FCC PART 22/24/27 TEST REPORT	
FCC Part 22 /Part 24/Part 27	
Report Reference No.:	HUAK180817830E
FCC ID:	2AM6L-SPAD
Compiled by (position+printed name+signature)	File administrators Gary Qian Gonf Sianl
Supervised by (position+printed name+signature)	Technique principal Eden Hu Eden Hu
Approved by (position+printed name+signature)	Manager Jason Zhou Jason Zhou
Date of issue:	Dec. 24, 2018
Testing Laboratory Name Address :	Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name : Address :	Streamax Technology Co.,Ltd 21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong,P.R. China
Standard	FCC Part 22: PUBLIC MOBILE SERVICES FCC Part 24: PERSONAL COMMUNICATIONS SERVICES FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES
Shenzhen HUAK Testing Technology Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.	
Test item description	Tablet
Brand Name :	Streamax
Model	Smart Pad
Ratings	DC 12V
Modulation	WCDMA:QPSK
Hardware version :	1480
Software version :	RMVST_SPAD
Frequency	UMTS Band II;UMTS Band V; UMTS Band IV
Result	PASS

TEST REPORT

| Test Report No. : \quad HUAK180817830E | Dec. 24, 2018
 Date of issue |
| :--- | :--- | :--- |

Equipment under Test	Tablet
Model /Type	Smart Pad
Applicant	Streamax Technology Co.,Ltd
Address	21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong,P.R. China
Manufacturer	Streamax Technology Co.,Ltd
Address	21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong,P.R. China
Factory	Streamax Electronics Co.,Ltd.
Address	5th-6thFloor, West, Chuangxiang 2nd Building, Yanxiang Technology Park 11\# High-tech West Road, Guangming District, Shenzhen, Guangdong Province, P.R. China

Date of Test: Aug. 15, 2018~Dec. 24, 2018
Date of Report: Dec. 24, 2018
Report Number: HUAK180817830E

Test Result:

PASS

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision	Issue Date	Revisions	Revised By
V1.0	Dec. 24,2018	Initial Issue	Jason Zhou

TABLE OF CONTENTS

1.VERIFICATION OF COMPLIANCE 6
2. GENERAL INFORMATION 7
2.1 PRODUCT DESCRIPTION 7
2.2RELATED SUBMITTAL(S) / GRANT (S) 8
2.3 TEST METHODOLOGY 9
2.4 TEST FACILITY 10
2.6 SPECIALACCESSORIES 11
2.7 EQUIPMENT MODIFICATIONS 11
3. SYSTEM TEST CONFIGURATION 12
3.1 EUT CONFIGURATION 12
3.2 EUT EXERCISE 12
3.3 CONFIGURATION OF EUT SYSTEM. 12
4. SUMMARY OF TEST RESULTS 13
5. DESCRIPTION OF TEST MODES 14
6. OUTPUT POWER 15
6.1 CONDUCTED OUTPUT POWER 15
6.2 RADIATED OUTPUT POWER 19
6.2.1 MEASUREMENT METHOD 19
6.2.2 PROVISIONS APPLICABLE 20
6.3. PEAK-TO-AVERAGE RATIO. 22
6.3.1 MEASUREMENT METHOD 22
6.3.2 PROVISIONS APPLICABLE 22
6.3.3 MEASUREMENT RESULT 23
7. OCCUPIED BANDWIDTH. 24
7.1 MEASUREMENT METHOD 24
7.2 PROVISIONS APPLICABLE 24
7.3 MEASUREMENT RESULT. 25
8. BAND EDGE. 28
8.1 MEASUREMENT METHOD 28
8.2 PROVISIONS APPLICABLE 28
8.3 MEASUREMENT RESULT. 29
9. SPURIOUS EMISSION 31
9.1 CONDUCTED SPURIOUS EMISSION 31
9.2 RADIATED SPURIOUS EMISSION. 41
9.2.2 TEST SETUP 42
10. FREQUENCY STABILITY 46
10.1 MEASUREMENT METHOD 46
10.2 PROVISIONS APPLICABLE. 47
10.3 MEASUREMENT RESULT 48
APPENDIX A: PHOTOGRAPHS OF TEST SETUP 53

1.TEST STANDARDS

The tests were performed according to following standards:
FCC Part 22 (10-12-18 Edition): PUBLIC MOBILE SERVICES
FCC Part 24(10-12-18 Edition): PRIVATE LAND MOBILE RADIO SERVICES
FCC Part 27(10-12-18 Edition): MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES
TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

2. SUMMARY

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Tablet
Frequency Bands:	ХUMTS FDD Band II \boxtimes UMTS FDD Band IV ØUMTS FDD Band V (U.S. Bands) \square UMTS FDD Band I \square UMTS FDD Band VIII (Non-U.S. Bands)
Antenna Type	PIFA Antenna
Type of Modulation	WCDMA : QPSK
Antenna gain	WCDMA850: 1.25 dBi ; WCDMA1900:1.11dBi; WCDMA1700:1.09dBi
Power Supply:	DC 12V
Single Card:	WCDMA /LTE Card Slot
Extreme Vol. Limits:	DC10.8 V to 13.2 V (Normal: DC12 V)
Extreme Temp. Tolerance	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
*** Note: 1. The High Voltage DC13.2 and Low Voltage DC10.8V were declared by manufacturer 2. The EUT couldn't be operating normally with higher or lower voltage.	

*** Note:1.The maximum power levels are RMC 12.2kbps mode for WCDMA band II, WCDMA band V, WCDMA band IV, only these modes were used for all tests.
2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst caseas a representative.

WCDMA Card Slot :

	Maximum ERP/EIRP (dBm)	Max. Conducted Power (dBm)	Max. Average Burst Power (dBm)
UMTS BAND II	21.95	23.88	21.52
UMTS BAND V	21.56	23.74	21.76
UMTS BAND IV	21.31	23.74	21.69

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID:2AM6L-SPAD, filing to comply with the FCC Part Part $22 \mathrm{H} \& 24 \mathrm{E} \& 27 \mathrm{~L}$ requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and KDB 971168 D01 Power Means License Digital Systems V03R01.

2.4 TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China
Designation Number	CN1229
Test Firm Registration Number : 616276	

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Receiver	R\&S	ESCI 7	HKE-010	$2017 / 12 / 28$	$2018 / 12 / 27$
LISN	R\&S	ENV216	HKE-002	$2017 / 12 / 28$	$2018 / 12 / 27$
Spectrum analyzer	Agilent	N9020A	HKE-048	$2017 / 12 / 28$	$2018 / 12 / 27$
Horn antenna	Schwarzbeck	9120D	HKE-013	$2017 / 12 / 28$	$2019 / 12 / 26$
Preamplifier	EMCI	EMC051845SE	HKE-015	$2017 / 12 / 28$	$2018 / 12 / 27$
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	HKE-087	$2017 / 12 / 28$	$2018 / 12 / 27$
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	$2017 / 12 / 28$	$2019 / 12 / 26$
Spectrum analyzer	Agilent	N9020A	HKE-048	$2017 / 12 / 28$	$2018 / 12 / 27$
Power Sensor	Agilent	E9300A	HKE-086	$2017 / 12 / 28$	$2018 / 12 / 27$
Wireless Communication Test Set	R\&S	CMU200	HKE-026	$2017 / 12 / 28$	$2018 / 12 / 27$
Horn Ant $(18 G-40 G H z) ~$	Schwarzbeck	BBHA 9170	HKE-094	$2016 / 03 / 01$	$2020 / 02 / 28$
Horn Ant $(18 G-40 G H z)$	ETS	QWH_SL_18_40_K_SG	HKE-092	$2016 / 03 / 01$	$2020 / 02 / 28$

2.5 SPECIAL ACCESSORIES

The battery wassupplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUTconfiguration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Remark
1	Tablet	Smart Pad	2 AM6L-SPAD	EUT
2	Battery	N/A	DC 3.7V/2400mAh	Accessory
3	Data Hub	N/A	N/A	Accessory
4	Front Panel	N/A	N/A	Accessory

[^0]
4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result
1	Output Power	Conducted Output Power	2.1046	Pass
		Radiated Output Power	22.913 (a) (2) / 24.232 (c)/27.50(d) (4)	
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)	Pass
3	Spurious Emission	Conducted Spurious Emission	2.1051/22.917(a)/24.238(a)/27.53(h)	Pass
		Radiated Spurious Emission		
4	Frequency Stability		2.1053/22.917(a)/24.238(a)/27.53(h)	Pass
5	Occupied Bandwidth		2.1049	Pass
6	Band Edge		2.1051/22.917(a)/24.238(a)/ 27.53(h)	Pass

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode \& Schwarz Digital Radio Communication Tester (CMU 200)to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel).
${ }^{* * *}$ Note: WCDMA band II, WCDMA band V, WCDMA band IV, mode have been tested during the test.
The worst condition was recorded in the test report if no other modes test data.

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
The path loss was compensated to the results for each measurement.
Measure the maximum burst average power and average power for othermodulation signal.
The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(WCDMA band II,WCDMA band V)at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

Conducted Output Power Limits for UMTS band V		
Mode	Nominal Peak Power	Tolerance(dB)
WCDMA	24dBm (0.25W)	-2
Conducted Output Power Limits for UMTS band IV		
Mode	Nominal Peak Power	Tolerance(dB)
WCDMA	24dBm (0.25W)	-2
Conducted Output Power Limits for UMTS band II		
Mode	Nominal Peak Power	Tolerance(dB)
WCDMA	$24 \mathrm{dBm}(0.25 \mathrm{~W})$	-2

UMTS BAND V

Mode	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Reference power	Peak Power	Tolerance	Avg.Burst Power
WCDMA850 RMC	826.4	24	23.69	-0.31	21.58
	836.4	24	23.74	-0.26	21.66
	846.6	24	23.67	-0.33	21.76
WCDMA850 AMR	826.4	24	23.36	-0.64	20.33
	836.4	24	23.53	-0.47	20.42
	846.6	24	23.44	-0.56	20.29
HSDPA Subtest 1	826.4	24	22.12	-1.88	20.73
	836.4	24	22.23	-1.77	20.39
	846.6	24	22.42	-1.58	20.58
HSDPA Subtest 2	826.4	24	22.59	-1.41	20.95
	836.4	24	22.61	-1.39	20.87
	846.6	24	22.43	-1.57	20.69
HSDPA Subtest 3	826.4	24	22.22	-1.78	20.44
	836.4	24	22.21	-1.79	20.53
	846.6	24	22.33	-1.67	20.57
HSDPA Subtest 4	826.4	24	22.28	-1.72	20.13
	836.4	24	22.26	-1.74	20.26
	846.6	24	22.33	-1.67	20.34
HSUPA Subtest 1	826.4	24	22.85	-1.15	21.31
	836.4	24	22.69	-1.31	21.25
	846.6	24	22.74	-1.26	21.29
HSUPA Subtest 2	826.4	24	22.39	-1.61	20.44
	836.4	24	22.72	-1.28	20.52
	846.6	24	22.38	-1.62	20.63
HSUPA Subtest 3	826.4	24	22.11	-1.89	20.59
	836.4	24	22.23	-1.77	20.62
	846.6	24	22.28	-1.72	20.66
HSUPA Subtest 4	826.4	24	22.44	-1.56	20.20
	836.4	24	22.66	-1.34	20.19
	846.6	24	22.69	-1.31	20.33
HSUPA Subtest 5	826.4	24	22.58	-1.42	20.76
	836.4	24	22.67	-1.33	20.67
	846.6	24	22.76	-1.24	20.58

UMTS BAND II

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
WCDMA1900 RMC	1852.4	24	23.88	-0.12	21.52
	1880	24	23.74	-0.26	21.33
	1907.6	24	23.84	-0.16	21.42
WCDMA1900 AMR	1852.4	24	23.14	-0.86	20.39
	1880	24	23.32	-0.68	20.87
	1907.6	24	23.16	-0.84	20.48
HSDPA Subtest 1	1852.4	24	22.42	-1.58	20.05
	1880	24	22.26	-1.74	20.11
	1907.6	24	22.37	-1.63	20.06
HSDPA Subtest 2	1852.4	24	22.03	-1.97	20.11
	1880	24	22.44	-1.56	20.23
	1907.6	24	22.24	-1.76	20.12
HSDPA Subtest 3	1852.4	24	22.11	-1.89	20.53
	1880	24	22.33	-1.67	20.58
	1907.6	24	22.42	-1.58	20.66
HSDPA Subtest 4	1852.4	24	22.55	-1.45	20.44
	1880	24	22.56	-1.44	20.32
	1907.6	24	22.47	-1.53	20.47
HSUPA Subtest 1	1852.4	24	22.27	-1.73	21.03
	1880	24	22.28	-1.72	21.08
	1907.6	24	22.34	-1.66	21.11
HSUPA Subtest 2	1852.4	24	22.11	-1.89	20.63
	1880	24	22.21	-1.79	20.59
	1907.6	24	22.36	-1.64	20.64
HSUPA Subtest 3	1852.4	24	22.44	-1.56	20.33
	1880	24	22.52	-1.48	20.25
	1907.6	24	22.49	-1.51	20.29
HSUPA Subtest 4	1852.4	24	22.66	-1.34	20.69
	1880	24	22.58	-1.42	20.72
	1907.6	24	22.59	-1.41	20.69
HSUPA Subtest 5	1852.4	24	22.47	-1.53	20.44
	1880	24	22.53	-1.47	20.39
	1907.6	24	22.55	-1.45	20.44

UMTS BAND IV

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
WCDMA 1700 RMC	1712.4	24	23.49	-0.51	21.58
	1732.6	24	23.72	-0.28	21.69
	1752.6	24	23.74	-0.26	21.44
WCDMA 1700AMR	1712.4	24	23.44	-0.56	21.59
	1732.6	24	23.53	-0.47	21.33
	1752.6	24	23.58	-0.42	21.42
HSDPA Subtest 1	1712.4	24	23.66	-0.34	20.28
	1732.6	24	23.55	-0.45	20.65
	1752.6	24	23.27	-0.73	20.43
HSDPA Subtest 2	1712.4	24	22.44	-1.56	20.29
	1732.6	24	22.39	-1.61	20.32
	1752.6	24	22.52	-1.48	20.19
HSDPA Subtest 3	1712.4	24	22.61	-1.39	20.11
	1732.6	24	22.34	-1.66	20.17
	1752.6	24	22.87	-1.13	20.33
HSDPA Subtest 4	1712.4	24	22.81	-1.19	20.42
	1732.6	24	22.80	-1.2	20.28
	1752.6	24	22.38	-1.62	20.33
HSUPA Subtest 1	1712.4	24	22.87	-1.13	20.11
	1732.6	24	22.66	-1.34	20.29
	1752.6	24	22.61	-1.39	20.34
HSUPA Subtest 2	1712.4	24	22.78	-1.22	20.52
	1732.6	24	22.57	-1.43	20.55
	1752.6	24	22.97	-1.03	20.64
HSUPA Subtest 3	1712.4	24	22.56	-1.44	20.48
	1732.6	24	22.56	-1.44	20.53
	1752.6	24	22.66	-1.34	20.58
HSUPA Subtest 4	1712.4	24	22.35	-1.65	20.11
	1732.6	24	22.44	-1.56	20.23
	1752.6	24	22.59	-1.41	20.05
HSUPA Subtest 5	1712.4	24	22.74	-1.26	20.19
	1732.6	24	22.39	-1.61	20.17
	1752.6	24	22.68	-1.32	20.28

6.2 RADIATED OUTPUT POWER

6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.

1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1 GHz are performed using dipole antennas. Measurements on signals operating above 1 GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15-Pr. TheARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
6. The EUT is then put into continuously transmitting mode at its maximum power level.
7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain
(2.15 dBi) and known input power (Pin).
9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP $-2.15 \mathrm{dBi} . .$.
6.2.2 PROVISIONS APPLICABLE

Mode	FCC Part Section(s)	Nominal Peak Power
UMTS BAND II	$24.232(\mathrm{c})$	$<=33 \mathrm{dBm}(2 \mathrm{~W})$.EIRP
UMTS BANDV	$22.913(\mathrm{a})(2)$	$<=38.45 \mathrm{dBm}(7 \mathrm{~W})$. ERP
UMTS BAND IV	$27.50(\mathrm{~d})(4)$	$<=30 \mathrm{dBm}(1 \mathrm{~W})$. EIRP

6.2.3 MEASUREMENT RESULT

Radiated Power (E.I.R.P) for UMTS band II

Mode	Result			
			Polarization Of Max. E.I.R.P	Conclusion
	1852.4	$\mathbf{2 1 . 9 5}$	Horizontal	
	1880	21.88	Horizontal	Pass
	1907.6	21.96	Horizontal	Pass
	1852.4	19.17	Vertical	Pass
	1880	19.03	Vertical	Pass
	1907.6	19.05	Vertical	Pass

Radiated Power (ERP) for UMTS band V				
Mode	Result			
	Frequency	Max. Peak ERP (dBm)	Polarization Of Max. ERP	Conclusion
	826.4	21.28	Horizontal	Pass
	836.4	21.33	Horizontal	Pass
	846.6	21.56	Horizontal	Pass
	826.4	19.33	Vertical	Pass
	836.4	19.46	Vertical	Pass
	846.6	19.58	Vertical	Pass

Radiated Power (E.I.R.P) for UMTS band IV				
Mode	Result			
	Frequency	Max. Peak ERP (dBm)	Polarization Of Max. E.I.R.P.	Conclusion
	1712.4	$\mathbf{2 1 . 3 1}$	Horizontal	Pass
	1732.6	21.22	Horizontal	Pass
	1752.6	21.09	Horizontal	Pass
	1712.4	19.69	Vertical	Pass
	1732.6	19.74	Vertical	Pass
	1752.6	19.86	Vertical	Pass

Note: Above is the worst mode data.

Page 22 of 53
Report No.: HUAK180817830E

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

$$
\text { PAPR }(\mathrm{dB})=\mathrm{PPk}(\mathrm{dBm})-\operatorname{PAvg}(\mathrm{dBm}) .
$$

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.
Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.3.3 MEASUREMENT RESULT

Modes	UMTS BAND II		
Channel	$\mathbf{9 2 6 2}$	$\mathbf{9 4 0 0}$	$\mathbf{9 5 3 8}$
	(Low)	(Mid)	(High)
Frequency (MHz)	$\mathbf{1 8 5 2 . 4}$	$\mathbf{1 8 8 0}$	$\mathbf{1 9 0 7 . 6}$
Peak-To-Average Ratio (dB)	1.75	1.58	1.64

Modes	UMTS BAND V		
Channel	$\mathbf{4 1 3 2}$	$\mathbf{4 1 8 2}$	4233
	(Low)	(Mid)	(High)
Frequency (MHz)	$\mathbf{8 2 6 . 4}$	836.4	846.6
Peak-To-Average Ratio (dB)	1.06	1.11	1.15

Modes	UMTS BAND IV		
Channel	1887	1987	$\mathbf{2 0 8 7}$
	(Low)	(Mid)	(High)
Frequency (MHz)	1712.4	$\mathbf{1 7 3 2 . 6}$	$\mathbf{1 7 5 2 . 6}$
Peak-To-Average Ratio (dB)	1.59	1.61	1.58

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.
2. RBW $=1 \sim 5 \%$ of the expected OBW, VBW $>=3 \times$ RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power

7.3 MEASUREMENT RESULT

Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
WCDMA 850	UMTS	LCH	4124.1	4713	PASS
		MCH	4127.6	4688	PASS
		4124.7	4726	PASS	

Test Band	Test Mode	Test Channel	Occupied Bandwidth $($ KHZ $)$	Emission Bandwidth $($ KHZ $)$	Verdict
WCDMA 1900	UMTS	LCH	4137.5	4716	PASS
		MCH	4139.9	4747	PASS
		HCH	4143.7	4749	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
WCDMA 1700	UMTS	LCH	4136.6	4718	PASS
		MCH	4137.6	4706	PASS
		HCH	4125.1	4744	PASS

For WCDMA

Test Band=WCDMA850/WCDMA1900/WCDMA 1700
Test Mode=UMTS

8. BAND EDGE

8.1 MEASUREMENT METHOD

1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
4. Span was set large enough so as to capture all out of band emissions near the band edge.
5. RBW $>1 \%$ of the emission bandwidth, VBW >=3 \times RBW, Detector=RMS, Number of points $>=2 \times$ Span/RBW, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a), 24.238(a), 27.53(h)and KDB 971168 D1 V03R01.

8.3 MEASUREMENT RESULT

Test Results

For WCDMA
Test Band=WCDMA850/WCDMA1900/WCDMA 1700
Test Mode=UMTS

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT. 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its $10^{\text {th }}$ harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.
2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz , data taken from 30 MHz to 20 GHz . For GSM850, data taken from 30 MHz to 9 GHz .
3. Determine EUT transmit frequencies: the following typical channelswere chosen to conducted emissions testing.

Typical Channels for testing of UMTS band II	
Channel	Frequency (MHz)
9262	1852.4
9400	1880
9538	1907.6

Typical Channels for testing of UMTS band V	
Channel	Frequency (MHz)
4132	826.4
4182	836.4
4233	846.6

Typical Channels for testing of UMTS band IV	
Channel	Frequency (MHz)
1887	1712.4
1987	1732.6
2087	1752.6

9.1.2 PROVISIONS APPLICABLE

On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P , in Watts) by at least $43+10 \mathrm{Log}(\mathrm{P}) \mathrm{dB}$. For all power levels +30 dBm to 0 dBm , this becomes a constant specification limit of -13 dBm .

9.1.3MEASUREMENT RESULT

Test Results

Test Band=WCDMA850/WCDMA1900/WCDMA 1700

Test Mode=UMTS

Note:1. Below 30MHZ no Spurious found and Above is the worst mode data.
2. As no emission found in standby or receive mode, no recording in this report.

9.2 RADIATED SPURIOUS EMISSION

9.2.1MEASUREMENT METHOD

1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1 GHz , use 1 MHz VBW and RBW for peak reading. Then 1 MHz RBW and 10 Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1 GHz .
9. For testing above 1 GHz , the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30 MHz , loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

9.2.2 TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000 MHz

9.2.3 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P , in Watts) by at least $43+10 \log (P) \mathrm{dB}$. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43+10 \log (P) d B$, translates in the relevant power range $(1$ to 0.001 W$)$ to -13 dBm . At 1 W the specified minimum attenuation becomes 43 dB and relative to a $30 \mathrm{dBm}(1 \mathrm{~W})$ carrier becomes a limit of -13 dBm . At $0.001 \mathrm{~W}(0 \mathrm{dBm})$ the minimum attenuation is 13 dB , which again yields a limit of -13 dBm . In this way a translation of the specification from relative to absolute terms is carried out.

Note: only result the worst condition of each test mode:

9.2.4 MEASUREMENT RESULT

HSPA band II:

The Worst Test Results for Channel 9538/1907.6MHz				
Frequency	Emission Level	Limits	Margin	Comment
(MHz)	(dBm)	(dBm)	(dB)	
169.52	-49.94	-13	-36.94	Horizontal
3815.20	-35.07	-13	-22.07	Horizontal
7811.15	-50.73	-13	-37.73	Horizontal
1715.39	-35.39	-13	-22.39	Vertical
3815.20	-47.19	-13	-34.19	Vertical
7896.54	-34.27	-13	-21.27	Vertical

HSPA band V:

The Worst Test Results for Channel 4233/846.6MHz				
Frequency	Emission Level	Limits	Margin	Comment
(MHz)	(dBm)	(dBm)	(dB)	
1693.20	-52.42	-13	-39.42	Horizontal
3056.44	-33.68	-13	-20.68	Horizontal
6521.97	-47.72	-13	-34.72	Horizontal
1693.20	-35.29	-13	-22.29	Vertical
3215.64	-45.52	-13	-32.52	Vertical
6428.52	-40.74	-13	-27.74	Vertical

HSPA band IV:
The Worst Test Results for Channel 810/1909.8MHz

Frequency	Emission Level	Limits	Margin	Comment
(MHz)	(dBm)	(dBm)	(dB)	
1985.26	-49.70	-13	-36.70	Horizontal
3819.60	-38.28	-13	-25.28	
7845.51	-38.53	-13	-25.53	Horizontal
1847.22	-50.46	-13	-37.46	Vertical
3819.60	-38.50	-13	-25.50	Vertical
763.41	-34.29	-13	-21.29	Vertical

RESULT: PASS

Note:

1. Margin = Emission Level -Limit
2. Below 30 MHZ no Spurious found and Above is the worst mode data.

10. FREQUENCY STABILITY

10.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R\&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

1 Measure the carrier frequency at room temperature.
2 Subject the EUT to overnight soak at $-10^{\circ} \mathrm{C}$.
3 With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 9400 for UMTS band II and channel 4175 for UMTS band V measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
4 Repeat the above measurements at $10^{\circ} \mathrm{C}$ increments from $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Allow at least $11 / 2$ hours at each temperature, unpowered, before making measurements.
5 Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1 Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for $11 / 2$ hours unpowered, to allow any self-heating to stabilize, before continuing
6 Subject the EUT to overnight soak at $+50^{\circ} \mathrm{C}$.
7 With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
8 Repeat the above measurements at $10^{\circ} \mathrm{C}$ increments from $+50^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$. Allow at least $11 / 2$ hours at each temperature, unpowered, before making measurements.
9 At all temperature levels hold the temperature to $+/-0.5^{\circ} \mathrm{C}$ during the measurement procedure.

10.2 PROVISIONS APPLICABLE

10.2.1 FOR HAND CARRIED BATTERY POWERED EQUIPMENT

According to the ANSI/TIA-603-E-2016, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235 , Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055 (d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 10.8VDC and 13.2VDC, with a nominal voltage of 12VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10% and $+12.5 \%$. For the purposes of measuring frequency stability these voltage limits are to be used.

10.2.2 FOR EQUIPMENT POWERED BY PRIMARY SUPPLY VOLTAGE

According to the ANSI/TIA-603-E-2016,the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235 , Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is $20^{\circ} \mathrm{C}$.

10.3 MEASUREMENT RESULT

Test Results
Frequency Error vs. Voltage:

Test Band	Test Mode	Test Channel	$\begin{aligned} & \text { Test } \\ & \text { Temp. } \end{aligned}$	Test Volt.(V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
WCDMA850	UMTS	LCH	TN	VL	-5.51	-0.0067	± 2.5	PASS
			TN	VN	-3.46	-0.0042	± 2.5	PASS
			TN	VH	-4.85	-0.0059	± 2.5	PASS
		MCH	TN	VL	-0.27	-0.0003	± 2.5	PASS
			TN	VN	-1.02	-0.0012	± 2.5	PASS
			TN	VH	1.14	0.0014	± 2.5	PASS
		HCH	TN	VL	-1.62	-0.0019	± 2.5	PASS
			TN	VN	2.88	0.0034	± 2.5	PASS
			TN	VH	0.21	0.0002	± 2.5	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.(V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
WCDMA1900	UMTS	LCH	TN	VL	-1.94	-0.0010	PASS
			TN	VN	2.91	0.0016	PASS
			TN	VH	-2.75	-0.0015	PASS
		MCH	TN	VL	1.02	0.0005	PASS
			TN	VN	-1.71	-0.0009	PASS
			TN	VH	-1.72	-0.0009	PASS
		HCH	TN	VL	-4.62	-0.0024	PASS
			TN	VN	-5.71	-0.0030	PASS
			TN	VH	-3.85	-0.0020	PASS

Test Band	Test Mode	Test Channel	$\begin{aligned} & \text { Test } \\ & \text { Temp. } \end{aligned}$	Test Volt.(V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
WCDMA1700	UMTS	LCH	TN	VL	10.60	0.0062	PASS
			TN	VN	15.35	0.0090	PASS
			TN	VH	14.30	0.0084	PASS
		MCH	TN	VL	5.17	0.0030	PASS
			TN	VN	2.52	0.0015	PASS
			TN	VH	5.26	0.0030	PASS
		HCH	TN	VL	-9.06	-0.0052	PASS
			TN	VN	-4.44	-0.0025	PASS
			TN	VH	-5.69	-0.0032	PASS

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is detemined to remain operating in band over the temperture and voltage range as tested.

Frequency Error vs. Temperature:

Test Band	Test Mode	Test Channel	Test Volt.	$\begin{gathered} \text { Test } \\ \text { Tem. }\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Freq.Error (Hz)	Freq.vs.rated (ppm)	$\begin{aligned} & \hline \text { Limit } \\ & (\mathrm{ppm}) \end{aligned}$	Verdict
WCDMA850	UMTS	LCH	VN	-10	-1.91	-0.0023	± 2.5	PASS
			VN	0	-4.65	-0.0056	± 2.5	PASS
			VN	10	-1.43	-0.0017	± 2.5	PASS
			VN	20	-1.48	-0.0018	± 2.5	PASS
			VN	30	-4.55	-0.0055	± 2.5	PASS
			VN	40	-3.23	-0.0039	± 2.5	PASS
			VN	50	-4.38	-0.0053	± 2.5	PASS
WCDMA850	UMTS	MCH	VN	-10	2.14	0.0026	± 2.5	PASS
			VN	0	-0.27	-0.0003	± 2.5	PASS
			VN	10	-2.21	-0.0026	± 2.5	PASS
			VN	20	-1.71	-0.0020	± 2.5	PASS
			VN	30	-2.14	-0.0026	± 2.5	PASS
			VN	40	-0.18	-0.0002	± 2.5	PASS
			VN	50	-1.48	-0.0018	± 2.5	PASS
WCDMA850	UMTS	HCH	VN	-10	-4.53	-0.0054	± 2.5	PASS
			VN	0	-3.19	-0.0038	± 2.5	PASS
			VN	10	-4.26	-0.0050	± 2.5	PASS
			VN	20	-3.63	-0.0043	± 2.5	PASS
			VN	30	-3.71	-0.0044	± 2.5	PASS
			VN	40	-5.58	-0.0066	± 2.5	PASS
			VN	50	-2.66	-0.0031	± 2.5	PASS

Test Band	Test Mode	Test Channel	Test Volt.	$\begin{gathered} \text { Test } \\ \text { Tem. }\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Freq.Error (Hz)	Freq.vs.rated (ppm)	Verdict
WCDMA1900	UMTS	LCH	VN	-10	1.82	0.0010	PASS
			VN	0	1.31	0.0007	PASS
			VN	10	3.54	0.0019	PASS
			VN	20	2.12	0.0011	PASS
			VN	30	0.49	0.0003	PASS
			VN	40	-1.27	-0.0007	PASS
			VN	50	1.97	0.0011	PASS
WCDMA1900	UMTS	MCH	VN	-10	-1.83	-0.0010	PASS
			VN	0	-1.68	-0.0009	PASS
			VN	10	-3.88	-0.0021	PASS
			VN	20	0.35	0.0002	PASS
			VN	30	-2.00	-0.0011	PASS
			VN	40	2.09	0.0011	PASS
			VN	50	-2.41	-0.0013	PASS
WCDMA1900	UMTS	HCH	VN	-10	-0.24	-0.0001	PASS
			VN	0	-2.24	-0.0012	PASS
			VN	10	-0.66	-0.0003	PASS
			VN	20	-0.87	-0.0005	PASS
			VN	30	-7.02	-0.0037	PASS
			VN	40	-4.67	-0.0024	PASS
			VN	50	-7.84	-0.0041	PASS

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp. ${ }^{\circ} \mathrm{C}$	Freq. Error (Hz)	Freq.vs.rated (ppm)	Verdict
WCDMA1700	UMTS	LCH	VN	-10	15.53	0.0091	PASS
			VN	0	13.67	0.0080	PASS
			VN	10	11.22	0.0066	PASS
			VN	20	14.43	0.0084	PASS
			VN	30	9.84	0.0057	PASS
			VN	40	8.33	0.0049	PASS
			VN	50	10.36	0.0060	PASS
WCDMA1700	UMTS	MCH	VN	-10	12.79	0.0074	PASS
			VN	0	14.59	0.0084	PASS
			VN	10	2.52	0.0015	PASS
			VN	20	4.58	0.0026	PASS
			VN	30	0.06	0.0000	PASS
			VN	40	0.64	0.0004	PASS
			VN	50	0.53	0.0003	PASS
WCDMA1700	UMTS	HCH	VN	-10	-0.24	-0.0001	PASS
			VN	0	2.17	0.0012	PASS
			VN	10	-1.54	-0.0009	PASS
			VN	20	1.77	0.0010	PASS
			VN	30	-1.98	-0.0010	PASS
			VN	40	-7.57	-0.0043	PASS
			VN	50	-4.32	-0.0025	PASS

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is detemined to remain operating in band over the temperture and voltage range as tested.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED SPURIOUS EMISSION

RADIATED SPURIOUS ABOVE 1G EMISSION

----END OF REPORT----

[^0]: ***Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

