

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For Radio Frequency Device with BLE

FCC ID: 2AM5NM2000

Model Name: M2001

Report Number: 11694639-S3V3 Issue Date: 6/15/2018

Prepared for Magic Leap, Inc 7500 West Sunrise Blvd Plantation, FL, 33322, USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	······································					
Rev.	Date	Revisions	Revised By			
V1	5/18/2018	Initial Issue				
V2	6/5/2018	Updated model number and SW version Appendix A – updated antenna location diagram	Dave Weaver			
V3	6/15/2018	Section 6.1 – Added handheld operation as use case	Dave Weaver			

Page 2 of 19

Table of Contents

1.	Attestation of Test Results	4
2.	Test Specification, Methods and Procedures	5
3.	Facilities and Accreditation	5
4.	SAR Measurement System & Test Equipment	6
4.1.	SAR Measurement System	6
4.2.	SAR Scan Procedures	7
4.3.	Test Equipment	9
5.	Measurement Uncertainty10	D
6.	Device Under Test (DUT) Information 17	1
6.1.	DUT Description 1	1
6.2.	Wireless Technologies	1
6.3.	Maximum Output Power from Tune-up Procedure1	1
7.	RF Exposure Conditions (Test Configurations) 12	2
7.1.	Standalone SAR Test Exclusion Considerations12	2
7.2.	Required Test Configurations12	2
8.	Dielectric Property Measurements & System Check 13	3
8.1.	Dielectric Property Measurements	3
8.2.	System Check1	5
9.	Conducted Output Power Measurements	6
9.1.	Bluetooth LE	6
10.	Measured and Reported (Scaled) SAR Results17	7
10.1	1. Bluetooth LE	7
11.	SAR Measurement Variability	8
12.	Simultaneous Transmission Conditions	8
Apper	ndixes	9
116	94639-S3V1 Appendix A: SAR Setup Photos19	9
116	94639-S3V1 Appendix B: SAR System Check Plots19	9
116	94639-S3V1 Appendix C: Highest SAR Test Plots	9
116	94639-S3V1 Appendix D: SAR Liquid Tissue Ingredients1	9
116	94639-S3V1 Appendix E: SAR Probe Calibration Certificates	9
116	94639-S3V1 Appendix F: SAR Dipole Calibration Certificate1	9

Page 3 of 19

1. Attestation of Test Results

Applicant Name	Magic Leap				
FCC ID	2AM5NM2000	2AM5NM2000			
Model	M2001				
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013				
		SAR Lim	nits (W/Kg)		
Exposure Category	Peak spatial-average (1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)		
General population / Uncontrolled exposure	1.6 4			4	
	Equipment Class - Highest Reported SAR (W/kg)				
RF Exposure Conditions	PCB	DTS	NII	DSS	
Extremity	N/A N/A N/A 0.914				
Date Tested	11/6/2017 to 11/15/2017 and 2/12/2018 to 2/21/2018				
Test Results	Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:
At .)./a
Dave Weaver	Jason Kuo
Operations Leader	Laboratory Technician
UL Verification Services Inc.	UL Verification Services Inc.

Page 4 of 19

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02

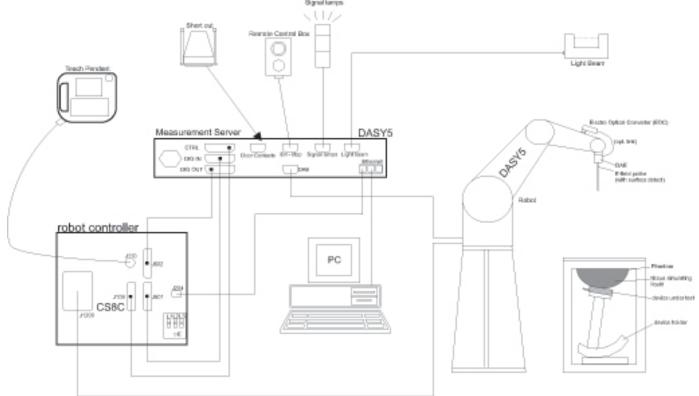
In addition to the above, the following information was used:

o <u>TCB workshop</u> October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	
SAR Lab F	
SAR Lab G	
SAR Lab H	


UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

Page 5 of 19

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 6 of 19

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D0	1 SAR Measurement 100 MHz to 6 GHz
---	------------------------------------

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from	KDB 865664 D01 SAR	Measurement 100 MHz to 6 GHz
-------------------------------------	--------------------	------------------------------

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{ c c c c } graded \\ grid \\ \hline & \Delta z_{Zoom}(1): \ between \\ 1^{st} \ two \ points \ closest \\ to \ phantom \ surface \\ \hline & \Delta z_{Zoom}(n > 1): \\ between \ subsequent \\ points \\ \hline \end{array}$	1st two points closest	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤1.5·∆z	Zoom(n-1)	
Minimum zoom scan volume	x, y, z	1	$ \ge 30 \text{ mm} \qquad \begin{array}{c} 3 - 4 \text{ GHz:} \ge 23 \\ 4 - 5 \text{ GHz:} \ge 23 \\ 5 - 6 \text{ GHz:} \ge 23 \end{array} $	
Note: S is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE				

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Test Equipment used for Test dates 11/6/2017 to 11/15/2017

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40000980	5/10/2018
Dielectric Probe kit	SPEAG	DAK-3.5	1082	10/17/2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	10/17/2018
Thermometer	Traceable Calibration Control Co.	4242	140493798	8/9/2018

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Agilent	N5181A	MY50140610	5/31/2018
Power Meter	Keysight	N1912A	MY55196008	5/12/2018
Power Sensor	Agilent	N1921A	MY52260009	1/5/2018
Power Sensor	Agilent	N1921A	MY52270022	12/17/2017
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Directional coupler	Werlatone	C8060-102	2149	N/A
DC Power Supply	BK PRECISION	E3610A	KR24104150	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date			
E-Field Probe (SAR Lab 2)	SPEAG	EX3DV4	3885	10/24/2018			
E-Field Probe (SAR Lab 3)	SPEAG	EX3DV4	3902	5/30/2018			
Data Acquisition Electronics (SAR Lab 2)	SPEAG	DAE4	1433	3/8/2018			
Data Acquisition Electronics (SAR Lab 3)	SPEAG	DAE4	1239	7/27/2018			
System Validation Dipole	SPEAG	D2450V2	706	5/9/2018			

Other

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Power Sensor	Agilent	N1921A	T 751	MY53260010	10/17/2018
Power Meter	Agilent	N1912A	T1273	MY55196007	7/17/2018
Base Station Simulator	R & S	CBT	T438	100987-WW	6/1/2018
Thermometer (SAR 2)	Extech	Big Digit Hygro-Thermometer	T913	445703	7/13/2018
Thermometer (SAR 3)	Extech	Big Digit Hygro-Thermometer	T910	445703	6/14/2018
PXA Signal Analyzer	Agilent	N9030A	T342	MY52350671	2/23/2018

Test Equipment used for Test dates 2/12/2018 to 2/14/2018: Dielectric Property Measurements

Biologino i roperty measuremente				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40000980	5/10/2018
Dielectric Probe kit	SPEAG	DAK-3.5	1082	10/17/2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	10/17/2018
Thermometer	Traceable Calibration Control Co.	15-078-179	170064398	5/26/2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Agilent	N5181A	MY50140630	5/16/2018
Power Meter	HP	437B	3125U12345	8/10/2018
Power Meter	HP	437B	3125U11347	8/15/2018
Power Sensor	HP	8481A	3318A92374	8/15/2018
Power Sensor	HP	8481A	1926A27048	8/10/2018
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795092	N/A
Directional coupler	Werlatone	C8060-102	2141	N/A
DC Power Supply	BK Precision	1611	215-02292	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date	
E-Field Probe (SAR Lab 2)	SPEAG	EX3DV4	3885	10/24/2018	
Data Acquisition Electronics (SAR Lab 2)	SPEAG	DAE4	1433	3/8/2018	
System Validation Dipole	SPEAG	D2450V2	706	5/9/2018	

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Power Sensor	Agilent	N1921A	MY53260010	10/17/2018
Power Meter	Agilent	N1912A	MY55196007	7/17/2018
Base Station Simulator	R & S	CBT	1153.9000K35-100987-WW	6/1/2018
Thermometer (SAR 2)	Extech	Big Digit Hygro-Thermometer	445703	7/13/2018

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Usage	The DUT is a handheld de	vice therefore the 10g extre	mity SAR limit of 4W/kg applies.							
Device Dimension										
	Overall Diagonal: 138 mm									
Back Cover	The Back Cover is not remo	The Back Cover is not removable.								
Battery Options	The rechargeable battery is	The rechargeable battery is not user accessible.								
	S/N	Model	Notes							
Test sample	GA10E4J00970	M2001	SAR Conducted							
information	GA10E4J20989	M2001	SAR Radiated							
	GA10E4J20961 M2001 SAR Radiated									
Hardware Version	PEQ5AS									
Software Version	0.12_0									

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating Mode	Duty Cycle used for SAR testing
Bluetooth	2.4 GHz	Version 5.0 LE	49.66%

6.3. Maximum Output Power from Tune-up Procedure

RF Air interface	Mode	Channels	Max. RF Output Power (dBm)
Bluetooth	BLE	All	20.0

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.
- \circ SAR Test exclusion threshold determines SAR exclusion
 - a. SAR Test exclusion threshold is calculated using the procedure in KDB 447498 § 4.3.1.

SAR Test Exclusion Calculations for Bluetooth LE

Antennas < 50mm to adjacent edges

Tx Frequency Output Power Interface (MHz) dBm mW	x riequency		Separation Distances (mm)							Calculated Va						
	mW	Rear	Front	Edge 1	Edge 2	Edge 3	Edge 4	Rear	Front	Edge 1	Edge 2	Edge 3	Edge 4			
Bluetooth LE	2478	20.00	100	5.00	5.00	5.00	5.00	5.00	5.00	31.5 -MEASURE-	31.5 -MEASURE-	315 -MEASURE-	31.5 -MEASURE-	315 -MEASURE-	31.5 -MEASURE-	

Note(s):

According to KDB 447498, if the calculated threshold value is >7.5 (for 10g), then SAR testing is required.

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Test Configurations	Rear	Front	Edge 1	Edge 2	Edge 3	Edge 4
Bluetooth LE	Yes	Yes	Yes	Yes	Yes	Yes

Note(s):

Yes = SAR Testing is required.

No = SAR Testing is not required.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device (rounded to the nearest 10MHz).

The dielectric constant (ϵr) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	lead	Bo	dy
rarger requency (wiriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results for Test dates 11/6/2017 to 11/15/2017

SAR		Band	Tissue	Frequency	Relative Permittivity (cr)			Conductivity (σ)		
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
	2 11/14/2017 2450 Body		2450	50.70	52.70	-3.80	2.00	1.95	2.67	
2		2450 Body	Body	2400	51.02	52.77	-3.32	1.98	1.90	4.42
				2480	50.40	52.66	-4.30	2.03	1.99	1.80
				2450	50.61	52.70	-3.97	1.91	1.95	-1.95
3	11/6/2017 2	2450 Body	Body	2400	50.85	52.77	-3.64	1.86	1.90	-1.79
				2480	50.57	52.66	-3.97	1.96	1.99	-1.66

Dielectric Property Measurements Results for Test dates 2/12/2018 to 2/14/2018:

SAR Lab		Band (MHz)	Tissue Type	Frequency		ve Permittivi	ty (ɛr)	Conductivity (σ)		
	Date			(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
	2/12/2018	2450	Body	2450	51.55	52.70	-2.18	2.00	1.95	2.46
2				2400	51.71	52.77	-2.01	1.94	1.90	2.11
				2480	51.48	52.66	-2.24	2.03	1.99	2.00

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results for Test dates 11/6/2017 to 11/15/2017

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

SAR	Date	Tissue	Dipole Type	Dipole	Measured Results for 1g SAR				Measured Results for 10g SAR				Plot
Lab	Date	Туре	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
2	11/14/2017	Body	D2450V2 SN:706	5/9/2018	5.350	53.50	50.60	5.73	2.450	24.50	23.80	2.94	1,2
3	11/6/2017	Body	D2450V2 SN:706	5/9/2018	5.180	51.80	50.60	2.37	2.380	23.80	23.80	0.00	3,4

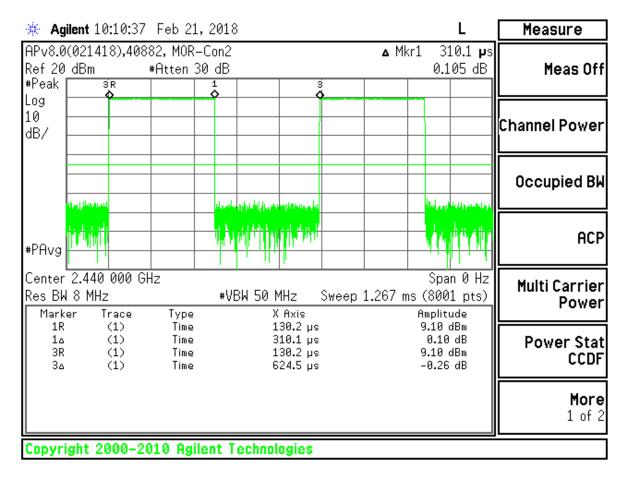
System Check Results for Test dates 2/12/2018 to 2/14/2018:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

SAR Lab	Date	Tissue	Dipole Type	Dipole	м	easured Result	s for 1g SAR		Measured Results for 10g SAR			Plot	
	Date	Туре	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
2	2/12/2018	Body	D2450V2 SN:706	5/9/2018	5.260	52.60	50.60	3.95	2.400	24.00	23.80	0.84	5,6

9. Conducted Output Power Measurements

9.1. Bluetooth LE


Band (GHz)	Mode	Ch #	Freq. (MHz)	Meas. Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	
		0	2401	19.1			
2.4	BLE	17	2440	19.6	20.0	Yes	
		36	2478	19.4			

Duty Factor Measured Results

Mode	Туре	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)	
BLE	DH5	0.3101	0.6245	49.66%	2.01	

Duty Cycle plot

Bluetooth LE

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

10.1. Bluetooth LE

RF		Dist.			Freq.	Duty	Power (dBm)		10-g SAR (W/kg)		Plot
Exposure I Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Cycle	Tune-up limit	Meas.	Meas.	Scaled	No.
	BLE		Rear	0	2401	49.66%	20.0	19.1	0.369	0.914	1
				17	2440	49.66%	20.0	19.6	0.376	0.830	
				36	2478	49.66%	20.0	19.4	0.322	0.744	
Extremity		0	Front	17	2440	49.66%	20.0	19.6	0.114	0.252	
Extremity			Edge 1	17	2440	49.66%	20.0	19.6	0.012	0.026	
			Edge 2	17	2440	49.66%	20.0	19.6	0.108	0.238	
			Edge 3	17	2440	49.66%	20.0	19.6	0.093	0.205	
			Edge 4	17	2440	49.66%	20.0	19.6	0.193	0.426	

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)
2400	Bluetooth LE	Extremity	Rear	No	0.375

Note(s):

Repeated Measurement is not required since Highest Measured SAR is < 2.0 W/kg.

12. Simultaneous Transmission Conditions

The DUT does not support simultaneous transmission.

Appendixes

Refer to separated files for the following appendixes.

11694639-S3V2 Appendix A: SAR Setup Photos

11694639-S3V1 Appendix B: SAR System Check Plots

11694639-S3V1 Appendix C: Highest SAR Test Plots

11694639-S3V1 Appendix D: SAR Liquid Tissue Ingredients

- 11694639-S3V1 Appendix E: SAR Probe Calibration Certificates
- 11694639-S3V1 Appendix F: SAR Dipole Calibration Certificate

END OF REPORT