

FCC Test Report

Test Report
On Behalf of
Streamax Technology Co., Ltd.
For
MDVR
Model No.: M1N 2.0

FCC ID: 2AM6L-M1N2

Prepared For: Streamax Technology Co., Ltd.

21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue, Nanshan District,

Shenzhen, Guangdong 518055, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 21, 2024 ~ Mar. 07, 2024

Date of Report: Mar. 07, 2024

Report Number: HK2402210730-3E

Test Result Certification

Applicant's Name: Streamax Technology Co., Ltd.

. 21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue,

Nanshan District, Shenzhen, Guangdong 518055, China

Report No.: HK2402210730-3E

Manufacturer's Name.....: Streamax Technology Co., Ltd.

21-23/F, Building B1, Zhiyuan, No. 1001, Xueyuan Avenue,

Nanshan District, Shenzhen, Guangdong 518055, China

Product Description

Trade Mark.....: N/A
Product Name....: MDV

Model and/or Type Reference: M1N 2.0

FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests...... Feb. 21, 2024 ~ Mar. 07, 2024

Test Result Pass

Testing Engineer

1 1:

Len lian

Len Liao

Technical Manager

Wan

Sliver Wan

Authorized Signatory

Jason Mul

Jason Zhou

Table of Contents

Report No.: HK2402210730-3E

1.	Tes	est Result Summary	5
	1.1.	. Test Procedures and Results	5
	1.2.	. Information of the Test Laboratory	5
	1.3.	. Measurement Uncertainty	6
2.	EU	JT Description	7
		General Description of EUT	
	2.2.	Operation Frequency Each of Channel	8
	2.3.	Operation of EUT during Testing	8
	2.4.	Description of Test Setup	9
	2.5.	Description of Support Units	10
3.		eneral Information	
	3.1.	. Test Environment and Mode	11
4.	Tes	est Results and Measurement Data	13
	4.1.	. Conducted Emission	13
	4.2.	. Maximum Conducted Output Power	16
	4.3.	6dB Emission Bandwidth	19
	4.4.	. 26dB Bandwidth and 99% Occupied Bandwidth	26
	4.5.	. Power Spectral Density	27
	4.6.	. Band Edge	34
	4.7.	. Spurious Emission	49
		Frequency Stability Measurement	
	4.9.	. Antenna Requirement	69
5.	Ph	notographs of Test Setup	70
C W		notes of the EUT	74

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Mar. 07, 2024	Jason Zhou
	0	(i)	(D)
n)G	-alG	ang	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
Ac Power Line Conducted Emission	§15.207	N/A
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A MAKTES
Power Spectral Density	§15.407(a)	PASS
Band Edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
ß 1	Conducted Emission	±0.37dB
2	RF Power, Conducted	±3.35dB
3	Spurious Emissions, Conducted	±2.20dB
4	All Emissions, Radiated(<1G)	±3.90dB
5 m ^G	All Emissions, Radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. EUT Description

2.1. General Description of EUT

Equipment:	MDVR
Model Name:	M1N 2.0
Serial Model:	N/A
Model Difference:	N/A MARTESTRIS
Trade Mark:	N/A
FCC ID:	2AM6L-M1N2
Operation Frequency:	IEEE 802.11a/n/ac (HT20)5.745GHz-5.825GHz IEEE 802.11n/ac (HT40)5.755GHz-5.795GHz IEEE 802.11ac (HT80) 5.775GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	OFDM, OFDMA
Antenna Type:	External Antenna
Antenna Gain:	5dBi makita
Power Source:	DC12V from DC Power
Power Supply:	DC12V from DC Power
Software Version	V1.0
Hardware Version	V1.0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Operation Frequency Each of Channel

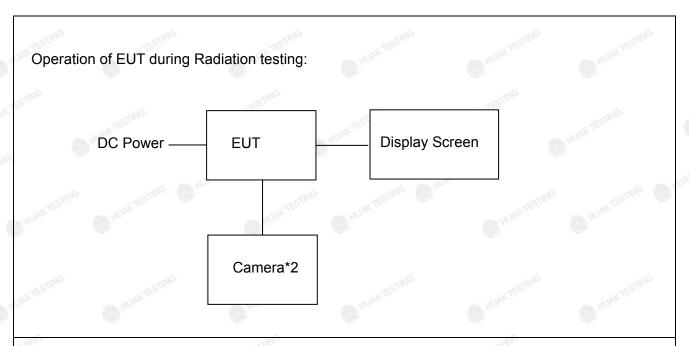
		02.11n(HT20) lac(HT20)	802.11n(HT40)/ 802.11ac(HT40)		802.11ac(HT80)	
P	Channel	Frequency	Channel	Frequency	Channel	Frequency
Ī	149	5745	151	5755	155	5775
S N	153	5765	159	5790	AKTESTIN	a)G
I	157	5785		MAKTESTIN	(a) 100	MAKTESTA
I	161	5805			,G	0
	165	5825	Ma.		AK TESTII.	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT during Testing

Ba	Band IV (5725 - 5850 MHz)			
For	For 802.11a/n (HT20)/ac(HT20)			
Channel Number	Channel Number Channel Frequency (MHz)			
149	149 Low 5745			
157	Mid	5785		
165 High 5825				


For 802.11n (HT40)/ ac(HT40)			
Channel Number Channel Frequency (MHz)			
151	Low	5755	
159	High	5795	

	For 802.11ac(HT80)	
Channel Number	Channel	Frequency (MHz)
155	1	5775

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Description of Test Setup

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

17.70	11.10		A. A	- W. / 200	46.4
Item	Equipment	Trade Mark	Model/Type No.	Specification	Note
mG1	MDVR	N/A	6 M1N 2.0	N/A	EUT
2	Display Screen	N/A	N/A	N/A	Peripheral
3	Camera	N/A	N/A	N/A	Peripheral
		AK TESTING		WIESTING	
	ING TESTING	O HO.	-STING TESTING	O HO.	TESTING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. General Information

3.1. Test Environment and Mode

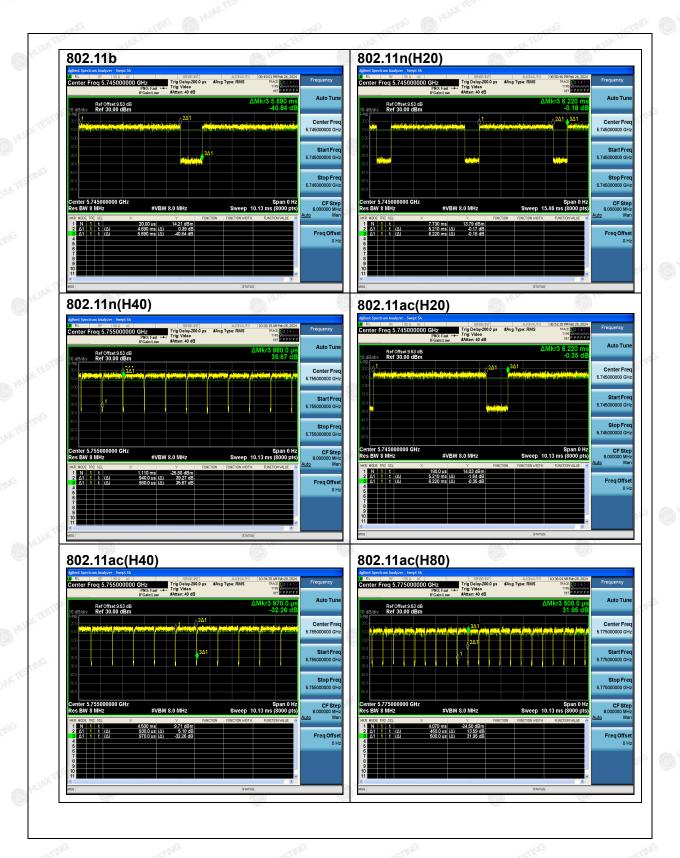
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	Y TESTING
Test Mode:		
Engineering mode:	Keep the EUT in continuous by select channel and modu	

were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(HT20)/ac(HT40)/ac(HT80)	MCS0

Final Test Mode:


Operation mode:	αG	Keep the EUT in continuous transmitting
Operation mode:	V TESTING	with modulation

Mode Test Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor(dB)
802.11b	0.824	-0.839
802.11n(H20)	0.838	-0.770
802.11n(H40)	0.959	-0.181
802.11ac(H20)	0.838	-0.770
802.11ac(H40)	0.959	-0.183
802.11ac(H80)	0.920	-0.362

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4. Test Results and Measurement Data

4.1. Conducted Emission

4.1.1. Test Specification

-3.0		-7.11			
FCC Part15 C Section	FCC Part15 C Section 15.207				
ANSI C63.10:2013					
150 kHz to 30 MHz	MAKTE	AXTESTING			
RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50			
Reference Plane 40cm E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0 8m					
Tx Mode					
power through a line (L.I.S.N.). This provious impedance for the model of the model of the power through a LIS coupling impedance refer to the block dial photographs). 3. Both sides of A.C. line conducted interferent emission, the relative the interface cables in the sides of	impedance stabil des a 500hm/50uh easuring equipme es are also conne N that provides a with 500hm termi gram of the test so he are checked for ce. In order to find positions of equipmust be changed	ization network I coupling ent. cted to the main 50ohm/50uH nation. (Please etup and maximum d the maximum pment and all of according to			
N/A	HUAKTEST	HUAKTESTI			
	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Reference 40cm E.U.T Ac power Test table/Insulation plane Remark EU.T Equipment Under Test LISN Line Impedence Stabilization Notes table height=0.8m Tx Mode 1. The E.U.T and simult power through a line (L.I.S.N.). This provide impedance for the modes are fer to the block dial photographs). 3. Both sides of A.C. line conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and ANSI C63.10: 2013 of the conducted interference emission, the relative the interface cables and the conducted interference emission and the conducted interference emission, the relative the interface cables and the conducted interference emission and the conducted	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep times Frequency range Limit (c (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 Reference Plane Reference Plane Receiver E.U.T. AC power Stabilization Network Test table height-0 8m Tx Mode 1. The E.U.T and simulators are connect power through a line impedance stabili (L.I.S.N.). This provides a 500hm/50ut impedance for the measuring equipmed 2. The peripheral devices are also conner power through a LISN that provides a coupling impedance with 500hm termi refer to the block diagram of the test s photographs). 3. Both sides of A.C. line are checked for conducted interference. In order to find emission, the relative positions of equit the interface cables must be changed ANSI C63.10: 2013 on conducted measures.			

4.1.2. Test Instruments

VIEW X1 1952AV		ADA YV	120.0007	Allian VV	2007/MA	
Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025	
Coax cable (9KHz-30MHz)	Times	381806-00 2	N/A	Feb. 20, 2024	Feb. 19, 2025	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.3. Test Data

Not applicable.

Note: EUT Power Supply by DC Power, so this test item not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E
Limit:	Frequency Band (MHz)
	5725-5850 1 W
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

Configuration Band IV (5745 - 5825 MHz)						
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result		
11a	CH149	8.52	30	PASS		
11a	CH157	8.65	30	PASS		
11a	CH165	7.82	30	PASS		
11n(HT20)	CH149	8.25	30	PASS		
11n(HT20)	CH157	7.98	30	PASS		
11n(HT20)	CH165	8.06	30	PASS		
11n(HT40)	CH151	5.84	30	PASS		
11n(HT40)	CH159	8.61	30	PASS		
11ac(HT20)	CH149	8.17	30	PASS		
11ac(HT20)	CH157	8.41	30	PASS		
11ac(HT20)	CH165	7.96	30	PASS		
11ac(HT40)	CH151	8.66	30	PASS		
11ac(HT40)	CH159	9.36	30	PASS		
11ac(HT80)	CH155	9.11	30	PASS		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

4.3. 6dB Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)						
Test Method:	KDB789033 D02 General Rules v01r04 Section C	UNII Test Proce	dures New				
Limit:	>500kHz		-CTN/G				
Test Setup:	Spectrum Analyzer	EUT	NE ATESINE				
Test Mode:	Transmitting mode with m	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 						
Test Result:	PASS	N. TEST	ING HAY TESTING				

4.3.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3. Test Data

Band IV (5745	5 - 5825 MHz)				
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
11a	CH149	5745	16.440	0.5	PASS
11a	CH157	5785	16.480	0.5	PASS
11a	CH165	5825	16.400	0.5	PASS
11n(HT20)	CH149	5745	17.600	0.5	PASS
11n(HT20)	CH157	5785	17.600	0.5	PASS
11n(HT20)	CH165	5825	17.600	0.5	PASS
11n(HT40)	CH151	5755	36.320	0.5	PASS
11n(HT40)	CH159	5795	36.400	0.5	PASS
11ac(HT20)	CH149	5745	17.680	0.5	PASS
11ac(HT20)	CH157	5785	17.640	0.5	PASS
11ac(HT20)	CH165	5825	17.640	0.5	PASS
11ac(HT40)	CH151	5755	36.320	0.5	PASS
11ac(HT40)	CH159	5795	35.680	0.5	PASS
11ac(HT80)	CH155	5775	75.680	0.5	PASS

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Freq Offse

4.4. 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	No restriction limits					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 					
Test Result:	N/A					

4.4.2. Test Instruments

RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Date Calibration						
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. Power Spectral Density

4.5.1. Test Specification

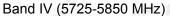
Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz				
Test Setup:	O HUNKTESTIN	Š			
	Spectrum Analyzer EUT	TING			
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 				
Test Result:	PASS O HUMAN				

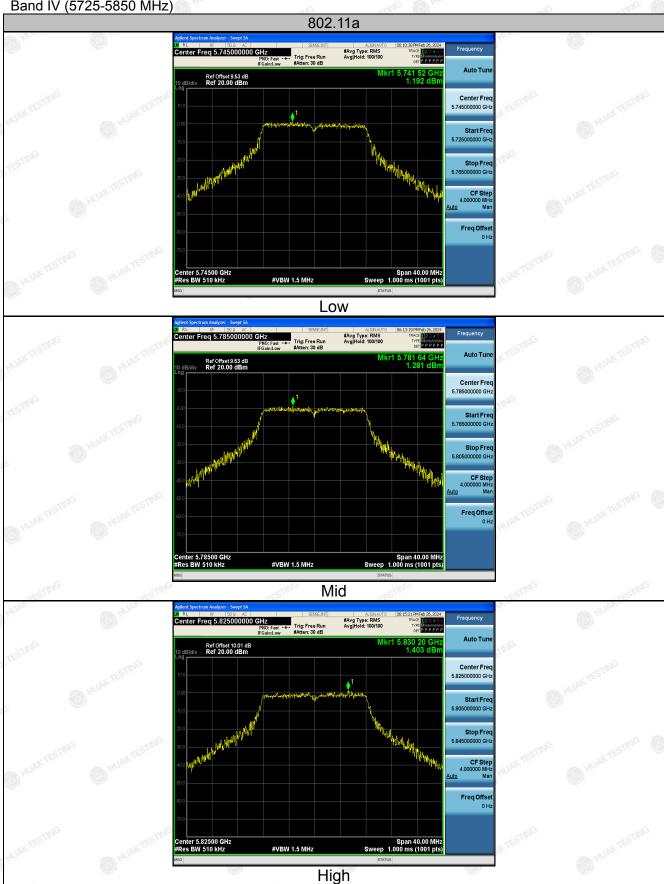
4.5.2. Test Instruments

Clin	CHA.	Ola.	كالمي	Clar	- Clar		
RF Test Room							
Equipment Manufacture		Model Serial Number		Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

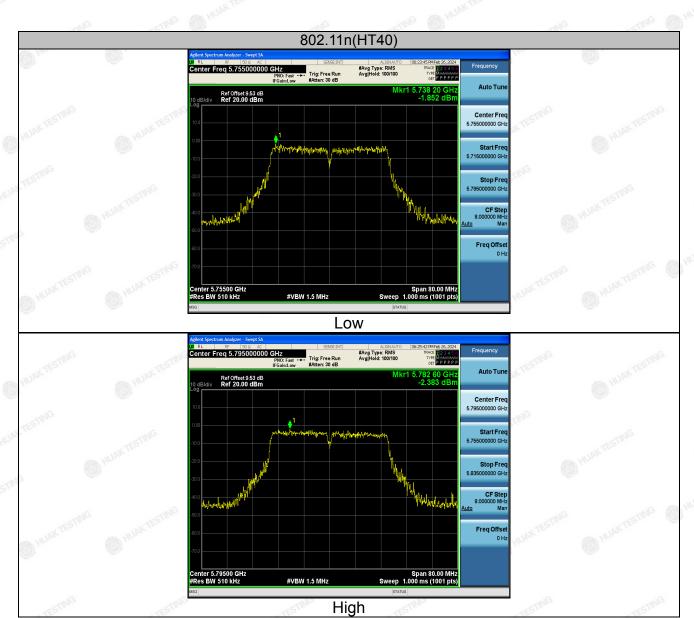
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

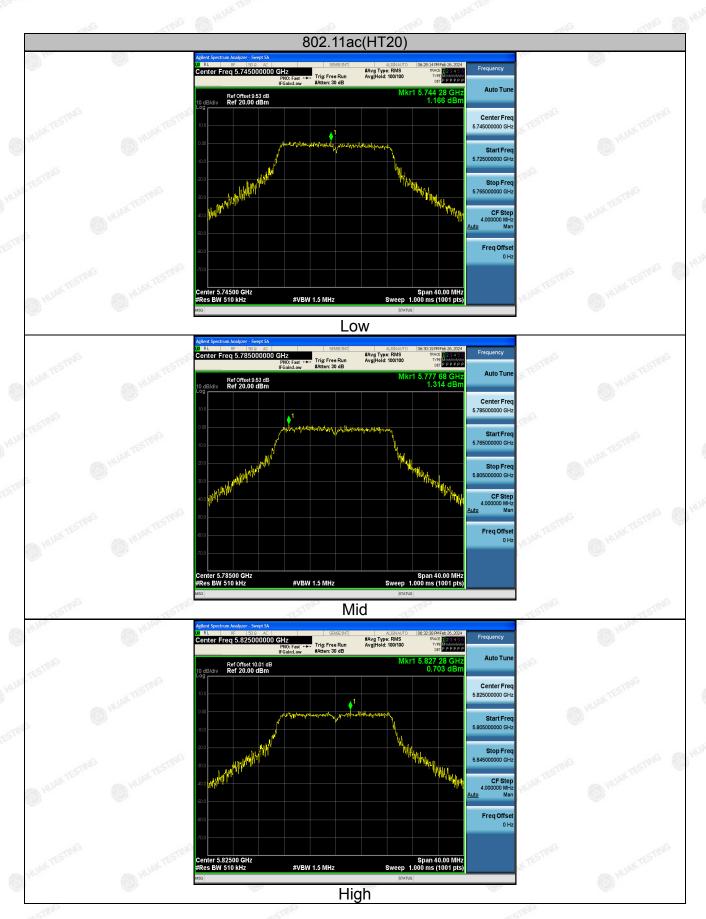


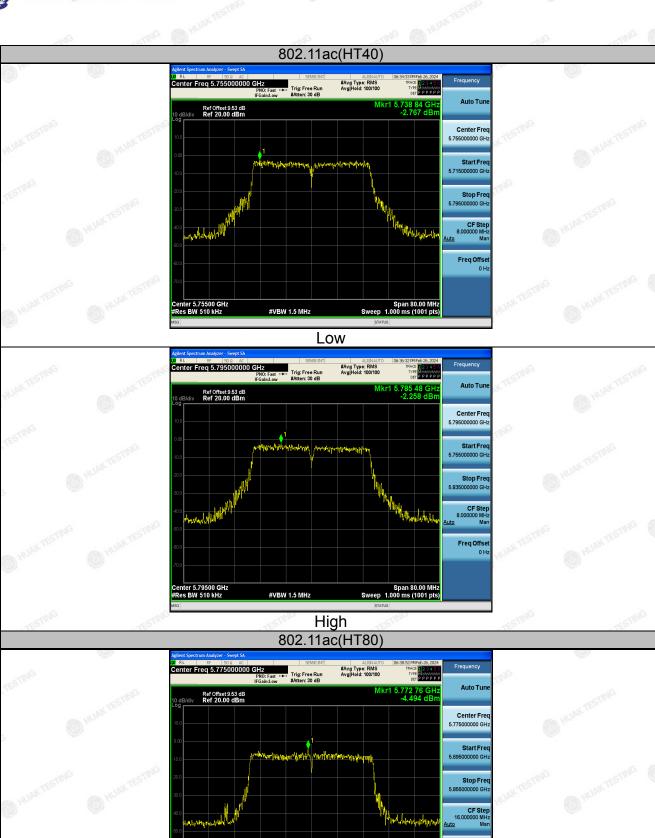

4.5.3. Test Data

Configuration Band IV (5745 - 5825 MHz)						
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result
11a	CH149	1.19	-0.086	1.104	5 ¹¹⁴⁰ 30	PASS
11a	CH157	1.28	-0.086	1.194	30	PASS
11a	CH165	1.40	-0.086	1.314	30	PASS
11n HT20	CH149	1.19	-0.086	1.104	30	PASS
11n HT20	CH157	1.69	-0.086	1.604	30	PASS
11n HT20	CH165	0.39	-0.086	0.304	30	PASS
11n HT40	CH151	-1.85	-0.086	-1.936	30	PASS
11n HT40	CH159	-2.38	-0.086	-2.466	30	PASS
11ac HT20	CH149	1.17	-0.086	1.084	30	PASS
11ac HT20	CH157	1.31	-0.086	1.224	30	PASS
11ac HT20	CH165	0.70	-0.086	0.614	30	PASS
11ac HT40	CH151	-2.77	-0.086	-2.856	30	PASS
11ac HT40	CH159	-2.26	-0.086	-2.346	30	PASS
11ac HT80	CH155	-4.49	-0.086	-4.576	30	PASS

Note: Power Spectral Density= Level [dBm/510kHz]+(10log(Limit RBW/Test RBW)) Test plots as follows:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

#VBW 1.5 MHz

4.6. Band Edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407				
Test Method:	ANSI C63.10 2013				
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.				
Test Setup:	Ant. feed point 1.4 m Ground Plane Receiver Amp.				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 				

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.

Test Result:

PASS

4.6.2. Test Instruments

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESRP3	HKE-005	Feb. 20, 2024	Feb. 19, 2025	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	Agilent	83051A	HKE-016	Feb. 20, 2024	Feb. 19, 2025	
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 21, 2024	Feb. 20, 2026	
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 21, 2024	Feb. 20, 2026	
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A	
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 20, 2024	Feb. 19, 2025	
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	screening N/A	
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A	
Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Feb. 21, 2024	Feb. 20, 2026	
RF cable	Tonscend	1-18G	HKE-099	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 21, 2024	Feb. 20, 2026	
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 20, 2024	Feb. 19, 2025	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

AFICATIC

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.15	-2.06	50.09	68.2	-18.11	peak
5700	79.11	-1.96	77.15	105.2	-28.05	peak
5720	83.26	-2.87	80.39	110.8	-30.41	peak
5725	104.38	-2.14	102.24	122.2	-19.96	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	53.09	-2.06	51.03	68.2	-17.17	peak
5700	81.32	-1.96	79.36	105.2	-25.84	peak
5720	84.59	-2.87	81.72	110.8	-29.08	peak
5725	106.86	-2.14	104.72	122.2	-17.48	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
101.24	-1.97	99.27	122.2	-22.93	peak
85.16	-2.13	83.03	110.8	-27.77	peak
78.73	-2.65	76.08	105.2	-29.12	peak
46.51	-2.28	44.23	68.2	-23.97	peak
	(dBµV) 101.24 85.16 78.73	(dBµV) (dB) 101.24 -1.97 85.16 -2.13 78.73 -2.65	(dBμV) (dB) (dBμV/m) 101.24 -1.97 99.27 85.16 -2.13 83.03 78.73 -2.65 76.08	(dBμV) (dB) (dBμV/m) (dBμV/m) 101.24 -1.97 99.27 122.2 85.16 -2.13 83.03 110.8 78.73 -2.65 76.08 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 101.24 -1.97 99.27 122.2 -22.93 85.16 -2.13 83.03 110.8 -27.77 78.73 -2.65 76.08 105.2 -29.12

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tuma
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	101.38	-1.97	99.41	122.2	-22.79	peak
5855	86.07	-2.13	83.94	110.8	-26.86	peak
5875	77.29	-2.65	74.64	105.2	-30.56	peak
5925	47.77	-2.28	45.49	68.2	-22.71	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.15	-2.06	51.09	68.2	-17.11	peak
5700	81.62	-1.96	79.66	105.2	-25.54	peak
5720	83.82	-2.87	80.95	110.8	-29.85	peak
5725	103.49	-2.14	101.35	122.2	-20.85	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turks
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	52.03	-2.06	49.97	68.2	-18.23	peak
5700	79.59	-1.96	77.63	105.2	-27.57	peak
5720	83.21	-2.87	80.34	110.8	-30.46	peak
5725	105.66	-2.14	103.52	122.2	-18.68	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

ESTING ESTING

Report No.: HK2402210730-3E

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	104.42	-1.97	102.45	122.2	-19.75	peak
5855	85.79	-2.13	83.66	110.8	-27.14	peak
5875	77.83	-2.65	75.18	105.2	-30.02	peak
5925	46.81	-2.28	44.53	68.2	-23.67	peak
-19	- 100 (6:00)		-16	40 1000	-10	TIVE

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5850	103.92	-1.97	101.95	122.2	-20.25	peak
5855	85.49	-2.13	83.36	110.8	-27.44	peak
5875	78.16	-2.65	75.51	105.2	-29.69	peak
5925	45.31	-2.28	43.03	68.2	-25.17	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.29	-2.06	49.23	68.2	-18.97	peak
5700	80.38	-1.96	78.42	105.2	-26.78	peak
5720	86.94	-2.87	84.07	110.8	-26.73	peak
5725	105.12	-2.14	102.98	122.2	-19.22	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.35	-2.06	51.29	68.2	-16.91	peak
<i>№</i> 5700	81.69	-1.96	79.73	105.2	-25.47	peak
5720	83.71	-2.87	80.84	110.8	-29.96	peak
5725	103.42	-2.14	101.28	122.2	-20.92	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.16	-1.97	101.19	122.2	-21.01	peak
5855	85.09	-2.13	82.96	110.8	-27.84	peak
5875	76.86	-2.65	74.21	105.2	-30.99	peak
5925	47.05	-2.28	44.77	68.2	-23.43	peak
-16	-1170 Mills		-16 -70	(6)(0)	-10	TINE

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.26	-1.97	101.29	122.2	-20.91	peak
5855	86.32	-2.13	84.19	110.8	-26.61	peak
5875	77.51	-2.65	74.86	105.2	-30.34	peak
5925	45.79	-2.28	43.51	68.2	-24.69	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.69	-2.06	51.63	68.2	-16.57	peak
5700	81.53	-1.96	79.57	105.2	-25.63	peak
5720	86.12	-2.87	83.25	110.8	-27.55	peak
5725	105.07	-2.14	102.93	122.2	-19.27	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.34	-2.06	50.28	68.2	-17.92	peak
5700	80.18	-1.96	78.22	105.2	-26.98	peak
5720	84.92	-2.87	82.05	110.8	-28.75	peak
5725	103.93	-2.14	101.79	122.2	-20.41	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	101.21	-1.97	99.24	122.2	-22.96	peak
5855	86.38	-2.13	84.25	110.8	-26.55	peak
5875	76.59	-2.65	73.94	105.2	-31.26	peak
5925	47.06	-2.28	44.78	68.2	-23.42	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Torse
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5850	103.77	-1.97	101.8	122.2	-20.4	peak
5855	86.94	-2.13	84.81	110.8	-25.99	peak
5875	76.39	-2.65	73.74	105.2	-31.46	peak
5925	46.15	-2.28	43.87	68.2	-24.33	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata a Tana
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.94	-2.06	49.88	68.2	-18.32	peak
5700	79.32	-1.96	77.36	105.2	-27.84	peak
5720	85.26	-2.87	82.39	110.8	-28.41	peak
5725	104.81	-2.14	102.67	122.2	-19.53	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.23	-2.06	49.17	68.2	-19.03	peak
5700	79.15	-1.96	77.19	105.2	-28.01	peak
5720	85.29	-2.87	82.42	110.8	-28.38	peak
5725	105.46	-2.14	103.32	122.2	-18.88	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.08	-1.97	100.11	122.2	-22.09	peak
5855	87.26	-2.13	85.13	110.8	-25.67	peak
5875	76.33	-2.65	73.68	105.2	-31.52	peak
5925	45.29	-2.28	43.01	68.2	-25.19	peak
-NG	THE STATE OF		alG -TIP	(60)	-010	TING

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5850	101.21	-1.97	99.24	122.2	-22.96	peak
5855	85.76	-2.13	83.63	110.8	-27.17	peak
5875	78.58	-2.65	75.93	105.2	-29.27	peak
5925	47.12	-2.28	44.84	68.2	-23.36	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyme
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.73	-2.06	50.67	68.2	-17.53	peak
5700	80.41	-1.96	78.45	105.2	-26.75	peak
5720	85.75	-2.87	82.88	110.8	-27.92	peak
5725	104.38	-2.14	102.24	122.2	-19.96	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.95	-2.06	50.89	68.2	-17.31	peak
5700	78.14	-1.96	76.18	105.2	-29.02	peak
5720	84.29	-2.87	81.42	110.8	-29.38	peak
5725	105.26	-2.14	103.12	122.2	-19.08	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	104.08	-1.97	102.11	122.2	-20.09	peak
5855	86.11	-2.13	83.98	110.8	-26.82	peak
5875	77.29	-2.65	74.64	105.2	-30.56	peak
5925	45.87	-2.28	43.59	68.2	-24.61	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tuno
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.45	-1.97	101.48	122.2	-20.72	peak
5855	86.72	-2.13	84.59	110.8	-26.21	peak
5875	78.06	-2.65	75.41	105.2	-29.79	peak
5925	46.79	-2.28	44.51	68.2	-23.69	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

4.7. Spurious Emission

4.7.1.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.2						
Test Method:	KDB 789033	D02 v02r0	1 (HUAN	HUARA		
Frequency Range:	9kHz to 40G	Hz		STING			
Measurement Distance:	3 m	AK TESTING	(A) PILL	DK	AK TESTING		
Antenna Polarization:	Horizontal &	Vertical					
Operation Mode:	Transmitting	mode with	modulat	ion			
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value		
Limit:	an e.i.r.p. of -2 (2) For transm emissions outs an e.i.r.p. of -2 (3) For transm emissions outs an e.i.r.p. of -2 (4) For transm (i) All emission MHz or more a to 10 dBm/MH from 25 MHz a to a level of 15 edge, and from linearly to a level	side of the 5. 27dBm/MHz. itters operation of 25 MHz. above or belowed of 27dBm/MHz. itters of 27dBm/medicel	ng in the state of	Hz band : 5.25-5.35 Hz band : 5.47-5.725 GHz band : 5.725-5.85 evel of -2 nd edge in below the id edge in above or w the band e	Shall not exceed GHz band: All shall not exceed GHz band: All d shall not exceed GHz band: GHz b		
Test setup:	For radiated Output Down 100 30MHz to 100	3 m		RX Antenno	TESTING 1 m ↓ WESTING		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

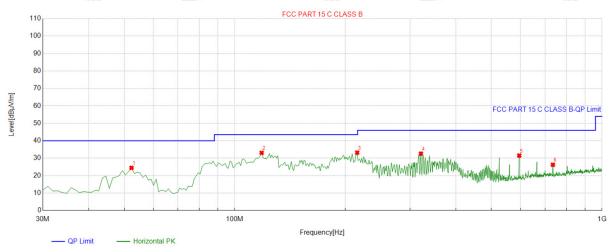
Antenna EUT RF Test Turn Table Ground Plane Above 1GHz Receiver 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical Test Procedure: polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Results:

PASS

4.7.2. Test Data

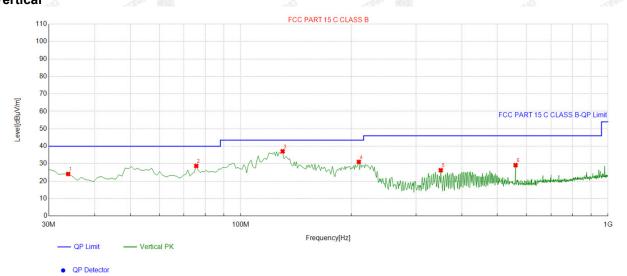

Test Mode: TX 802.11a 5745MHz

Remark: All the test modes completed for test. Only the worst result of 802. 11a was reported as

below:

Below 1GHz

Horizontal



QP Detector

	Suspected List												
İ		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
Mesons	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
	1	52.332332	-13.36	37.81	24.45	40.00	15.55	100	201	Horizontal			
	2	118.35835	-14.09	47.15	33.06	43.50	10.44	100	240	Horizontal			
	3	215.45545	-15.41	48.58	33.17	43.50	10.33	100	80	Horizontal			
Ş	4	321.29129	-12.27	44.89	32.62	46.00	13.38	100	44	Horizontal			
	5	595.10510	-6.26	37.77	31.51	46.00	14.49	100	153	Horizontal			
	6	734.92492	-3.75	30.00	26.25	46.00	19.75	100	102	Horizontal			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

	Suspected List												
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
Ą	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
	1	33.883884	-13.22	37.30	24.08	40.00	15.92	100	84	Vertical			
<	2	75.635636	-16.59	45.30	28.71	40.00	11.29	100	93	Vertical			
	3	130.01001	-13.45	50.56	37.11	43.50	6.39	100	81	Vertical			
	4	209.62963	-15.67	46.71	31.04	43.50	12.46	100	291	Vertical			
3.	5	350.42042	-11.49	37.74	26.25	46.00	19.75	100	184	Vertical			
L	6	560.15015	-7.12	36.28	29.16	46.00	16.84	100	247	Vertical			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

7,7	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
			<u> </u>
NG.			ESTING
	TESTAIG	HAR I	HUAK !
	HUAR	HALOK .	HUAN

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

Report No.: HK2402210730-3E

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

TIOTIZOTICAL.	Honzontal.		1/1/			432	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
3368	55.29	-4.59	50.7	68.2	-17.5	peak	
11096	51.33	4.21	55.54	74	-18.46	peak	
11096	34.58	4.21	38.79	54	-15.21	AVG	
-TIII-	451		-7114	V	- Alla	45	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.18	-4.59	51.59	68.2	-16.61	peak
53.24	4.21	57.45	74	-16.55	peak
36.08	4.21	40.29	54	-13.71	AVG
	(dBµV) 56.18 53.24	(dBµV) (dB) 56.18 -4.59 53.24 4.21	(dBµV) (dB) (dBµV/m) 56.18 -4.59 51.59 53.24 4.21 57.45	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.18 -4.59 51.59 68.2 53.24 4.21 57.45 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.18 -4.59 51.59 68.2 -16.61 53.24 4.21 57.45 74 -16.55

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.03	-4.59	52.44	68.2	-15.76	peak
10523	52.25	4.21	56.46	68.2	-11.74	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

				4 1		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.71	-4.59	53.12	68.2	-15.08	peak
10523	53.08	4.21	57.29	68.2	-10.91	peak
4.10	7.10	4.10	4.70		4.10	7.10

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2705	55.25	-4.59	50.66	74	-23.34	peak
2705	45.43	-4.59	40.84	54	-13.16	AVG
11717	48.77	4.84	53.61	74	-20.39	peak
11717	37.49	4.84	42.33	54	-11.67	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	σ (dBμV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.51	-4.59	49.92	74	-24.08	peak
2705	43.86	-4.59	39.27	54	-14.73	AVG
11717	50.07	4.84	54.91	74	-19.09	peak
11717	36.25	4.84	41.09	54	-12.91	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n20 Mode

LOW CH 149

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
55.78	-4.59	51.19	68.2	-17.01	peak
51.23	4.21	55.44	74	-18.56	peak
35.98	4.21	40.19	54	-13.81	AVG
	(dBμV) 55.78 51.23	(dBµV) (dB) 55.78 -4.59 51.23 4.21	(dBμV) (dB) (dBμV/m) 55.78 -4.59 51.19 51.23 4.21 55.44	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.78 -4.59 51.19 68.2 51.23 4.21 55.44 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 55.78 -4.59 51.19 68.2 -17.01 51.23 4.21 55.44 74 -18.56

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

4.377	MA	47.75	40% VV		4 / 100	Allia, VV
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.12	-4.59	49.53	68.2	-18.67	peak
11096	53.54	4.21	57.75	74	-16.25	peak
11096	37.06	4.21	41.27	54	-12.73	AVG
	CA	are No.	-C/V	- VO		·C/h

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	55.83	-4.59	51.24	68.2	-16.96	peak
10523	51.92	4.21	56.13	68.2	-12.07	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.13	-4.59	51.54	68.2	-16.66	peak
10523	51.46	4.21	55.67	68.2	-12.53	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	58.78	-4.59	54.19	74	-19.81	peak
2705	41.51	-4.59	36.92	54	-17.08	AVG
11717	51.39	4.84	56.23	74	-17.77	peak
11717	35.62	4.84	40.46	54	-13.54	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	60.15	-4.59	55.56	74	-18.44	peak
2705	40.08	-4.59	35.49	54	-18.51	AVG
11717	51.33	4.84	56.17	74	-17.83	peak
11717	35.67	4.84	40.51	54	-13.49	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.8G 802.11n40 Mode

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	57.61	-4.59	53.02	68.2	-15.18	peak
11096	47.28	4.21	51.49	74	-22.51	peak
11096	33.14	4.21	37.35	54	-16.65	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.36	-4.59	51.77	68.2	-16.43	peak
11096	47.18	4.21	51.39	74	-22.61	peak
11096	33.52	4.21	37.73	54	-16.27	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.48	-4.59	52.89	68.2	-15.31	peak
10523	49.42	4.21	53.63	68.2	-14.57	peak
	-The	- 701	-The	- 30		-7/10

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.94	-4.59	52.35	68.2	-15.85	peak
10523	52.53	4.21	56.74	68.2	-11.46	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.06	-4.59	50.47	68.2	-17.73	peak
11096	49.22	4.21	53.43	74	-20.57	peak
11096	34.78	4.21	38.99	54	9 -15.01	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	55.31	-4.59	50.72	68.2	-17.48	peak
11096	48.54	4.21	52.75	74	-21.25	peak
11096	33.26	4.21	37.47	54	-16.53	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	54.15	-4.59	49.56	68.2	-18.64	peak
s ¹⁰⁵ 10523	47.31	4.21	51.52	68.2	-16.68	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Ting
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.28	-4.59	51.69	68.2	-16.51	peak
10523	52.03	4.21	56.24	68.2	-11.96	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.54	-4.59	54.95	74	-19.05	peak
2705	39.18	-4.59	34.59	54	-19.41	AVG
11717	48.72	4.84	53.56	74	-20.44	peak
11717	34.12	4.84	38.96	54	-15.04	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	57.35	-4.59	52.76	74	-21.24	peak
2705	38.15	-4.59	33.56	54	-20.44	AVG
11717	49.69	4.84	54.53	74 mil	-19.47	peak
11717	34.71	4.84	39.55	54	-14.45	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac40 Mode

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.28	-4.59	51.69	68.2	-16.51	peak
11096	49.56	4.21	53.77	74	-20.23	peak
11096	35.94	4.21	40.15	54	-13.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
55.36	-4.59	50.77	68.2	-17.43	peak
50.71	4.21	54.92	74	-19.08	peak
36.25	4.21	40.46	54	-13.54	AVG
	(dBµV) 55.36 50.71	(dBµV) (dB) 55.36 -4.59 50.71 4.21	(dBμV) (dB) (dBμV/m) 55.36 -4.59 50.77 50.71 4.21 54.92	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.36 -4.59 50.77 68.2 50.71 4.21 54.92 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.36 -4.59 50.77 68.2 -17.43 50.71 4.21 54.92 74 -19.08

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.8G 802.11ac80 Mode

CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.04	-4.59	49.45	68.2	-18.75	peak
11096	48.28	4.21	52.49	74	-21.51	peak
11096	34.15	4.21	38.36	54	-15.64	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.95	-4.59	50.36	68.2	-17.84	peak
11096	50.03	4.21	54.24	74	-19.76	peak
11096	33.72	4.21	37.93	54	-16.07	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	N/A AKTESTING HUAKTESTING ME

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
HUAK TES	4.5V	5744.977	-23	5825.028	28
5.8G Band	5.0V	5744.964	-36	5825.019	19
TING	5.5V	5745.049	49	5824.957	-43

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
HUAR	-30	5745.023	23	5825.038	38
	-20	5744.995	-5	5825.016	16
3	-10	5744.981	-19	5825.012	12
	0	5744.979	-21	5825.019	19
5.8G Band	10	5744.985	-15	5824.987	-13
	20	5745.053	53	5824.974	-26
	30	5745.012	12	5824.991	-9
	40	5744.963	-37	5824.975	-25
STING LANTESTI	50	5745.025	25	5824.983	-17

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2402210730-3E

4.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

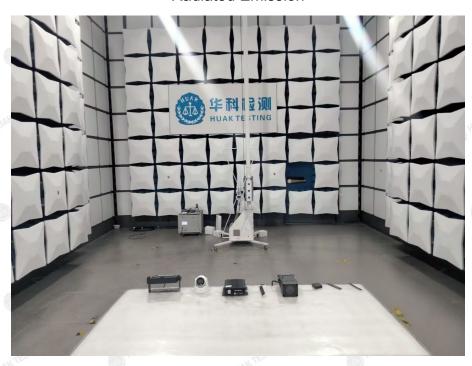
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is an External Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 5dBi.

WIFI ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photographs of Test Setup

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.