages resulting fr blacement and context. Equipment description Trade Mark Manufacturer Model/Type reference	Juced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ing Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its : Smart watch : Newwear : Shenzhen Newwear Technology Co.,Ltd
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testir iability for damages resulting fr blacement and context. Equipment description Trade Mark Manufacturer Model/Type reference	 Buced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its Smart watch Newwear Shenzhen Newwear Technology Co.,Ltd T8 T3, T6, T9, T10, T18, T20, T30, T31, T40, T50, T60, T88, T90, T99
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testir iability for damages resulting fr blacement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	 Buced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its Smart watch Newwear Shenzhen Newwear Technology Co.,Ltd T8 T3, T6, T9, T10, T18, T20, T30, T31, T40, T50, T60, T88, T90, T99
This publication may be reprod Shenzhen CTA Testing Techno material. Shenzhen CTA Testir iability for damages resulting fr placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Frequency	 duced in whole or in part for non-commercial purposes as long as the ology Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its Smart watch Shenzhen Newwear Technology Co.,Ltd T8 T3, T6, T9, T10, T18, T20, T30, T31, T40, T50, T60, T88, T90, T99 GFSK

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24031301	001 Page 2 of 36
CTA TESTING	TEST REPORT
Equipment under Test	: T8
Model /Type	: T8
Listed Models	: T3, T6, T9, T10, T18, T20, T30, T31, T40, T50, T60, T88, T90, T99
Applicant	: Shenzhen Newwear Technology Co.,Ltd
Address	 Room 1603, Jinhua Building, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, P.R.C. China Shenzhen Newwear Technology Co.,Ltd
Manufacturer	Shenzhen Newwear Technology Co.,Ltd
Address	: Room 1603, Jinhua Building, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, P.R.C. China
CIP'	esult: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING laboratory.

Contents

	TESTING	Contents	
1.6	TEST STANDARDS	-stMC	4
Constant of the second	CTA	TING	_
<u>2</u>	<u>SUMMARY</u>		5
2.1	General Remarks	5	
2.1	Product Description*	5	
2.2	Equipment Under Test	5	
2.4	Short description of the Equipment	t under Test (EUT)	
2.5	EUT operation mode	6	
2.6	Block Diagram of Test Setup	6	
2.7	Related Submittal(s) / Grant (s)	6	
2.8	Modifications	6	
<u>3</u>	TEST ENVIRONMENT	TESTIN	7
<u>v</u>			<u>j</u> G
3.1	Address of the test laboratory	CTATEST 77 8	
3.2	Test Facility		
3.3	Environmental conditions	7	
3.4	Summary of measurement results	8	
3.5	Statement of the measurement unc		
3.6	Equipments Used during the Test	9	
	ESTIN		
4	TEST CONDITIONS AND R	RESULTS 1	1
GAN C	\ <u></u>	- CIII-	<u> </u>
		Je CTATESTING 11 COCTATESTING 14 22 24 24	
4.1	AC Power Conducted Emission	CTING	-
4.2 4.3	Radiated Emissions and Band Edge	le 14	-
4.3 4.4	Maximum Peak Output Power Power Spectral Density		-
4.4 4.5	6dB Bandwidth	24	
4.6	Out-of-band Emissions	2	
4.7	Antenna Requirement	30	
<u>5</u>	TEST SETUP PHOTOS OF	THE EUT	1
<u>5</u>			<u> </u>
<u>6</u>	PHOTOS OF THE EUT		2
<u>v</u>		CTATESTING CTATESTIN	-
		CTA CTA	
		(CTA) TES	
		GA CTATES.	
	TATESTING		
	(P '		
		TESI	
	ATES GACTA	TESTING	
	GINUT	ESTIN	

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

2 SUMMARY

2.1 **General Remarks**

CTATES			
2.1 General Remarks			
Date of receipt of test sample		Mar. 07, 2024	
Testing commenced on		Mar. 07, 2024	
Testing concluded on	:	Mar. 15, 2024	

2.2 Product Description*

2.2 Product Descri	ption*
Product Description:	Smart watch
Model/Type reference:	T8
Power supply:	DC 3.8V From battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	MA0022.02
Software version:	MOY-VVQ3-2.0.1
Testing sample ID:	CTA240313010-1# (Engineer sample) CTA240313010-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40 G
Channel separation:	2 MHz
Antenna type:	Internal antenna
Antenna gain:	0.52 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test Power supply system utilised	I				6.4	
Power supply voltage	:	0	230V / 50 Hz	C) 120V / 60Hz	
		Ο	12 V DC	C	24 V DC	
T	1	•	Other (specified in blan	nk below	/)	
163						

DC 3.8V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Smart watch. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
TESTIN	:
37	2476
38	2478
39	2480

2.6 Block Diagram of Test Setup

EUT

3	DC 5.0V from adapter

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. GA CTATESTING

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing.

Temperature:	24 ° C			
-1G				
Humidity:	47 %			
	. C.			
Atmospheric pressure:	950-1050mbar			

	Aunospheric pressure.	930-103011bai	
С	onducted testing:	TED	TING
	Temperature:	24 ° C	TESI
	Constant of the second second		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar]

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	Lowest Middle	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

We tested all test mode and recorded worst case in report 2.

Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. TESTING Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

u	the best measurement capability for Shenzhen CTA resting rechnology Co., Ltd							
	Test	Range	Measurement Uncertainty	Notes				
	Radiated Emission	9KHz~30MHz	3.02 dB	(1)				
	Radiated Emission	30~1000MHz	4.06 dB	(1)				
	Radiated Emission	1~18GHz	5.14 dB	(1)				
	Radiated Emission	18-40GHz	5.38 dB	(1)				
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)				
	Output Peak power	30MHz~18GHz	0.55 dB	(1)				
	Power spectral density	-ING	0.57 dB	(1)				
	Spectrum bandwidth		1.1%	(1)				
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)				
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)				
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)				

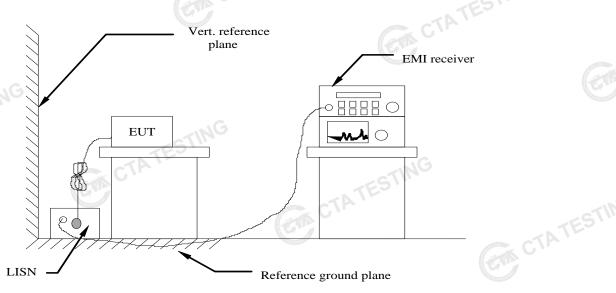
Page 9 of 36

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
E	MI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
E	MI Test Receiver	R&SG	ESCI	CTA-306	2023/08/02	2024/08/01
s	pectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
s	pectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	IDEBAND RADIO OMMUNICATION TESTER	G CMW500	R&S	CTA-302	2023/08/02	2024/08/01
S.C. He	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
S	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
5	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
C	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier S	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	CIT	GM C	TATESTING	- cTA	TESTING	

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


Page 10 of 36

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	TAT
	STING					Con	-
CTATE		CTATESTING					
r V							

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

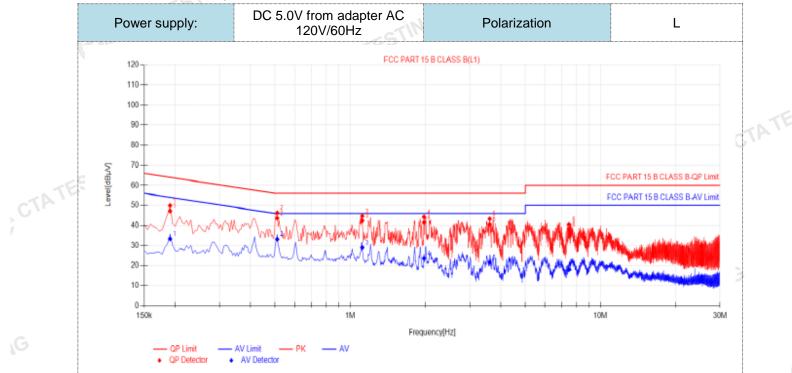
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (c	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

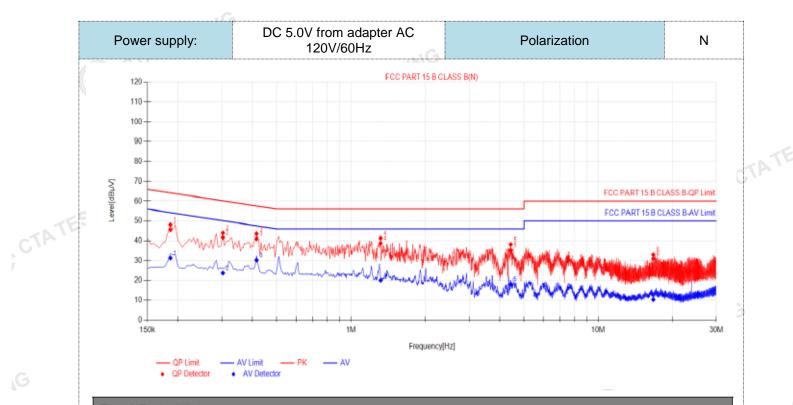

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 12 of 36

TATE

GA CTATESTING

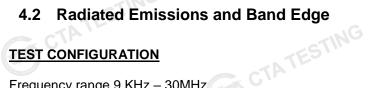
2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



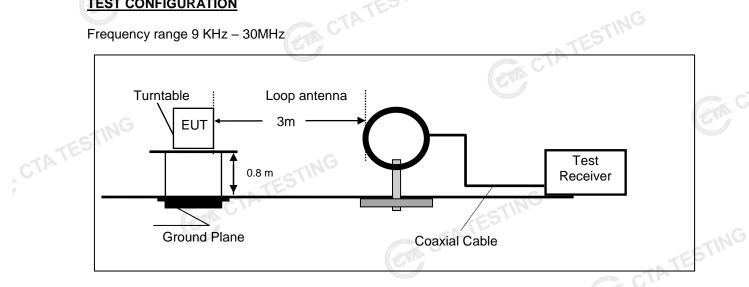
Final Data List

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1905	10.05	37.15	47.20	64.01	16.81	23.35	33.40	54.01	20.61	PASS
2	0.51	10.02	33.58	43.60	56.00	12.40	23.18	33.20	46.00	12.80	PASS
3	1.1175	9.90	32.52	42.42	56.00	13.58	19.08	28.98	46.00	17.02	PASS
4	1.9725	9.92	31.62	41.54	56.00	14.46	13.68	23.60	46.00	22.40	PASS
5	3.6105	9.96	30.72	40.68	56.00	15.32	11.70	21.66	46.00	24.34	PASS
6	7.4895	10.29	27.78	38.07	60.00	21.93	7.72	18.01	50.00	31.99	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTA TESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

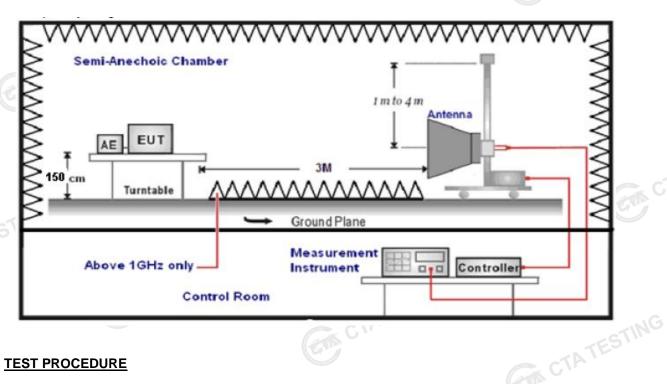

Page 13 of 36

Final Data List


D .	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	0.186	10.01	35.54	45.55	64.21	18.66	21.30	31.31	54.21	22.90	PASS	
2	0.303	9.86	31.82	41.68	60.16	18.48	13.89	23.75	50.16	26.41	PASS	
3	0.4155	9.95	31.05	41.00	57.54	16.54	20.28	30.23	47.54	17.31	PASS	
ŧ.	1.32	10.16	28.56	38.72	56.00	17.28	9.96	20.12	46.00	25.88	PASS	
j	4.416	10.10	25.15	35.25	56.00	20.75	7.99	18.09	46.00	27.91	PASS	
3	16.683	10.47	20.56	31.03	60.00	28.97	-0.12	10.35	50.00	39.65	PASS	
						-)				CA	CZR
		0. Freq. [MHz] 0.186 0.303 0.4155 1.32 4.416 16.683 :1).QP Value	[MHz] [dB] 0.186 10.01 0.303 9.86 0.4155 9.95 1.32 10.16 4.416 10.10 16.683 10.47 :1).QP Value (dBµV)=	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Preq. [MHz] Pactor [dB] QP Reading[dB µV] QP Value [dBµV] QP Limit [dBµV] QP Margin [dB] AV Reading [dBµV] 0.186 10.01 35.54 45.55 64.21 18.66 21.30 0.303 9.86 31.82 41.68 60.16 18.48 13.89 0.4155 9.95 31.05 41.00 57.54 16.54 20.28 1.32 10.16 28.56 38.72 56.00 17.28 9.96 4.416 10.10 25.15 35.25 56.00 20.75 7.99 10.683 10.47 20.56 31.03 60.00 28.97 -0.12	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{F_{\text{req.}}}{[MHz]} = \frac{F_{\text{actor}}}{[dB]} = \frac{QP}{Reading[dB}} = \frac{QP}{Value} = \frac{QP}{Limit} = \frac{QP}{Margin} = \frac{QP}{Margin} = \frac{AV}{Reading} = \frac{AV}{Value} = \frac{AV}{Limit} = \frac{AV}{[dB\mu V]} = \frac{AV}{[dB\mu V]$	$\frac{F_{\text{Feq.}}}{[MH_2]} = \frac{F_{\text{actor}}}{[dB]} + \frac{QP}{[dB]} + \frac{QP}{Value} + \frac{QP}{[dB_{\mu}V]} + \frac{QP}{[dB_{\mu}V]} + \frac{QP}{[dB_{\mu}V]} + \frac{AV}{Reading} + \frac{AV}{Value} + \frac{AV}{[dB_{\mu}V]} + \frac{AV}{[dB_{\mu}V]$	$\frac{1}{2} \frac{1}{2} \frac{1}$

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and
- rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. The distance between test antenna and EUT as following table states: 6.

The distance between test antenna and EOT as following table states.					
	Test Frequency range	Test Antenna Type	Test Distance		
	9KHz-30MHz	Active Loop Antenna	3	Contraction C	
	30MHz-1GHz	Ultra-Broadband Antenna	3	1.5	
	1GHz-18GHz	Double Ridged Horn Antenna	3	2 Paster Contraction	
18GHz-25GHz		Horn Anternna	1		
	Sotting test receiver/spectru	im as following table states:			

7. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting							
z RI	3W=200Hz/VBW=3KHz,Sweep time=Auto	QP					
Hz RB	W=9KHz/VBW=100KHz,Sweep time=Auto	QP					
z RBW	/=120KHz/VBW=1000KHz,Sweep time=Auto	QP					
-	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak					
	Iz RI Hz RB z RBW	Iz RBW=200Hz/VBW=3KHz,Sweep time=Auto Hz RBW=9KHz/VBW=100KHz,Sweep time=Auto z RBW=120KHz/VBW=1000KHz,Sweep time=Auto Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto					

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

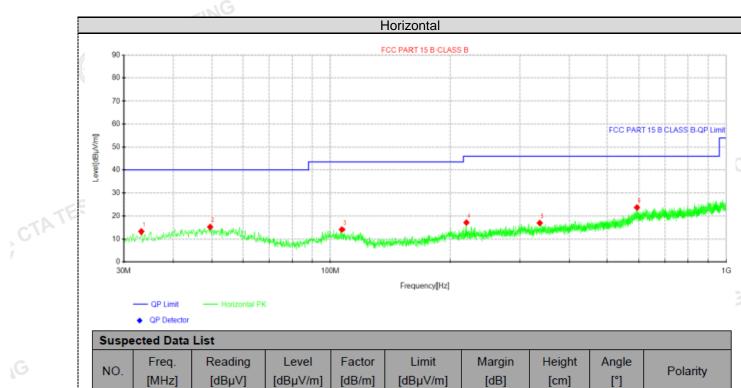
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	
Shenzhen CTA Testi	na Technoloay Co., Ltd.

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	ETINC			
CTATE	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
,	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500


TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. CTATESTING except system noise floor in 9 KHz to 30MHz and not recorded in this report.

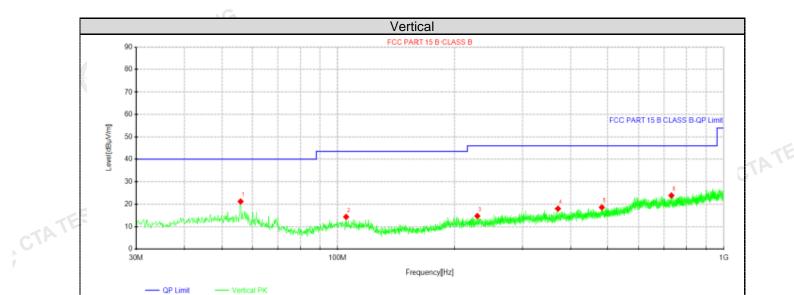
For 30MHz-1GHz

COM CTATE

	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
[1	33.1525	27.40	13.20	-14.20	40.00	26.80	100	70	Horizontal
	2	49.5212	26.61	15.14	-11.47	40.00	24.86	100	250	Horizontal
	3	106.993	27.54	14.01	-13.53	43.50	29.49	100	60	Horizontal
	4	219.877	30.15	17.07	-13.08	46.00	28.93	100	270	Horizontal
	5	337.247	28.17	16.88	-11.29	46.00	29.12	100	270	Horizontal
	6	593.448	29.42	23.70	-5.72	46.00	22.30	100	260	Horizontal

Note:1).Level ($dB\mu V/m$) = Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)


3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m) J).

GTA TESTING

TATE

Suspected Data Lis

CTATESTING

QP Detector

Juspe	Suspecied Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity		
NU.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	55.9475	33.36	21.18	-12.18	40.00	18.82	100	150	Vertical		
2	105.296	27.70	14.26	-13.44	43.50	29.24	100	260	Vertical		
3	229.335	27.57	14.64	-12.93	46.00	31.36	100	160	Vertical		
4	370.591	28.82	17.94	-10.88	46.00	28.06	100	290	Vertical		
5	482.505	28.09	18.53	-9.56	46.00	27.47	100	230	Vertical		
6	731.431	28.91	23.87	-5.04	46.00	22.13	100	190	Vertical		
Noto 1		$N_{\rm M}/m = R_{\rm M}$	ading (dBu	W+ Eact	or (dB/m)						

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 19 of 36

For 1GHz to 25GHz

_	T	NG		GFSK (abo	ve 1GHz)				
Freque	Frequency(MHz):		24	02	Pola	arity:	н	HORIZONTAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	62.18	PK	74	11.82	66.45	32.33	5.12	41.72	-4.27
4804.00	44.24	AV	54	9.76	48.51	32.33	5.12	41.72	-4.27
7206.00	52.47	PK	74	21.53	52.99	36.6	6.49	43.61	-0.52
7206.00	43.20	AV	54	10.80	43.72	36.6	6.49	43.61	-0.52
									Carlo V

Freque	ncy(MHz)	:	24	02	Pola	arity:			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.26	PK	74	13.74	64.53	32.33	5.12	41.72	-4.27
4804.00	41.75	AV	54	12.25	46.02	32.33	5.12	41.72	-4.27
7206.00	49.66	PK	74	24.34	50.18	36.6	6.49	43.61	-0.52
7206.00	41.51	AV	54	12.49	42.03	36.6	6.49	43.61	-0.52
				C.	1			TE	0

Freque	ncy(MHz)	:	24	40	Pola	arity:	Н	AL.	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.41	PK	74	12.59	65.29	32.6	5.34	41.82	-3.88
4880.00	45.47	AV	54	8.53	49.35	32.6	5.34	41.82	-3.88
7320.00	53.25	PK	74	20.75	53.36	36.8	6.81	43.72	-0.11
7320.00	41.95	AV	54	12.05	42.06	36.8	6.81	43.72	-0.11
					NG				•

		1 million (1997)							
Freque	ncy(MHz)	:	24	40	Pola	arity:	VERTICAL		-
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.79	PK	74	14.21	63.67	32.6	5.34	41.82	-3.88
4880.00	43.12	AV	54	10.88	47.00	32.6	5.34	41.82	-3.88
7320.00	51.63	PK	74	22.37	51.74	36.8	6.81	43.72	-0.11
7320.00	40.34	AV	54	13.66	40.45	36.8	6.81	43.72	-0.11
			STIN						

Freque	ncy(MHz)	:	24	80	Pola	rity:	HORIZONTAL		NL
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.93	PK	74	13.07	64.01	32.73	5.66	41.47	-3.08
4960.00	44.26	AV	54	9.74	47.34	32.73	5.66	41.47	-3.08
7440.00	53.79	PK	74	20.21	53.34	37.04	7.25	43.84	0.45
7440.00	42.67	PK	54	11.33	42.22	37.04	7.25	43.84	0.45

Freque	ncy(MHz)	:	24	80	Pola	rity: VERTICAL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.16	PK	74	14.84	62.24	32.73	5.66	J 41.47	-3.08
4960.00	42.83	AV	54	11.17	45.91	32.73	5.66	41.47	-3.08
7440.00	52.09	PK	74	21.91	51.64	37.04	7.25	43.84	0.45
7440.00	40.89	PK	54	13.11	40.44	37.04	7.25	43.84	0.45
REMARKS	:				6	Constant of the second se			CTP
			Shenzhen	CTA Testing	Technology	Co., Ltd.			

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)	:	24	<u> </u>		arity:	Н	ORIZONTA	NL
Frequency (MHz)	Emis Lev (dBu)	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.71	PK	74	12.29	72.13	27.42	4.31	42.15	-10.42
2390.00	43.19	AV	54	10.81	53.61	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL		•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.11	PK	74	13.89	70.53	27.42	4.31	42.15	-10.42
2390.00	41.01	AV	54	12.99	51.43	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	HORIZONTAL		NL
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.18	ΡK	74	12.82	71.29	27.7	4.47	42.28	-10.11
2483.50	42.73	AV	54	11.27	52.84	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
1 200	Emis	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency (MHz)	(dBu	• • • • • • • •		4 4 4 4	69.67	27.7	4.47	42.28	-10.11
	(dBu) 59.56	PK	74	14.44	05.07				

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

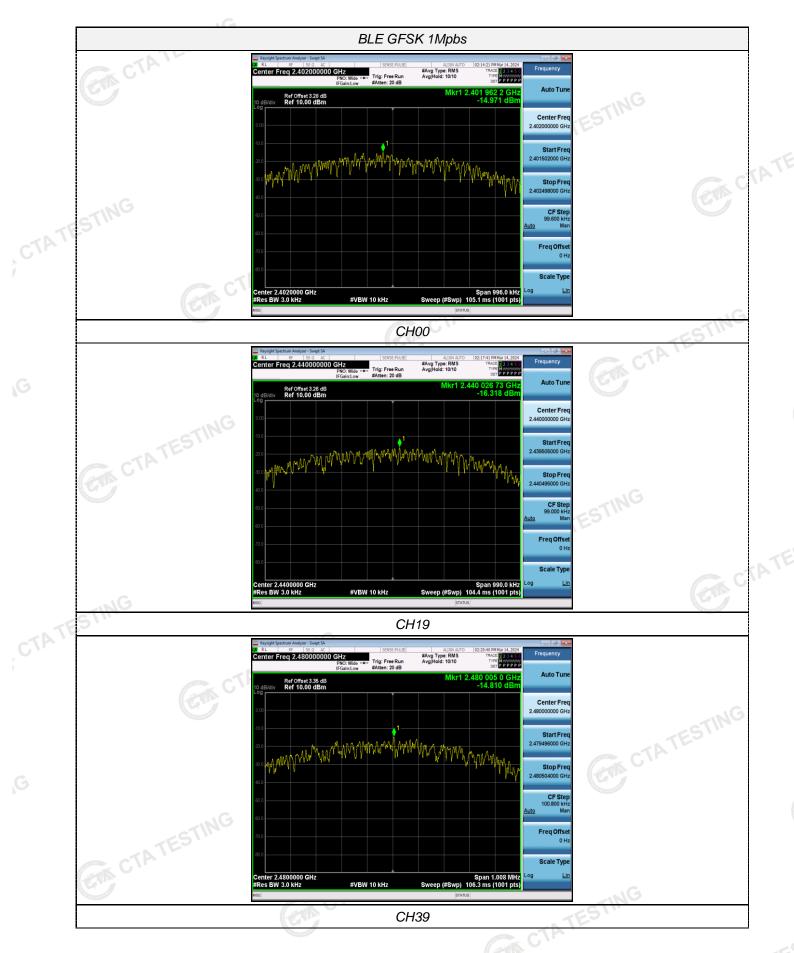
			ATESI
Channel	Output power (dBm)	Limit (dBm)	Result
00	1.57		
19	1.48	30.00	Pass
39	1.30		
sults including the	cable lose.	CTATESTING	
	00 19 39	Channel (dBm) 00 1.57 19 1.48 39 1.30	Channel (dBm) Limit (dBm) 00 1.57 30.00 19 1.48 30.00 39 1.30

4.4 **Power Spectral Density**

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

			– <i>–</i>
Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
00	-14.97		
19	-16.32	8.00	Pass
39	-14.81	16	
	00 19	(dBm/3KHz) 00 -14.97 19 -16.32	00 -14.97 19 -16.32 8.00

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

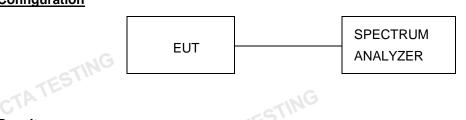
Test Configuration

Test Results

Toot Deputto		ANALYZ	FR	CTATESTING
Test Results Type	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
STING	00	0.664		
GFSK 1Mbps	19	0.660	≥500	Pass
C	39	0.672		
Test plot as follows:	GA C	TATES	CTATESTIN	G

Page 25 of 36

Out-of-band Emissions 4.6

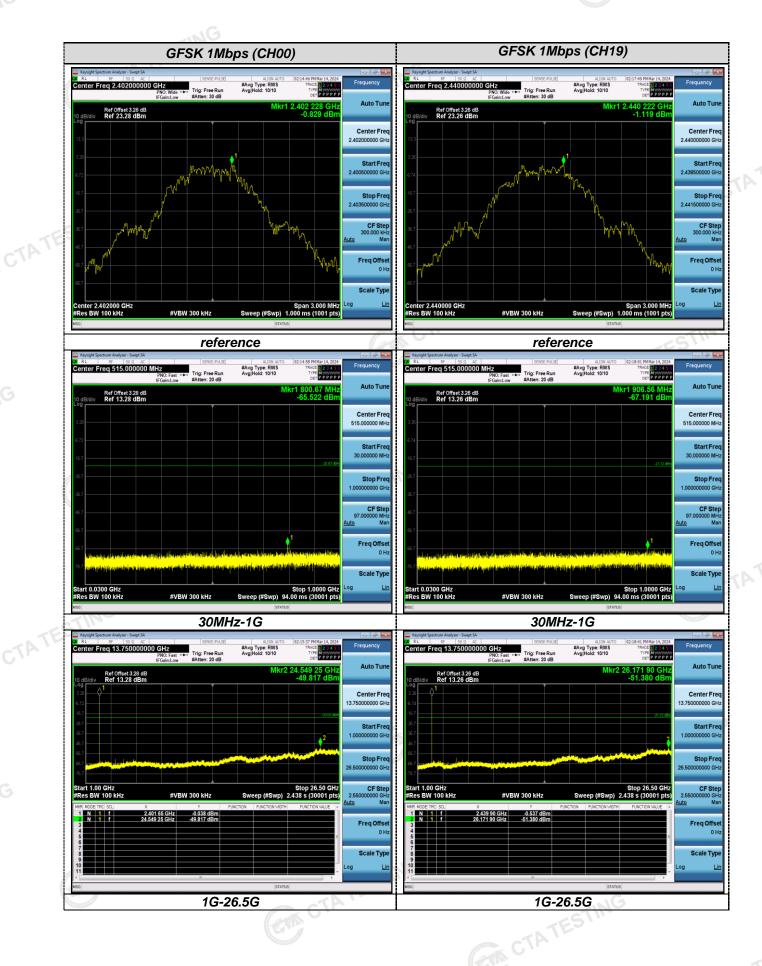

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

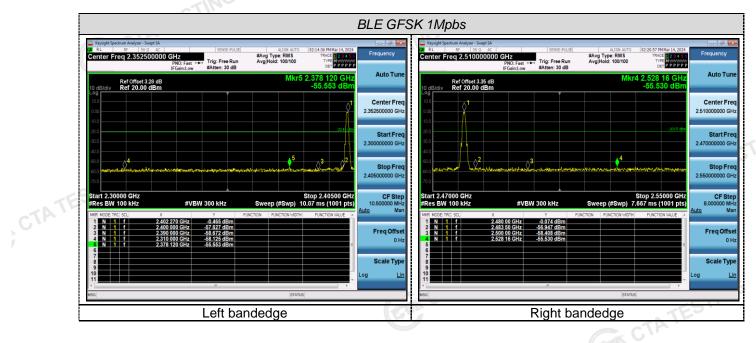
Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage **GIA CTATE** measurement data.

Test plot as follows:


Page 27 of 36

Page 29 of 36

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

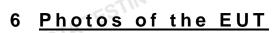
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

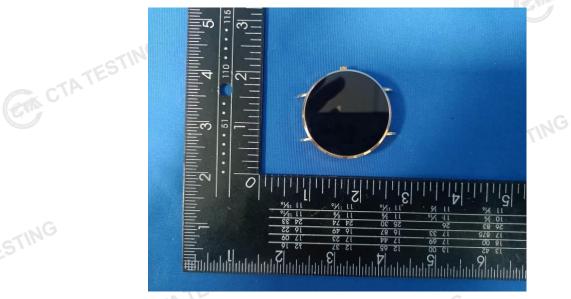
Antenna Connected Construction

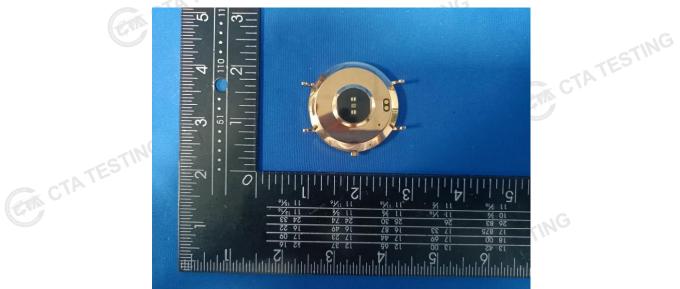
The gain of antenna was 0.52 dBi.

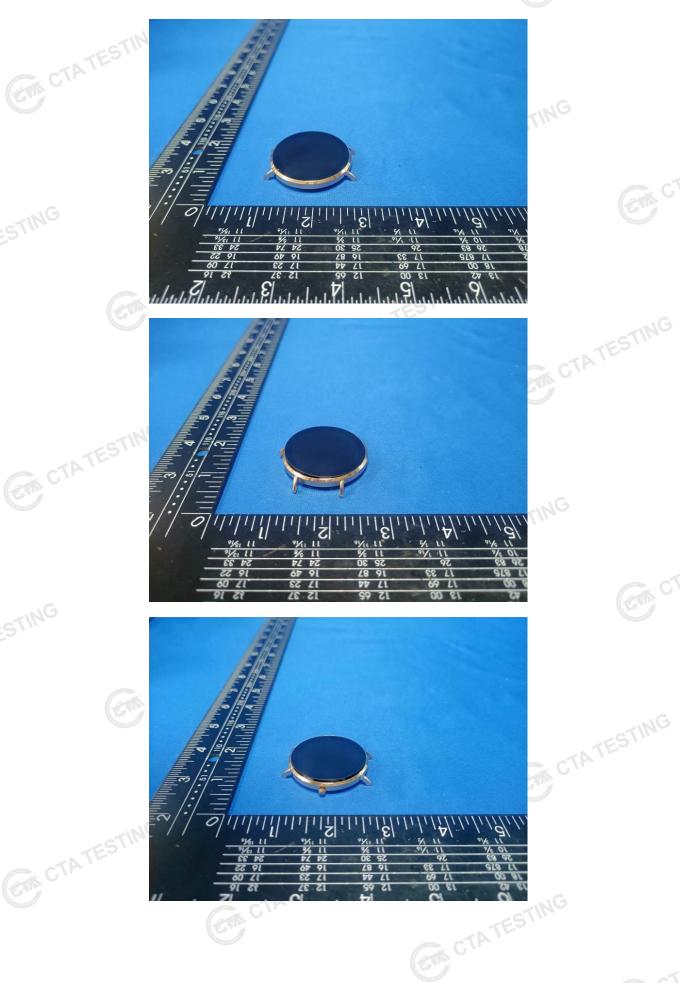
Remark:The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.


Page 31 of 36

5 Test Setup Photos of the EUT







2

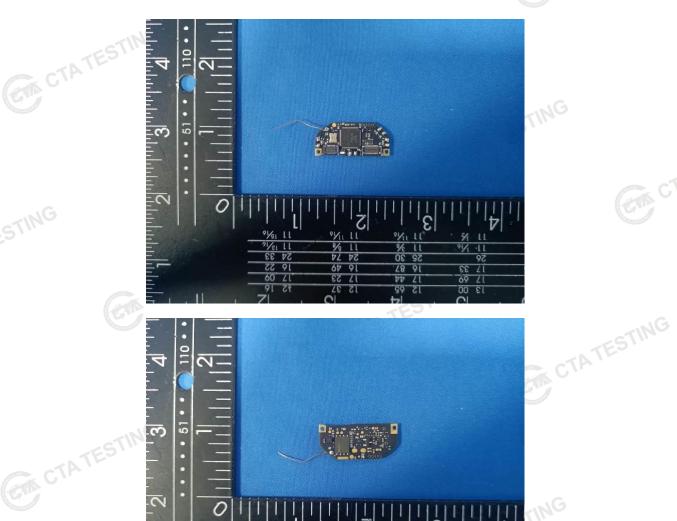
0

91/91

66 54

60 Z

91 21


16 22

11 21/e1 11

Page 35 of 36

rING

7

91/19

%

6

67 91

18

Z

% U

28 91

97

