	${ }^{\text {FCC TEST REPORT }}$
	FCC Part 22 /Part 24

Compiled by:

Jack Lu/ Administrator

Supervised by:

Join Wang/ Technique principal

Approved by:

Gavin Kiang/ Manager

TEST REPORT

| Test Report No. : \quad LCS210827022AEA | September 09, 2021 |
| :--- | :--- | :---: |

Equipment under Test	$:$ GPS Vehicle Tracker
Test Model	$:$ VT08F

Applicant : SHENZHEN ITRYBRAND TECHNOLOGY CO.,LTD

Address : A819-820,Bao'an Wisdom Valley, Yintian Road,Xixiang,Bao'an District,Shenzhen, Guangdong,China

| Manufacturer | $:$ SHENZHEN ITRYBRAND TECHNOLOGY CO.,LTD |
| :--- | :--- | :--- |
| Address | $:$A819-820,Bao'an Wisdom Valley, Yintian Road,Xixiang,Bao'an
 District,Shenzhen, Guangdong,China |
| Factory | $:$ SHENZHEN ITRYBRAND TECHNOLOGY CO.,LTD |
| Address | $:$A819-820,Bao'an Wisdom Valley, Yintian Road,Xixiang,Bao'an
 District,Shenzhen, Guangdong,China |

Test Result:	PASS

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	September 09, 2021	Initial Issue	Gavin Liang

Contents

1 TESTSTANDARDS 5
$\underline{2}$ SUMMARY 6
2.1 General Remarks 6
2.2 Product Description 6
2.3 Equipment under Test 8
2.4 Short description of the Equipment under Test (EUT) 8
2.5 Internal Identification of AE used during the test 8
2.6 Normal Accessory setting 8
2.7 EUT configuration 9
2.8 Related Submittal(s) / Grant (s) 9
2.9 Modifications 9
2.10 General Test Conditions/Configurations 9
3 TEST ENVIRONMENT 10
3.1 Address of the test laboratory 10
3.2 Test Facility 10
3.3 Environmental conditions 10
3.4 Test Description 10
3.5 Equipments Used during the Test 12
3.6 Measurement uncertainty 13
4 TEST CONDITIONS AND RESULTS 14
4.1 Output Power 14
4.2 Radiated Spurious Emssion 18
4.3 Occupied Bandwidth and Emission Bandwidth 21
4.4 Band Edge Complicance 23
4.5 Spurious Emission on Antenna Port 25
4.6 Frequency Stability Test 31
4.7 Peak-to-Average Ratio (PAR) 34
5 TESTSETUP PHOTOGRAPHS OF EUT 35
6 EXTERIOR PHOTOGRAPHS OF THE EUT 35
7 INTERIOR PHOTOGRAPHS OF THE EUT 35

[^0]
1 TEST STANDARDS

The tests were performed according to following standards:
FCC Part 22 (10-1-16 Edition): Cellular Radiotelephone Service.
FCC Part 24(10-1-16 Edition): Broadband PCS.
ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. 47 CFR FCC Part 15 Subpart B: Unintentional Radiators.
FCC Part 2: Frequency Allocations And Radio Treaty Matters: General Rules And Regulations.
ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz .
ANSI C63.26:2015: Compliance Testing of Transmitters Used in Licensed Radio Services

[^1]
2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	$:$	August 30, 2021
Date of Test	$:$	August 30, 2021~September 08, 2021
Date of Report	$:$	September 09, 2021

2.2 Product Description

The SHENZHEN ITRYBRAND TECHNOLOGY CO.,LTD's Model: VT08F or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT	GPS Vehicle Tracker
Test Model	VT08F
Power Supply	Input: $12 / 24 \mathrm{~V}, 2 \mathrm{~A}$ DC 3.7V by Rechargeable Li-ion Battery, 250mAh
Hardware Version	: VT08F-MB-V1.2
Software Version	VT08F_GW08L_V01
2G	:
Support Band	
Release Version	: R8
GPRS Class	Class 12
EGPRS Class	Class 12
Type Of Modulation	: GMSK for GSM/GPRS
Antenna Description	Internal Antenna; -3.43 dBi (max.) For GSM 850 3.0dBi (max.) For PCS 1900
LTE	:
Support Band	
LTE Release Version	R9
Type Of Modulation	QPSK/16QAM
Antenna Description	Internal Antenna 3.3dBi (max.) For E-UTRA Band 2 1.8 dBi (max.) For E-UTRA Band 4 -3.43 dBi (max.) For E-UTRA Band 5 1.38 dBi (max.) For E-UTRA Band 7 1.0 dBi (max.) For E-UTRA Band 38 1.38 dBi (max.) For E-UTRA Band 41 1.8 dBi (max.) For E-UTRA Band 66

Power Class : Class 3
Extreme temp. Tolerance : $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Extreme vol. Limits $: 3.15 \mathrm{VDC}$ to 4.26 VDC (nominal: 3.7VDC)

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	$:$	\circ	$120 \mathrm{~V} / 60 \mathrm{~Hz}$	0	$115 \mathrm{~V} / 60 \mathrm{~Hz}$
		\circ	12 V DC	\circ	24 V DC
		\bullet	Other (specified in blank below) 3.7 V DC		

Test frequency list

Test Mode	TX/RX	RF Channel		
		Low(L)	Middle (M)	High (H)
GSM850	TX	Channel 128	Channel 190	Channel 251
		824.2 MHz	836.6 MHz	848.8 MHz
	RX	Channel 128	Channel 190	Channel 251
		869.2 MHz	881.6 MHz	893.8 MHz
Test Mode	TX/RX	RF Channel		
		Low(L)	Middle (M)	High (H)
	PCS1900	TX	Channel 512	Channel 661
			1880.0 MHz	Channel 810
	RX	Channel 512	Channel 661	Channel 810
		1930.2 MHz	1960.0 MHz	1989.8 MHz

2.4 Short description of the Equipment under Test (EUT)

2.4.1 General Description

GPS Vehicle Tracker is subscriber equipment in the 2G/4G system. GPRS/EGPRS frequency band is Band II//V. LTE frequency band is band $2 / 4 / 5 / 7 / 38 / 41 / 66$. The GPRS/EGPRS frequency band II and Band V test data included in this report. The GPS Vehicle Tracker implements such functions as RF signal receiving/transmitting, GPRS/LTE protocol processing, video MMS service and etc.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Rechargeable Li-Polymer Battery
AE2	Switching Adapter

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- - supplied by the lab

\circ	Power Cable	Length $(\mathrm{m}):$	$/$
		Shield :	$/$
		Detachable :	$/$
\bigcirc	Multimeter	Manufacturer :	$/$
		Model No. :	$/$

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AM5T-VT08F filing to comply with FCC Part 22 and Part 24 Rules.

2.9 Modifications

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM,GMSK modulation
GSM/TM2	GSM system, GPRS, GMSK modulation

2.10.2 Test Environment

Environment Parameter	Selected Values During Tests	
Relative Humidity	Ambient	
Temperature	TN	Ambient
Voltage	VL	DC 3.70V
	VN	DC 3.15V
	VH	DC 4.26V

NOTE: VL=lower extreme test voltage $\mathrm{VN}=$ nominal voltage
VH=upper extreme test voltage $\mathrm{TN}=$ normal temperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:
NVLAP Accreditation Code is 600167-0.
FCC Designation Number is CN5024.
CAB identifier is CN0071.
CNAS Registration Number is L4595.
Test Firm Registration Number: 254912

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	$15-35{ }^{\circ} \mathrm{C}$
Humidity:	$30-60 \%$
Atmospheric pressure:	$950-1050 \mathrm{mbar}$

3.4 Test Description

3.4.1 Cellular Band (824-849MHz paired with $869-894 \mathrm{MHz}$)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	$\begin{aligned} & \text { §2.1046, } \\ & \S 22.913 \end{aligned}$	FCC: $\mathrm{ERP} \leq 7 \mathrm{~W}$.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	$\begin{aligned} & \text { §2.1051, } \\ & \text { §22.917 } \end{aligned}$	$\leq-13 \mathrm{dBm} / 1 \% * E B W$, in 1 MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	$\begin{aligned} & \text { §2.1051, } \\ & \text { §22.917 } \end{aligned}$	$\leq-13 \mathrm{dBm} / 100 \mathrm{kHz},$ from 9 kHz to 10 th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	$\begin{aligned} & \$ 2.1053, \\ & \S 22.917 \end{aligned}$	$\leq-13 \mathrm{dBm} / 100 \mathrm{kHz}$.	Pass
Frequency Stability	$\begin{aligned} & \$ 2.1055, \\ & \S 22.355 \\ & \hline \end{aligned}$	$\leq \pm 2.5 \mathrm{ppm}$.	Pass
Peak-Average Ratio	§22.913	FCC: Limit $\leq 13 \mathrm{~dB}$	Pass
Receiver Spurious Emissions	N/A	--	Pass
NOTE 1: For the verdict, the "N/A" denotes "not applicable", the "N/T" de notes "not tested".			

3.4.2 PCS Band ($1850-1910 \mathrm{MHz}$ paired with $\mathbf{1 9 3 0}-1990 \mathrm{MHz}$)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	$\begin{aligned} & \text { §2.1046, } \\ & \S 24.232 \end{aligned}$	EIRP $\leq 2 \mathrm{~W}$	Pass
Peak-Average Ratio	$\begin{aligned} & \$ 2.1046, \\ & \$ 24.232 \end{aligned}$	$\leq 13 \mathrm{~dB}$	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	$\begin{aligned} & \text { §2.1051, } \\ & \S 24.238 \\ & \hline \end{aligned}$	$\leq-13 \mathrm{dBm} / 1 \% * E B W$, In 1 MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	$\begin{aligned} & \text { §2.1051, } \\ & \S 24.238 \\ & \hline \end{aligned}$	$\leq-13 \mathrm{dBm} / 1 \mathrm{MHz}$, from 9 kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass
Field Strength of Spurious Radiation	$\begin{aligned} & \text { §2.1053, } \\ & \S 24.238 \\ & \hline \end{aligned}$	$\leq-13 \mathrm{dBm} / 1 \mathrm{MHz}$.	Pass
Frequency Stability	$\begin{aligned} & \$ 2.1055, \\ & \S 24.235 \end{aligned}$	$\leq \pm 2.5 \mathrm{ppm}$.	Pass
Peak-Average Ratio	§24.232	FCC: Limit $\leq 13 \mathrm{~dB}$	Pass
Receiver Spurious Emissions	N/A	--	Pass

Remark: The measurement uncertainty is not included in the test result.

3.5 Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R\&S	NRVS	100444	2021-06-21	2022-06-20
2	Power Sensor	R\&S	NRV-Z81	100458	2021-06-21	2022-06-20
3	Power Sensor	R\&S	NRV-Z32	10057	2021-06-21	2022-06-20
4	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
5	RF Control Unit	Tonscend	JS0806	158060009	2020-11-26	2021-11-25
6	MXA Signal Analyzer	Agilent	N9020A	MY51250905	2020-11-17	2021-11-16
7	WIDEBAND RADIO COMMUNICATION TESTER	R\&S	CMW 500	103818	2021-06-21	2022-06-20
8	DC Power Supply	Agilent	E3642A	N/A	2020-11-26	2021-11-25
9	EMI Test Software	AUDIX	E3	/	N/A	N/A
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-21	2022-06-20
11	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-07-25	2024-07-24
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
14	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2023-09-19
16	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2021-06-21	2022-06-20
17	EMI Test Receiver	R\&S	ESR 7	101181	2021-06-21	2022-06-20
18	RS SPECTRUM ANALYZER	R\&S	FSP40	100503	2020-11-17	2021-11-16
19	Broadband Preamplifier	1	BP-01M18G	P190501	2021-06-21	2022-06-20
20	6 dB Attenuator	1	100W/6dB	1172040	2021-06-21	2022-06-20
21	3dB Attenuator	/	$2 \mathrm{~N}-3 \mathrm{~dB}$	1	2020-11-17	2021-11-16
22	Temperature \& Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2020-10-08	2021-10-07
23	EMI Test Software	Farad	EZ	N/A	N/A	N/A

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100028 " Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	$30 \sim 1000 \mathrm{MHz}$	3.10 dB	(1)
Radiated Emission	$1 \sim 18 \mathrm{GHz}$	3.80 dB	(1)
Radiated Emission	$18-40 \mathrm{GHz}$	3.90 dB	(1)
Conducted Disturbance	$0.15 \sim 30 \mathrm{MHz}$	1.63 dB	(1)
Conducted Power	$9 \mathrm{KHz} \sim 18 \mathrm{GHz}$	0.61 dB	(1)
Spurious RF Conducted Emission	$9 \mathrm{KHz} \sim 40 \mathrm{GHz}$	1.22 dB	(1)
Band Edge Compliance of RF Emission	$9 \mathrm{KHz} \sim 40 \mathrm{GHz}$	1.22 dB	(1)
Occuiped Bandwidth	$9 \mathrm{KHz} \sim 40 \mathrm{GHz}$	-	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=1.96$.

4 TEST CONDITIONS AND RESULTS

4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R\&S Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1 Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

a) Place the EUT on a bench and set it in transmitting mode.
b) Connect a low loss RF cable from the antenna port to a CMW 500 by an Att.
c) EUT Communicate with CMW 500 then selects a channel for testing.
d) Add a correction factor to the display CMW 500, and then test.

TEST RESULTS

Temperature	$24.7^{\circ} \mathrm{C}$	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

GSM 850		Burst Average Conducted power (dBm)			
		Channel/Frequency (MHz)			
			$128 / 824.2$	$190 / 836.6$	
GSM	32.69	32.67	$251 / 848.8$		
	1TX slot	32.53	32.54	32.64	
	2TX slot	31.01	31.01	32.52	
	3TX slot	29.51	29.49	29.48	
	4TX slot	28.01	28.01	27.96	

PCS 1900		Burst Average Conducted power (dBm)		
		Channel/Frequency(MHz)		
		512/1850.2	661/1880	810/1909.8
GSM		29.65	29.69	29.65
$\begin{gathered} \text { GPRS } \\ \text { (GMSK) } \end{gathered}$	1TX slot	29.54	29.57	29.48
	2TX slot	28.00	28.02	27.93
	3TX slot	26.49	26.48	26.43
	4TX slot	24.96	24.98	24.96

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AM5T-VT08F Report No.: LCS210827022AEA

4.1.2 Radiated Output Power

TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.
Per rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."
Per rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m . Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The logperiodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$, And the maximum value of the receiver should be recorded as $\left(\mathrm{P}_{\mathrm{r}}\right)$.
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power ($\mathrm{P}_{\text {Mea }}$) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded $\left(\mathrm{P}_{\mathrm{r}}\right)$. The power of signal source $\left(\mathrm{P}_{\text {Mea }}\right)$ is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss $\left(\mathrm{P}_{\mathrm{cl}}\right)$,the Substitution Antenna Gain $\left(\mathrm{G}_{\mathrm{a}}\right)$ and the Amplifier Gain $\left(\mathrm{P}_{\mathrm{Ag}}\right)$ should be recorded after test.
The measurement results are obtained as described below:

Power(EIRP) $=\mathrm{P}_{\mathrm{Mea}}+\mathrm{P}_{\mathrm{Ag}}-\mathrm{P}_{\mathrm{cl}}+\mathrm{G}_{\mathrm{a}}$
6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP $=\mathrm{EIRP}-2.15 \mathrm{dBi}$.

TEST LIMIT

According to 22.913(a), 24.232(c) , the ERP should be not exceed following table limits:

GSM850(GPRS850)		
Function	Power Step	Burst Peak ERP (dBm)
GSM	5	FCC $: \leq 38.45 \mathrm{dBm}(7 \mathrm{~W})$
GPRS	3	FCC $: \leq 38.45 \mathrm{dBm}$ (7W)

PCS1900(GPRS1900)		
Function	Power Step	Burst Peak EIRP (dBm)
GSM	0	$\leq 33.01 \mathrm{dBm}(2 \mathrm{~W})$
GPRS	3	$\leq 33.01 \mathrm{dBm}(2 \mathrm{~W})$

TEST RESULTS

Remark:

1. We were tested all Configuration refer 3GPP TS151 010.
2. $E I R P=P_{\text {Mea }}(d B m)-P_{c l}(d B)+P_{A g}(d B)+G_{a}(d B i)$
3. $E R P=E I R P-2.15 d B i$ as EIRP by subtracting the gain of the dipole.
4. Margin $=$ Emission Level - Limit
5. We test the H direction and V direction recorded worst case.

Temperature	$24.5^{\circ} \mathrm{C}$	Humidity	54.1%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

GSM/TM1/GSM850

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	G_{a} Antenna Gain (dB)	Correction (dB)	$\mathrm{P}_{\text {Ag }}$ (dB)	Burst Average ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.20	-6.96	3.45	8.45	2.15	33.79	$\mathbf{2 9 . 6 8}$	38.45	-8.77	V
836.60	-6.93	3.49	8.45	2.15	33.85	$\mathbf{2 9 . 7 3}$	38.45	-8.72	V
848.80	-6.92	3.55	8.36	2.15	33.88	$\mathbf{2 9 . 6 2}$	38.45	-8.83	V

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	G_{a} Antenna Gain (dB)	P_{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.20	-12.00	4.03	8.38	35.51	$\mathbf{2 7 . 8 6}$	33.01	-5.15	V
1880.00	-12.05	4.08	8.33	35.56	$\mathbf{2 7 . 7 6}$	33.01	-5.25	V
1909.80	-11.95	4.14	8.26	35.63	$\mathbf{2 7 . 8 0}$	33.01	-5.21	V

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AM5T-VT08F Report No.: LCS210827022AEA

4.2 Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA/EIA 603D:2010 and FCC Part 2.1033 test method, The Receiver or Spectrum was scanned from lowest frequency frequency generated within the equipment to the $10^{\text {th }}$ harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz . The resolution bandwidth is set as outlined in Part 24.238 , Part 22.917 , RSS-132 §5.5 and RSS-133 §6.5. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GPRS850.

TEST CONFIGURATION

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m . Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The logperiodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$, And the maximum value of the receiver should be recorded as $\left(\mathrm{P}_{\mathrm{r}}\right)$.
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power ($\mathrm{P}_{\mathrm{Mea}}$) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded $\left(\mathrm{P}_{\mathrm{r}}\right)$. The power of signal source $\left(\mathrm{P}_{\mathrm{Mea}}\right)$ is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss $\left(\mathrm{P}_{\mathrm{cl}}\right)$,the Substitution Antenna Gain $\left(\mathrm{G}_{\mathrm{a}}\right)$ and the Amplifier Gain $\left(\mathrm{P}_{\mathrm{Ag}}\right)$ should be recorded after test.
The measurement results are obtained as described below:
Power(EIRP) $=\mathrm{P}_{\mathrm{Mea}}+\mathrm{P}_{\mathrm{Ag}}-\mathrm{P}_{\mathrm{cl}}+\mathrm{G}_{\mathrm{a}}$
6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP $=$ EIRP -2.15 dBi .
8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
TM1/GSM 850	0.00009~0.15	1 KHz	3 KHz	30
	0.00015~0.03	10 KHz	30 KHz	10
	0.03~1	100 KHz	300 KHz	10
	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
TM1/GSM 1900	0.00009~0.15	1 KHz	3 KHz	30
	0.00015~0.03	10 KHz	30 KHz	10
	0.03~1	100 KHz	300 KHz	10
	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238 and 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
The specification that emissions shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$, translates in the relevant power range (1 to 0.001 W) to -13 dBm . At 1 W the specified minimum attenuation becomes 43 dB and relative to a $30 \mathrm{dBm}(1 \mathrm{~W})$ carrier becomes a limit of -13 dBm . At $0.001 \mathrm{~W}(0 \mathrm{dBm})$ the minimum attenuation is 13 dB , which again yields a limit of -13 dBm . In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
TM1/GSM 850	Low	$9 \mathrm{KHz}-10 \mathrm{GHz}$	PASS
	Middle	$9 \mathrm{KHz}-10 \mathrm{GHz}$	PASS
	High	$9 \mathrm{KHz}-10 \mathrm{GHz}$	PASS
TM1/GSM 1900	Low	$9 \mathrm{KHz}-20 \mathrm{GHz}$	PASS
	Middle	$9 \mathrm{KHz}-20 \mathrm{GHz}$	PASS
	High	$9 \mathrm{KHz}-20 \mathrm{GHz}$	PASS

TEST RESULTS

Remark:

1. We were tested all refer 3GPP TS151 010.
2. $E I R P=P_{\text {Mea }}(d B m)-P_{c l}(d B)+G_{a}(d B i)$
3. We were not recorded other points as values lower than limits.
4. Margin $=$ EIRP - Limit

Temperature	$24.5^{\circ} \mathrm{C}$	Humidity	54.1%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

GSM/TM1/GSM850_Low Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1648.40	-43.57	3.86	3.00	8.56	-38.87	-13.00	-25.87	H
2472.60	-44.60	4.29	3.00	6.98	-41.91	-13.00	-28.91	H
1648.40	-40.12	3.86	3.00	8.56	-35.42	-13.00	-22.42	V
2472.60	-42.32	4.29	3.00	6.98	-39.63	-13.00	-26.63	V

GSM/TM1/GSM850_ Middle Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.20	-41.84	3.9	3.00	8.58	-37.16	-13.00	-24.16	H
2509.80	-46.20	4.32	3.00	6.8	-43.72	-13.00	-30.72	H
1673.20	-37.59	3.9	3.00	8.58	-32.91	-13.00	-19.91	V
2509.80	-42.93	4.32	3.00	6.8	-40.45	-13.00	-27.45	V

GSM/TM1/GSM850_ High Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1697.60	-46.73	3.91	3.00	9.06	-41.58	-13.00	-28.58	H
2546.40	-49.15	4.32	3.00	6.65	-46.82	-13.00	-33.82	H
1697.60	-43.03	3.91	3.00	9.06	-37.88	-13.00	-24.88	V
2546.40	-45.29	4.32	3.00	6.65	-42.96	-13.00	-29.96	V

GSM/TM1/GSM1900_ Low Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3700.40	-45.02	5.26	3.00	9.88	-40.40	-13.00	-27.40	H
5550.60	-46.76	6.11	3.00	11.36	-41.51	-13.00	-28.51	H
3700.40	-41.44	5.26	3.00	9.88	-36.82	-13.00	-23.82	V
5550.60	-44.23	6.11	3.00	11.36	-38.98	-13.00	-25.98	V

GSM/TM1/GSM1900_ Middle Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.00	-44.03	5.32	3.00	10.03	-39.32	-13.00	-26.32	H
5640.00	-48.19	6.19	3.00	11.41	-42.97	-13.00	-29.97	H
3760.00	-39.79	5.32	3.00	10.03	-35.08	-13.00	-22.08	V
5640.00	-45.09	6.19	3.00	11.41	-39.87	-13.00	-26.87	V

GSM/TM1/GSM1900_High Channel

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}$ (dBm)	P_{cl} (dB)	Diatance	G_{a} Antenna Gain (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3819.60	-48.60	5.36	3.00	9.62	-44.34	-13.00	-31.34	H
5729.40	-51.23	6.24	3.00	11.46	-46.01	-13.00	-33.01	H
3819.60	-45.24	5.36	3.00	9.62	-40.98	-13.00	-27.98	V
5729.40	-47.44	6.24	3.00	11.46	-42.22	-13.00	-29.22	V

4.3 Occupied Bandwidth and Emission Bandwidth

TEST APPLICABLE

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GPRS850 band. The table below lists the measured 99% Bandwidth and -26 dBc Bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was set up for the max output power with pseudo random data modulation;
2. The Occupied bandwidth and Emission Bandwidth were measured with Spectrum AnalyzerN9020A;
3. Set RBW $=5.1 \mathrm{KHz}, \mathrm{VBW}=15 \mathrm{KHz}, \mathrm{Span}=1 \mathrm{MHz}, \mathrm{SWT}=$ Auto;
4. Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
5. These measurements were done at 3 frequencies, $1850.20 \mathrm{MHz}, 1880.00 \mathrm{MHz}$ and 1909.80 MHz for PCS1900 band; 824.20MHz, 836.60 MHz and 848.80 MHz for GPRS850 band. (Low, middle and high of operational frequency range).

TEST RESULTS

Temperature	$24.7^{\circ} \mathrm{C}$	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

Test Mode	Channel	Frequency (MHz)	Occupied Bandwidth $(99 \% \mathrm{BW})$ (KHz)	Emission Bandwidth $(-26 \mathrm{dBc} \mathrm{BW})$ (KHz)	Verdict
	128	824.2	246.78	316.1	PASS
	190	836.6	248.25	313.2	PASS
	251	848.8	245.40	310.6	PASS
GSM/TM1	512	1850.2	246.74	318.6	PASS
	661	1880.0	246.32	316.1	PASS
	810	1909.8	243.44	320.5	PASS

Remark:

1. Test results including cable loss;
2. Please refer to following plots;

4.4 Band Edge Complicance

TEST APPLICABLE

During the process of testing, the EUT was controlled via Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was set up for the max output power with pseudo random data modulation;
2. The power was measured with Spectrum Analyzer N9020A;
3. Set RBW $=5.1 \mathrm{KHz}, \mathrm{VBW}=15 \mathrm{KHz}, \mathrm{Span}=2 \mathrm{MHz}, \mathrm{SWT}=$ Auto, Dector: RMS ;
4. These measurements were done at 2 frequencies, 1850.20 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz and 848.80 MHz for GPRS850 band. (bottom and top of operational frequency range).

TEST RESULTS

Temperature	$24.7^{\circ} \mathrm{C}$	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

Test Mode	Channel	Frequency (MHz)	Band Edg Compliance (dBm)	Limits (dBm)	Verdict
GSM/TM1/GSM850	128	824.2	$<-13 \mathrm{dBm}$	-13 dBm	PASS
	251	848.8	$<-13 \mathrm{dBm}$	-13 dBm	
GSM/TM1/GSM1900	512	1850.2	$<-13 \mathrm{dBm}$	-13 dBm	PASS
	810	1909.8	$<-13 \mathrm{dBm}$	-13 dBm	

Remark:

1. Test results including cable loss;
2. Please refer to following plots;

4.5 Spurious Emission on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. Determine frequency range for measurements: From CFR 2.1057 and RSS-GEN the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the $10^{\text {th }}$ harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 9 KHz to 20 GHz , data taken from 30 MHz to 20 GHz . For GPRS850, this equates to a frequency range of 9 KHz to 9 GHz , data taken from 30 MHz to 9 GHz .
2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
3. The procedure to get the conducted spurious emission is as follows:

The trace mode is set to MaxHold to get the highest signal at each frequency;
Wait 25 seconds;
Get the result.
4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was set up for the max output power with pseudo random data modulation;
2. The power was measured with Spectrum Analyzer N9020A;
3. These measurements were done at 3 frequencies, $1850.20 \mathrm{MHz}, 1880.00 \mathrm{MHz}$ and 1909.80 MHz for PCS1900 band; $824.20 \mathrm{MHz}, 836.60 \mathrm{MHz}$ and 848.80 MHz for GPRS850 band. (Low, middle and high of operational frequency range).

TEST LIMIT

Part 24.238 , Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
The specification that emissions shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$, translates in the relevant power range (1 to 0.001 W) to -13 dBm . At 1 W the specified minimum attenuation becomes 43 dB and relative to a $30 \mathrm{dBm}(1 \mathrm{~W})$ carrier becomes a limit of -13 dBm . At $0.001 \mathrm{~W}(0 \mathrm{dBm})$ the minimum attenuation is 13 dB , which again yields a limit of -13 dBm . In this way a translation of the specification from relative to absolute terms is carried out.

TEST RESULTS

Temperature	$24.7^{\circ} \mathrm{C}$	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBm)	Limits (dBm)	Verdict
	128	824.2	$<-13 \mathrm{dBm}$	-13 dBm	
	190	836.6	$<-13 \mathrm{dBm}$	-13 dBm	PASS
	251	848.8	$<-13 \mathrm{dBm}$	-13 dBm	
GSM/TM1/GSM1900	512	1850.2	$<-13 \mathrm{dBm}$	-13 dBm	PASS
	661	1880.0	$<-13 \mathrm{dBm}$	-13 dBm	

Remark:

1. Test results including cable loss;
2. Please refer to following plots;
3. Not reorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

4.6 Frequency Stability Test

TEST APPLICABLE

1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ centigrade.
2. According to FCC Part 2 Section 2.1055 (E) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment and the end voltage point was 3.3 V .

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R\&S CMW 500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature;
2. Subject the EUT to overnight soak at $-30^{\circ} \mathrm{C}$;
3. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on middle channel of PCS 1900 and GPRS850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
4. Repeat the above measurements at $10^{\circ} \mathrm{C}$ increments from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1 Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
6. Subject the EUT to overnight soak at $+50^{\circ} \mathrm{C}$;
7. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
8. Repeat the above measurements at $10^{\circ} \mathrm{C}$ increments from $+50^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
9. At all temperature levels hold the temperature to $+/-0.5^{\circ} \mathrm{C}$ during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section $2.1055(\mathrm{~d})(2)$ applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.3 VDC and 4.35 VDC , with a nominal voltage of 3.8 DC . Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10% and $+12.5 \%$. For the purposes of measuring frequency stability these voltage limits are to be used.

For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section $2.1055(\mathrm{~d})(1)$ applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

TEST RESULTS

Temperature	Normal and Extreme as follows	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

GSM/TM1/GSM850					
DC Power	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.70	25	24	0.029	2.50	PASS
3.15	25	-45	-0.055	2.50	PASS
4.26	25	2	0.002	2.50	PASS
3.70	-30	-14	-0.017	2.50	PASS
3.70	-20	35	0.042	2.50	PASS
3.70	-10	33	0.040	2.50	PASS
3.70	0	17	0.021	2.50	PASS
3.70	10	-15	-0.018	2.50	PASS
3.70	20	-44	-0.053	2.50	PASS
3.70	30	21	0.025	2.50	PASS
3.70	40	22	0.027	2.50	PASS
3.70	50	-5	-0.006	2.50	PASS

GSM/TM1/GSM1900					
DC Power	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.70	25	-27	-0.014	2.50	PASS
3.15	25	32	0.017	2.50	PASS
4.26	25	-39	-0.021	2.50	PASS
3.70	-30	-29	-0.015	2.50	PASS
3.70	-20	-44	-0.023	2.50	PASS
3.70	-10	-8	-0.004	2.50	PASS
3.70	0	-25	-0.013	2.50	PASS
3.70	10	10	0.005	2.50	PASS
3.70	20	-24	-0.013	2.50	PASS
3.70	30	-45	-0.024	2.50	PASS
3.70	40	50	0.027	2.50	PASS
3.70	50	25	0.013	2.50	PASS

4.7 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB .

TEST CONFIGURATION

TEST PROCEDURE

Use spectrum to measure the total peak power and record as P_{Pk}. Use spectrum to measure the total average power and record as $\mathrm{P}_{\text {Avg. }}$. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:
PAPR $(\mathrm{dB})=\mathrm{P}_{\mathrm{Pk}}(\mathrm{dBm})-\mathrm{P}_{\mathrm{Avg}}(\mathrm{dBm})$.
Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Temperature	$24.7^{\circ} \mathrm{C}$	Humidity	54.3%
Test Engineer	Jay Li	Configurations	GSM850/PCS1900

Test Mode	Channel	Frequency (MHz)	PAPR Value (dB)	Limits (dB)	Verdict
GSM/TM1/GSM850	128	824.2	0.35	13.0	PASS
	190	836.6	0.52	13.0	
	251	848.8	0.52	13.0	PASS
GSM/TM1/GSM1900	512	1850.2	0.62	13.0	
	661	1880.0	0.52	13.0	13.0

5 TESTSETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

6 EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

7 INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.
.End of Report.

[^0]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

[^1]: This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

