

FCC PART 15.407(H) DYNAMIC FREQUENCY SELECTION TEST REPORT

For

Fujian Newland Payment Technology Co.,Ltd.

No.1, Rujiang XiRoad, Mawei District Newland, Fuzhou, Fujian, P.R. China

FCC ID: 2AM6U-N910

Report Type: Product Type:

Original Report Intelligent POS Terminal

Report Number: RXM170815054-00F

Report Date: 2017-10-10

Jerry Zhang

Reviewed By: EMC Manager

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888

Jerry Zhang

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

Report No.: RXM170815054-00F

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	4
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	4
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	4
SUMMARY OF TEST RESULTS	5
APPLICABLE STANDARDS	6
DFS REQUIREMENT	
DFS MEASUREMENT SYSTEM	
SYSTEM BLOCK DIAGRAM	
4.5 RADIATED METHOD.	
4.6 TEST PROCEDURE	
TEST RESULTS	13
DESCRIPTION OF EUT	
TEST EQUIPMENT LIST AND DETAILS	
TEST ENVIRONMENTAL CONDITIONS	
RADAR WAVEFORM CALIBRATION	14
CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	16
TEST PROCEDURE	16
TEST RESULTS	16
NON-OCCUPANCY PERIOD	21
TEST PROCEDURE	21
m	2.1

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:		Intelligent POS Terminal
EUT Model:		N910
Rated	Input Voltage:	DC 7.2V from battery or DC 5V from adapter
	Model:	SW-0983
Nominal Adapter Information	Input:	100-240V~, 50/60Hz, 0.5A
Throi mation	Output:	DC5.0V, 2.0A
Exter	nal Dimension:	Length (19cm)*Width (8.1cm)*High (5.5cm)
Serial Number:		170815054
EUT Received Date:		2017.08.15

Report No.: RXM170815054-00F

Objective

This report is prepared on behalf of Fujian Newland Payment Technology Co., Ltd. in accordance with FCC CFR47 §15.407 (h).

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AM6U-N910. FCC Part 15C DSS submissions with FCC ID: 2AM6U-N910.

FCC Part 15C DTS submissions with FCC ID: 2AM6U-N910.

FCC Part 22H, 24E, 27, 90 PCB submissions with FCC ID: 2AM6U-N910.

FCC Part 15C DXX submissions with FCC ID: 2AM6U-N910.

Test Methodology

FCC CFR 47 Part2, Part15.407 (h) KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 905462 D03 Client Without DFS New Rules v01r02

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Bay Area Compliance Laboratories Corp. (Dongguan) has been accredited to ISO 17025 by CNAS(Lab code: L5662). And accredited to ISO 17025 by NVLAP(Test Laboratory Accreditation Certificate Number 500069-0), the FCC Designation No. CN5002 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Dongguan) was registered with ISED Canada under ISED Canada Registration Number 3062D.

DFS Test Report Page 3 of 22

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RXM170815054-00F

EUT Exercise Software

No exercise software was used.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number
Huawei	Wireless Router	EchoLife HG8245Q	/
Dell	Laptop	E6410	/

Note: the Wirless Router FCC ID: QISHG8245Q

DFS Test Report Page 4 of 22

SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR47 §47 Part15.407 (h) and FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Report No.: RXM170815054-00F

Result **Items Description of Test** Detection UNII Detection Bandwidth Not applicable Bandwidth Initial Channel Availability Check Time (CAC) Not applicable Performance Requirements Radar Burst at the Beginning of the CAC Not applicable Check Radar Burst at the End of the CAC Not applicable Channel Move Time Compliant In-Service Compliant Channel Closing Transmission Time Monitoring Non-Occupancy Period Compliant Radar Detection Statistical Performance Check Not applicable

Note:

1) Not applicable: the EUT is a client unit without radar detection.

DFS Test Report Page 5 of 22

APPLICABLE STANDARDS

DFS Requirement

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: RXM170815054-00F

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest
Closing Transmission Time	available	BW mode available
		for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

DFS Test Report Page 6 of 22

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

DFS Test Report Page 7 of 22

Table 5 - Short Pulse Radar Test Waveforms

			se Kadar Test Wavelorn		
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{1}{360} \right\} \cdot \left\{ \frac{1}{360} \cdot \left\{ \frac{19 \cdot 10^6}{PRI_{\mu \text{sec}}} \right\} \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
			12 10	80%	120
Aggregate (Radar Types 1-4) 80% 120					

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$$

DFS Test Report Page 8 of 22

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

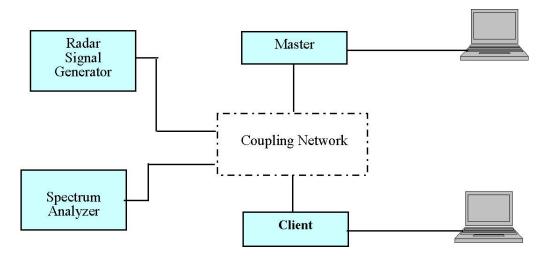
Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection	
1	35	29	82.9%	
2	30	18	60%	
3	30	27	90%	
4	50	44	88%	
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%				

DFS Test Report Page 9 of 22

Table 6 - Long Pulse Radar Test Waveform

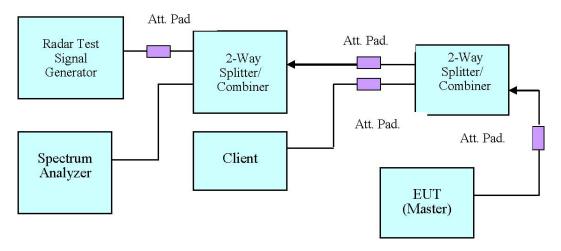
Report No.: RXM170815054-00F

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful	Minimum Number of Trials
						Detection	
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

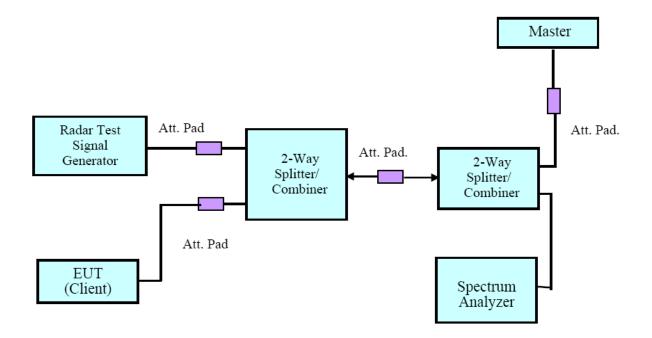

Table 7 - Frequency Hopping Radar Test Waveform

and the state of t							
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Hop	(kHz)	Length	Successful	Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

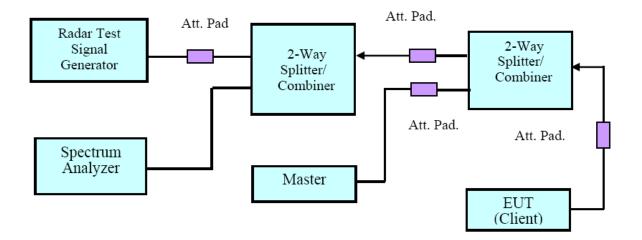
DFS Measurement System


BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

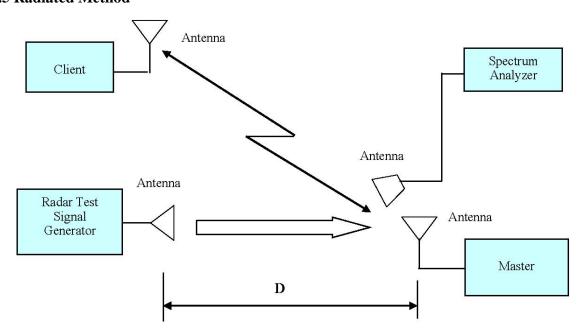
System Block Diagram


DFS Test Report Page 10 of 22

Conducted Method


Report No.: RXM170815054-00F

Setup for Master with injection at the Master


Setup for Client with injection at the Master

DFS Test Report Page 11 of 22

Setup for Client with injection at the Client

4.5 Radiated Method

4.6 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

DFS Test Report Page 12 of 22

TEST RESULTS

Description of EUT

The EUT operates in 5250-5350 MHz and 5470-5725 MHz range.

The rated output power of master device is >23 dBm (EIRP), Therefore the required interference threshold level is -64 dBm, the required radiated threshold at antenna port is -64dBm.

The calibrated radiated DFS detection threshold level is set to -64 dBm.

WLAN traffic is generated by streaming the video file TestFile.mpg, this file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. The file is streamed from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.

Report No.: RXM170815054-00F

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
National Instruments	NI PXI-1042 8-Slot chassis	PXI-1042	VOBX40FBD	N/A	N/A
National Instruments	Arbitrary Waveform Generator	PXI-5421	N/A	N/A	N/A
National Instruments	RF Upconverter	PXI-5610	N/A	N/A	N/A
ASCOR	Upconverter	AS-7202	N/A	N/A	N/A
Agilent	Spectrum Analyzer	E4440A	SG43360054	2016-12-08	2017-12-08
Ditorn	Splitter/Combiner	D3C4080	SN2244	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
ETS LINDGREN	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

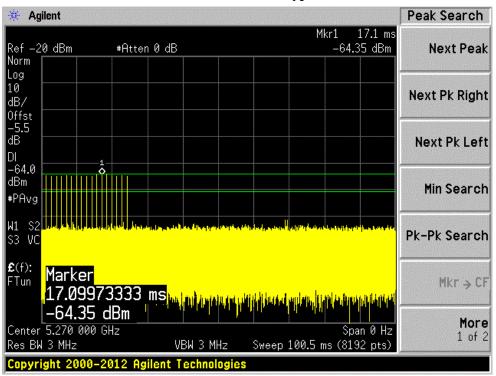
Test Environmental Conditions

Temperature:	28.3 ° C
Relative Humidity:	48 %
ATM Pressure:	100.2 kPa

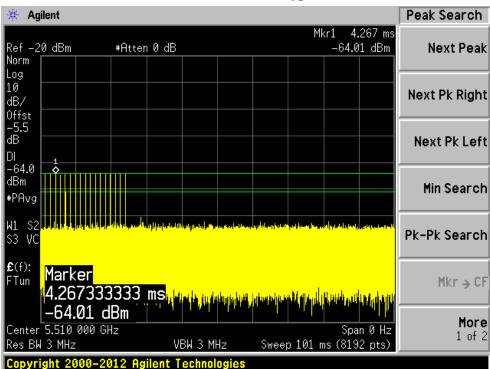
The testing was performed by David Huang on 2017-09-07.

DFS Test Report Page 13 of 22

Radar Waveform Calibration


Report No.: RXM170815054-00F

Note: the calibration distance(D) was 3meter.


Plots of Radar Waveforms

DFS Test Report Page 14 of 22

5270 MHz: Radar Type 0

5510 MHz: Radar Type 0

DFS Test Report Page 15 of 22

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

Report No.: RXM170815054-00F

Test Procedure

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. repeat using a long pulse radar type5 waveform.

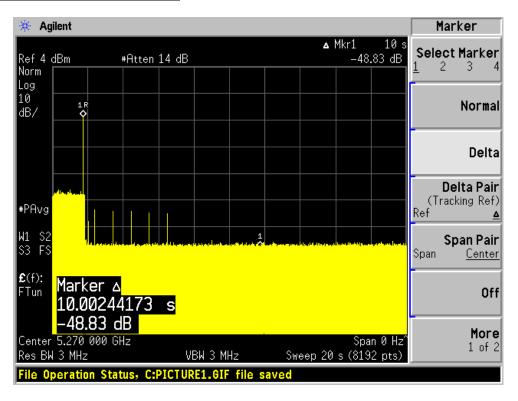
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

Test Results

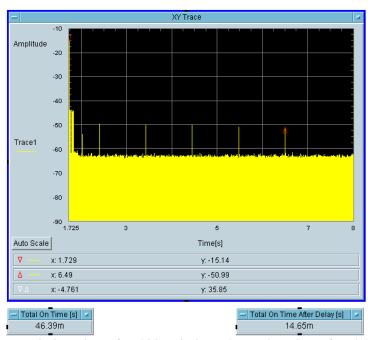

Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results	
5270	40	Type 0	Compliant	
5510	40	Type 0	Compliant	

Please refer to the following tables and plots.

DFS Test Report Page 16 of 22

5270 MHz

Type 0 radar channel move time result:

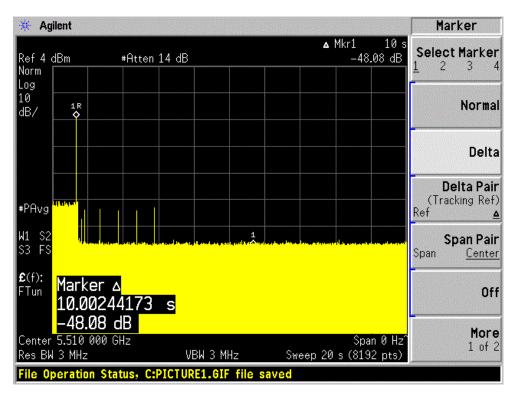

Report No.: RXM170815054-00F

DFS Test Report Page 17 of 22

Type 0 radar channel closing transmission time result:

Aggregate Transmission Time after 200ms (ms)	Limit (ms)	
0	60	

5270 MHz channel closing transmission time

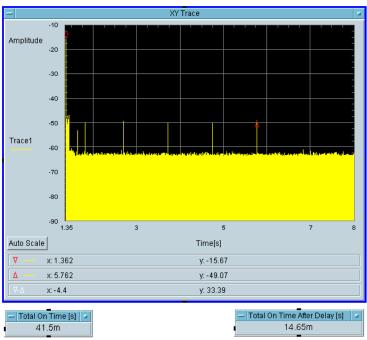


Note: If Aggregate Transmission Time after 200ms is 0ms, the total on time after delay(s) item will not display any data.

DFS Test Report Page 18 of 22

5510 MHz

Type 0 radar channel move time result:


Report No.: RXM170815054-00F

DFS Test Report Page 19 of 22

Type 0 radar channel closing transmission time result:

Aggregate Transmission Time after 200ms (ms)	Limit (ms)	
0	60	

5510 MHz channel closing transmission time

Note: If Aggregate Transmission Time after 200ms is 0ms, the total on time after delay(s) item will not display any data.

DFS Test Report Page 20 of 22

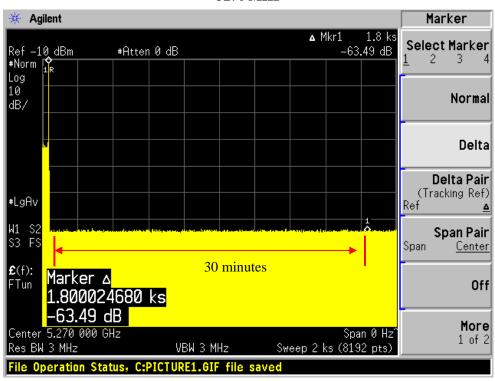
NON-OCCUPANCY PERIOD

Test Procedure

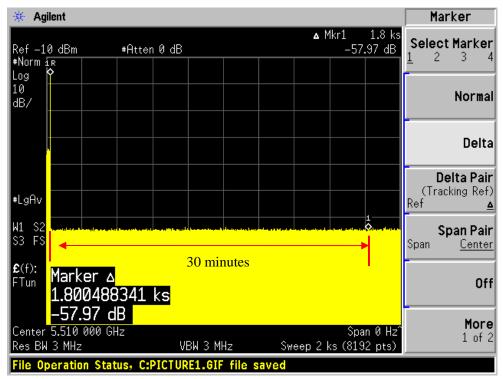
Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

Report No.: RXM170815054-00F

Test Result


Frequency(MHz)	Bandwidth (MHz)	Spectrum Analyzer Display
5270	40	No transmission within 30 minutes
5510	40	No transmission within 30 minutes

Please refer to the following plots.


DFS Test Report Page 21 of 22

5270 MHz

Report No.: RXM170815054-00F

5510 MHz

***** END OF REPORT *****

DFS Test Report Page 22 of 22