Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Certificate No: D2450V2-706_May17

S

С

bject	D2450V2 - SN:70	16	
alibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	May 09, 2017		
The measurements and the uncer	tainties with confidence p ted in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages and ry facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
Calibration Equipment used (M&T Primary Standards	DD #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
eference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
ype-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
eterence Probe EX3DV4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
	1314.001		
DAE4	ID #	Check Date (in house)	Scheduled Check
DAE4 Secondary Standards	1		
DAE4 Secondary Standards Power meter EPM-442A	ID #	Check Date (in house)	Scheduled Check
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: GB37480704	Check Date (in house) 07-Oct-15 (in house check Oct-16)	Scheduled Check In house check: Oct-18
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Scheduled Check In house check: Oct-18 In house check: Oct-18
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.4 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	6.20 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)	

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω + 5.1 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω + 6.2 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
Electrical Delay (one direction)	1.11110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 28, 2002	

DASY5 Validation Report for Head TSL

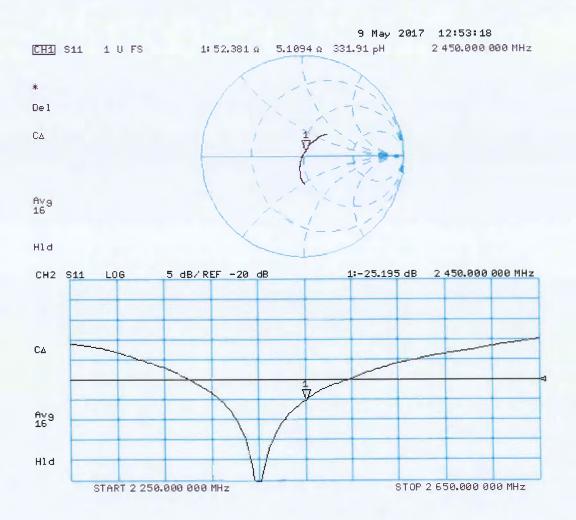
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.9 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

DASY5 Validation Report for Body TSL

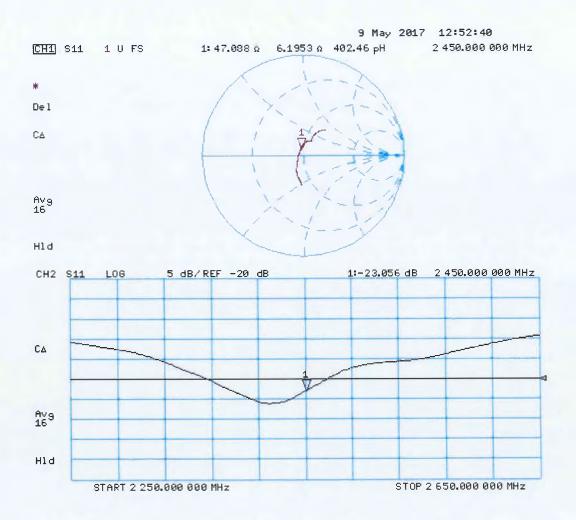
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.5 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.01 W/kg Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	13.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition			
SAR measured	250 mW input power	6.49 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	26.1 W/kg ± 16.9 % (k=2)		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR (average measured)	250 mW input power 6.82 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	27.4 W/kg ± 16.9 % (k=2)	

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	8.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	250 mW input power	4.32 W/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 19/Feb/2018

8 CERTIFICATE NUMBER : 12129912JD01A

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masec

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	09/Feb/2018
Manufacturer:	Speag		
Type/Model Number:	D2450V2		
Serial Number:	748		
Calibration Date:	14/Feb/2018		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	9		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

Page 2 of 10

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	08 Nov 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	28 Sep 2017	12
A1322	Dipole	SPEAG	D2450V2	725	19 Sep 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0176448	Power Sensor	Rhode & Schwarz	NRP-Z51	103459	20 June 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2016	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	09 May 2016	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 March 2017	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F14/5T5ZA1/A/01		
DASY Version:	DASY 52 (v52.8.8.1258)		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	2450 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Parameters	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)		
Head	2450	22.0 °C	22.0 ℃	21.6°C	22.0°C	٤r	39.20	38.11	± 5%		
Tieau	2430	22.0 C	22.0 C	21.0 C	22.0 C	σ	1.80	1.78	± 5%		

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.30 W/Kg	52.94 W/Kg	± 17.57%
neau	SAR averaged over 10g	6.18 W/Kg	24.60 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	52.358 Ω 3.89 jΩ	± 0.28 Ω ± 0.044 jΩ
пеац	Return Loss	27.52	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Parameters	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)		
Body	2450	22.0 °C	22 0 °C	21.6°C	22.0°C	٤r	52.70	50.63	± 5%		
Бойу	2400	22.0 C	22.0 C	21.0 C	22.0 C	σ	1.95	2.02	± 5%		

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	12.80 W/Kg	50.95 W/Kg	± 18.06%
Воцу	SAR averaged over 10g	5.98 W/Kg	23.80 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

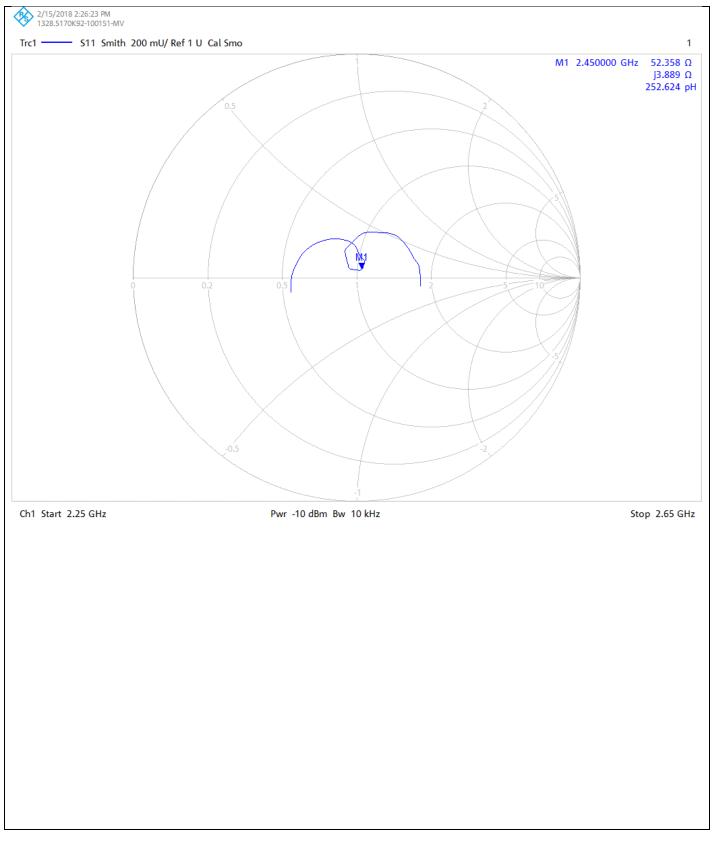
Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	52.47 Ω <i>-</i> 1.10 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	30.00	± 2.03 dB

CERTIFICATE NUMBER : 12129912JD01A

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

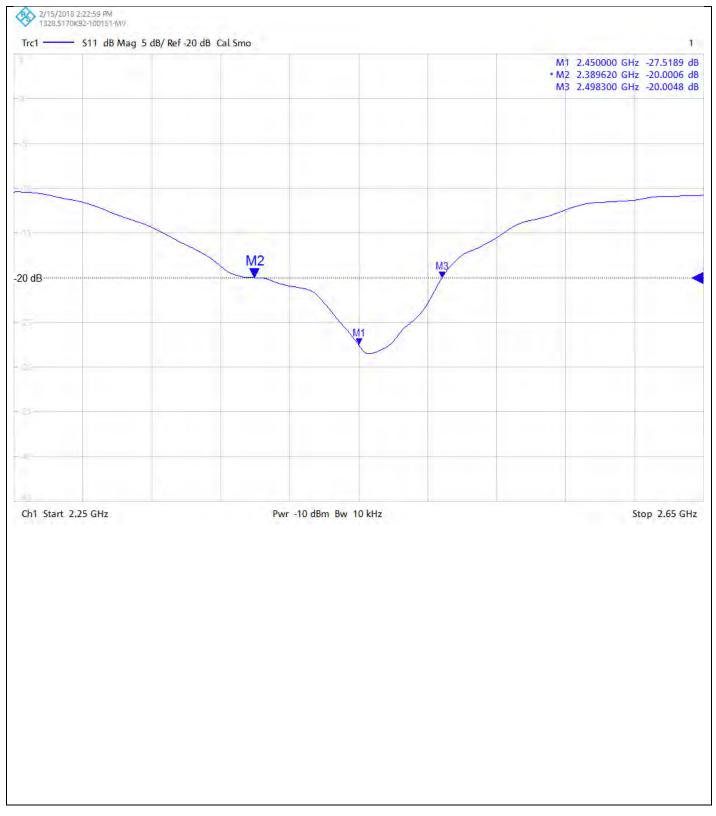

DUT: D2450V2 - SN748; Type: D2450V2; Serial: SN748 dB 0 -4.42 -8.83-13.25 -17.66-22.080 dB = 17.6 W/kg = 12.46 dBW/kgCommunication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 MHz HSL Medium parameters used: f = 2450 MHz; σ = 1.779 S/m; ϵ_r = 38.111; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY4** Configuration: - Probe: EX3DV4 - SN3814; ConvF(7.04, 7.04, 7.04); Calibrated: 28/09/2017; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn431; Calibrated: 08/11/2017 - Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:1818 -; SEMCAD X Version 14.6.10 (7372) Configuration/d=10mm, Pin=250mW /Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.9 W/kg Configuration/d=10mm, Pin=250mW /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.54 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 17.6 W/kg

CERTIFICATE NUMBER : 12129912JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

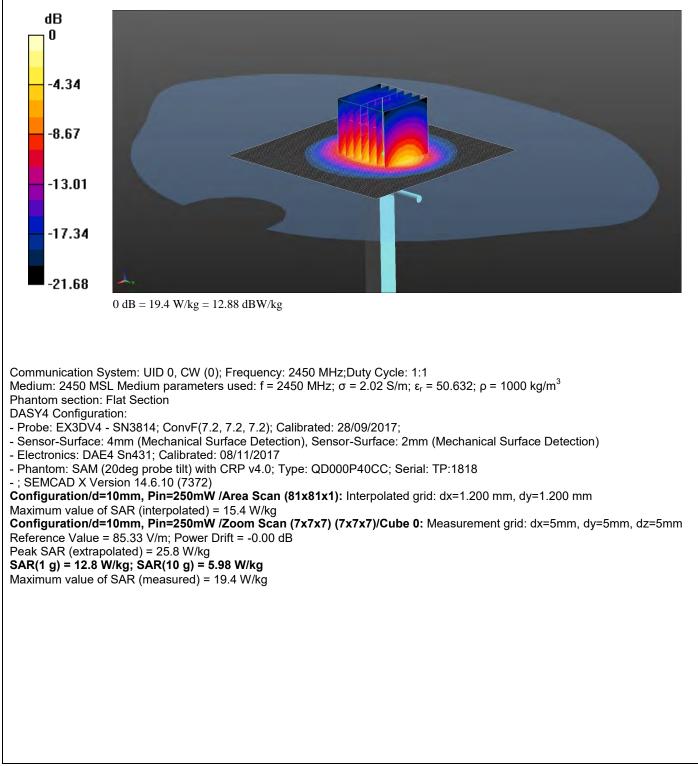


CERTIFICATE NUMBER : 12129912JD01A

UKAS Accredited Calibration Laboratory No. 5248

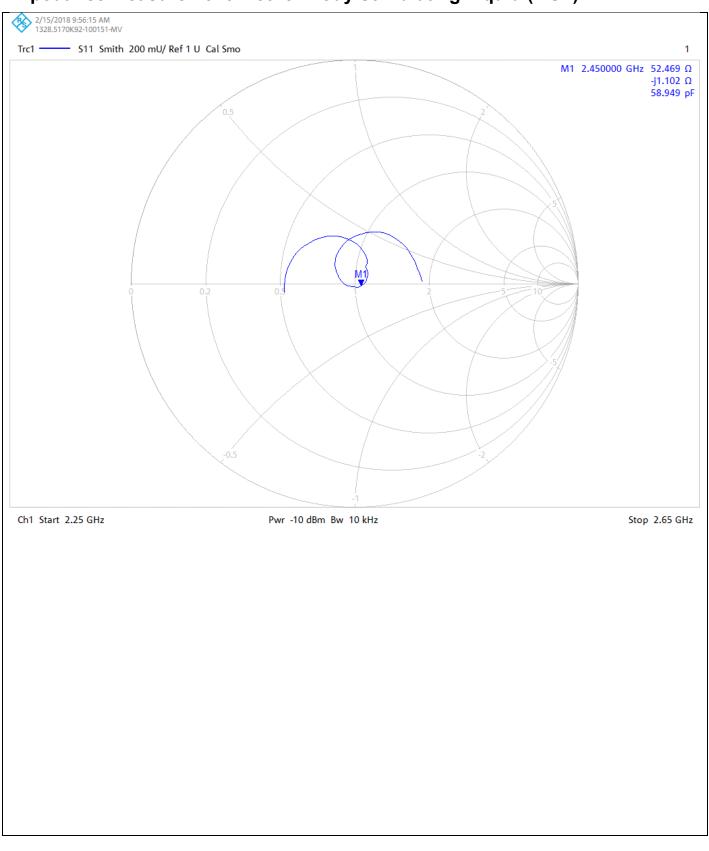
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

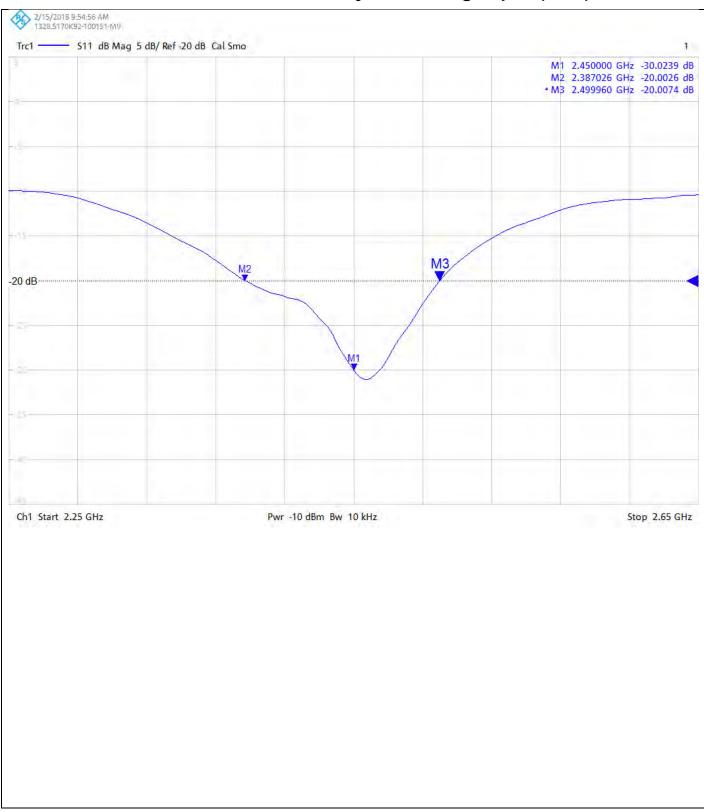

CERTIFICATE NUMBER : 12129912JD01A

Page 8 of 10

UKAS Accredited Calibration Laboratory No. 5248


DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D2450V2 - SN748; Type: D2450V2; Serial: SN748


UKAS Accredited Calibration Laboratory No. 5248

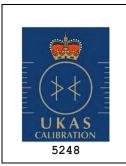
Impedance Measurement Plot for Body Stimulating Liquid (MSL)

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12129912JD01A
	Instrument ID: 748
	Calibration Date: 14/Feb/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12129912JD01A

Instrument ID: 748

Calibration Date: 14/Feb/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12129912JD01A

Instrument ID: 748

Calibration Date: 14/Feb/2018

Calibration Due Date:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1003_Feb17

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL CCS USA Client

bject	D5GHzV2 - SN:1003					
alibration procedure(s)	QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz					
	Calibration proce					
libration date:	February 13, 201	7				
nis calibration certificate docum	ents the traceability to nati	onal standards, which realize the physical uni	its of measurements (SI).			
e measurements and the unce	rtainties with confidence p	robability are given on the following pages and	d are part of the certificate.			
Il calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.			
alibration Equipment used (M&T	TE critical for calibration)					
imary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
	ID # SN: 104778	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration Apr-17			
wer meter NRP						
wer meter NRP wer sensor NRP-Z91	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17			
wer meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17 Apr-17			
wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91 ference 20 dB Attenuator pe-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17 Apr-17			
wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91 ference 20 dB Attenuator pe-N mismatch combination ference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator rpe-N mismatch combination eference Probe EX3DV4 AE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check			
wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91 oference 20 dB Attenuator pe-N mismatch combination oference Probe EX3DV4 AE4 econdary Standards wer meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ope-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A rower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 0AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 detwork Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. 217-02295) 31-Dec-16 (No. EX3-3503_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18			

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.0 ± 6 %	5.34 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	41 44 46 16 16	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	70.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.99 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following	parameters and	calculations	were applied.
---------------	----------------	--------------	---------------

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.3 Ω - 10.3 jΩ	
Return Loss	- 19.5 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.5 Ω - 3.1 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.5 Ω - 7.2 jΩ
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.9 Ω - 8.8 jΩ
Return Loss	- 21.1 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.8 Ω - 0.7 jΩ
Return Loss	- 23.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	58.6 Ω - 5.8 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.207 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

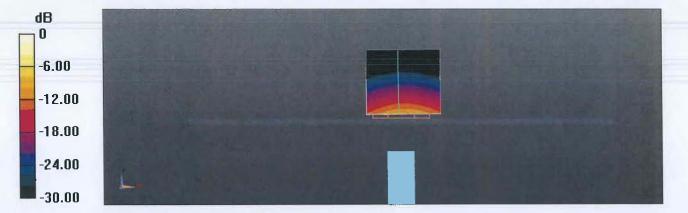
Manufactured by	SPEAG	
Manufactured on	July 08, 2003	

Date: 13.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.45 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.85 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.05 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.83 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.68 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.1 W/kg

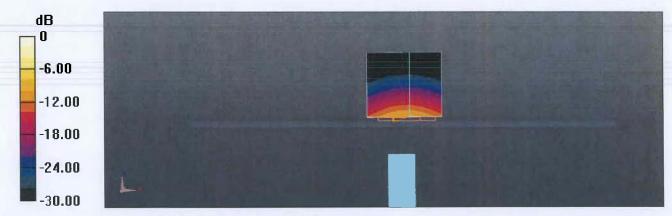
0 dB = 17.7 W/kg = 12.48 dBW/kg

Date: 10.02.2017

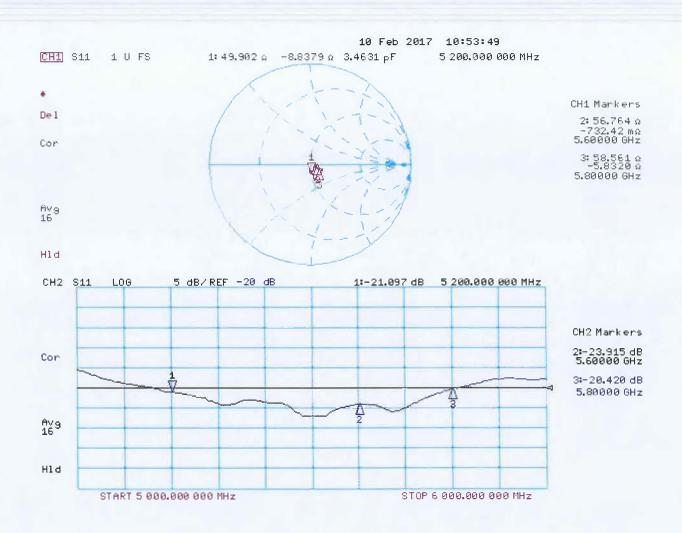
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.34 S/m; ϵ_r = 48; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.87 S/m; ϵ_r = 47.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.15 S/m; ϵ_r = 46.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.13 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.08 W/kg; SAR(10 g) = 1.99 W/kg Maximum value of SAR (measured) = 16.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.15 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.29 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1138_Oct17

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Dbject	D5GHzV2 - SN:1	138	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	October 26, 2017		
		onal standards, which realize the physical ur	• •
he measurements and the uncer	rtainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conduct	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
eference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
ype-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17
AE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
AE4	SN: 781	13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-16 (No. 217-02222)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-16 (No. 217-02222)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-16 (No. 217-02223)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	+-10-
			1. 40
Approved by:	Katja Pokovic	Technical Manager	Alle
		/	140.7

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.0 Ω - 8.1 jΩ	
Return Loss	- 21.7 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.1 Ω - 1.8 jΩ	
Return Loss	- 24.4 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.4 Ω - 7.4 jΩ	
Return Loss	- 22.7 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω - 1.7 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.9 Ω - 2.2 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

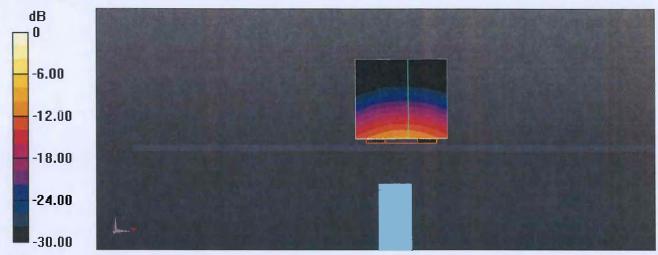
Manufactured by	SPEAG
Manufactured on	May 07, 2012

Date: 26.10.2017

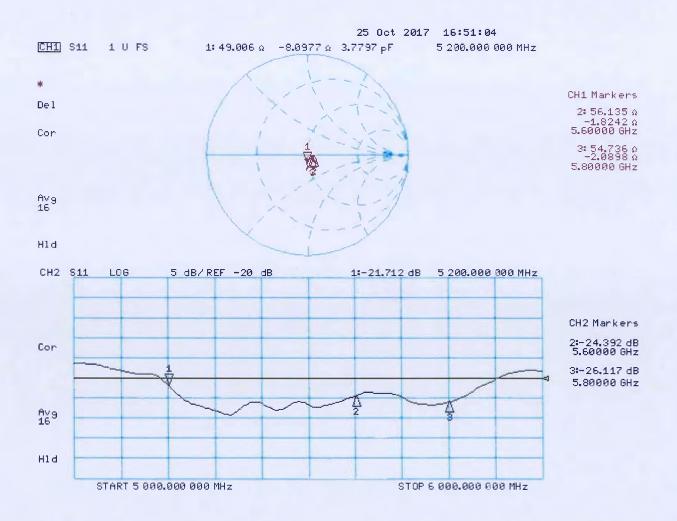
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.5 S/m; ε_r = 36.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.9 S/m; ε_r = 35.5; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.11 S/m; ε_r = 35.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.15 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.42 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.10 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 18.7 W/kg

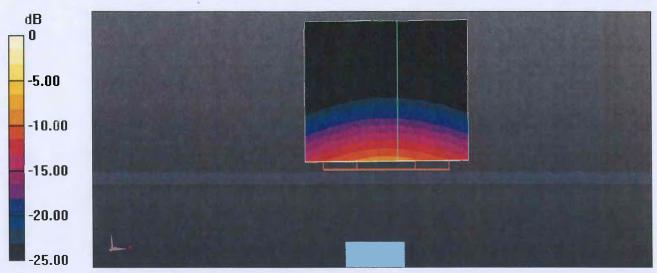
0 dB = 17.3 W/kg = 12.38 dBW/kg

Date: 25.10.2017

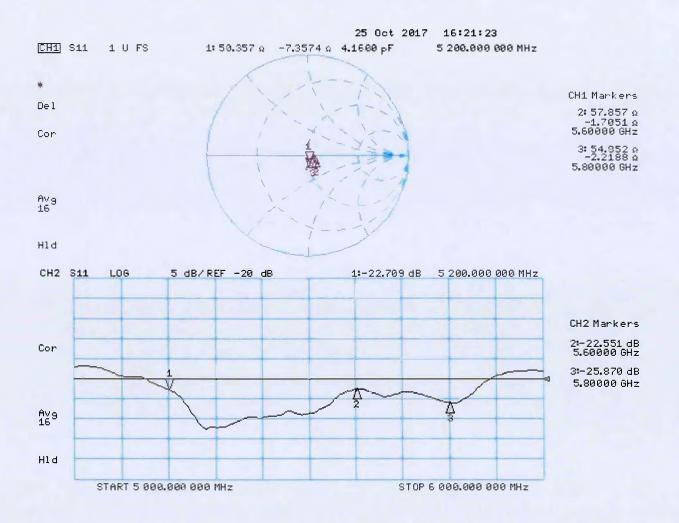
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.44 S/m; ϵ_r = 47.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.97 S/m; ϵ_r = 46.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.25 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.83 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 7.4 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 16.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.58 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.86 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Evaluation Conditions (f=5200 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
Filantoin	SAM Head I Hallom	TOT USAGE WITT ODATIOD VETTE

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	5.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	1.85 W/kg

Evaluation Conditions (f=5600 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
T Hantoni	SAW Head Flanton	FOI USAGE WILL COARSDVZ-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	91.1 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	93.0 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.6 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	62.3 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 19.9 % (k=2)

Evaluation Conditions (f=5800 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
		J

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.8 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	90.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.9 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	5.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.7 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	1.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 19.9 % (k=2)

CERTIFICATE OF CALIBRATION ISSUED BY UL VS LTD DATE OF ISSUE: 30/Nov/2017 CERTIFICATE NUMBER : 11903932JD01F UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Email: LST.UK.Calibration@ul.com

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	20/Nov/2017
Manufacturer:	Speag		
Type/Model Number:	D5GHzv2		
Serial Number:	1168		
Calibration Date:	23/Nov/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

..........

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 16

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013: IEEE** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2545	Probe	SPEAG	ES3DV4	3395	04 May 2017	12
A1377	Dipole	SPEAG	D5GHzV2	1016	16 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mars 2017	12

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 16

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number: F14/5T5ZA1/A/01				
DASY Version: DASY 52 (v52.8.8.1258)				
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre: 10 mm (with spacer)				

Frequency: 5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid F	Frequency	Room	Temp	Liquic	Temp	Parameters	Target	Measured	Uncertainty
Simulani Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	5250	21.0.00	21.0 °C	21.0°C	21.0%	٤r	35.9	36.445	± 5%
Head	5250	21.0 °C	21.0 ℃	21.0%	21.0°C	σ	4.71	4.578	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lined	SAR averaged over 1g	8.09 W/Kg	80.9 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.28 W/Kg	22.8 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
11.004	Impedance	62.365 Ω 2.721 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	19.18	± 1.48 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	1 arameters	Value	Value	(%)
Lload	5000	21.0.90	24.0.90	21.0%	21.0°C	٤r	35.5	36.195	± 5%
Head	5600	21.0 °C	21.0 °C	21.0°C	21.0 ℃	σ	5.07	5.011	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lined	SAR averaged over 1g	8.72 W/Kg	87.2 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.44 W/Kg	24.4 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
line in the second seco	Impedance	47.404 Ω 4.886 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	25.69	± 1.48 dB

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	T arameters	Value	Value	(%)
Head	5750	21.0 °C	21.0 °C	21.0°C	21.0°C	٤r	35.4	35.945	± 5%
neau	5750	21.0 C	21.0 C	21.0 L	21.0 C	σ	5.22	5.214	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lined	SAR averaged over 1g	7.91 W/Kg	79.1 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.21 W/Kg	22.1 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Lingd	Impedance	58.626 Ω -3.403 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	20.65	± 1.48 dB

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 16

Frequency: 5250 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	pom Temp Liquid Temp Parameters	Parameters	Target	Measured	Uncertainty		
Simulant Liquiu	(MHz)	Start	End	Start	End	T drameters	Value	Value	(%)
Dadu	5050	00.0.00	21.0 %	04.0%	24.090	٤٢	48.9	47.644	± 5%
Body	5250	22.0 °C	21.0 %	21.0°C	21.0°C	σ	5.36	5.312	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dester	SAR averaged over 1g	7.07 W/Kg	70.7 W/Kg	± 18.53%
Body	SAR averaged over 10g	1.97 W/Kg	19.7 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	60.697 Ω 2.711]Ω	± 0.28 Ω ± 0.044 jΩ
	Return Loss	20.08	± 1.48 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Cimulant Liquid	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Dedu	5600	22.0.80	21.0.90	21.0%	24.090	13	48.5	46.782	± 5%
Body	5600	22.0 °C	21.0 °C	21.0°C	21.0°C	σ	5.77	5.777	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.56 W/Kg	75.6 W/Kg	± 18.53%
	SAR averaged over 10g	2.08 W/Kg	20.8 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	46.92 Ω 4.017 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	25.70	± 1.48 dB

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
Simulani Liquiu	(MHz)	Start	End	Start	End	1 arameters	Value	Value	(%)
Darks	E750	00.0.00	04.0.00	04.090	24.090	٤r	48.3	46.523	± 5%
Body	5750	22.0 °C	21.0 °C	21.0°C	21.0°C	σ	5.94	5.968	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dadu	SAR averaged over 1g	6.53 W/Kg	65.3 W/Kg	± 18.53%
Body	SAR averaged over 10g	1.82 W/Kg	18.2 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

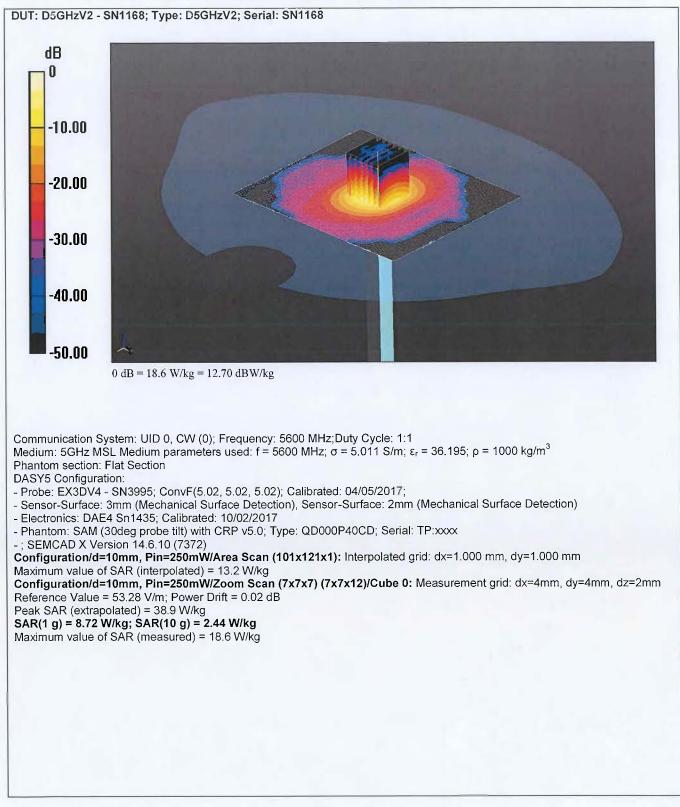
Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	59.977 Ω -2.829 ϳΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	20.34	± 1.48 dB

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

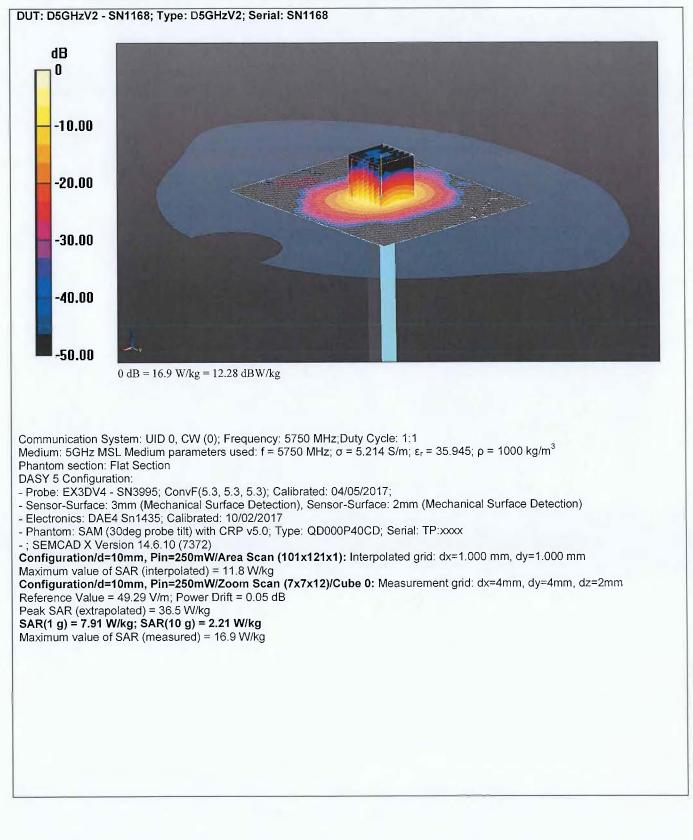

DUT: D5GHzV2 - SN1168; Type: D5GHzV2; Serial: SN1168 dB 0 -10.00-20.00-30.00-40.00 -50.00 0 dB = 16.9 W/kg = 12.28 dBW/kgCommunication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz MSL Medium parameters used: f = 5250 MHz; σ = 4.578 S/m; ϵ_r = 36.445; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY5** Configuration: - Probe: EX3DV4 - SN3995; ConvF(5.38, 5.38, 5.38); Calibrated: 04/05/2017; - Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1435; Calibrated: 10/02/2017 - Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx -; SEMCAD X Version 14.6.10 (7372) Configuration/d=10mm, Pin=250mW 2 2/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.4 W/kg Configuration/d=10mm, Pin=250mW 2 2/Zoom Scan 2 (9x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 53.68 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 16.9 W/kg

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

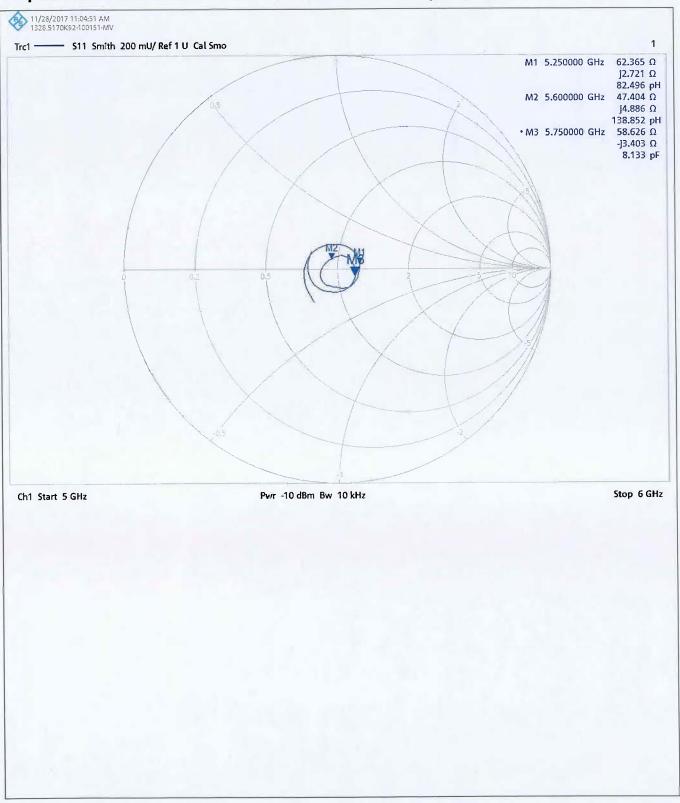


CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

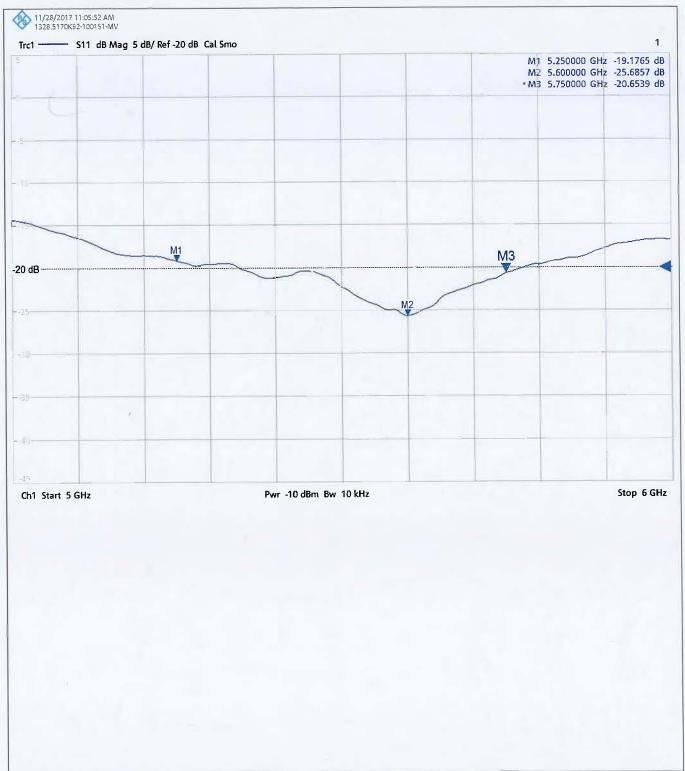


CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 16

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 11 of 16

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

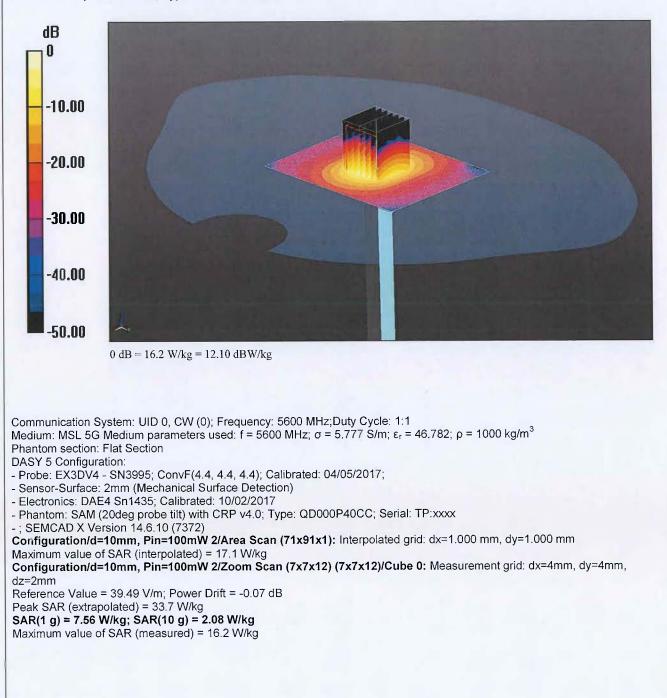
CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 12 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: 5GHz Dipole SN:1016; Type: D5GHzV2; Serial: SN 1016 dB 0 -10.00-20.00 -30.00-40.00-50.00 0 dB = 14.8 W/kg = 11.70 dBW/kgCommunication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium: MSL 5G Medium parameters used: f = 5250 MHz; σ = 5.312 S/m; ϵ_r = 47.644; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY5** Configuration: - Probe: EX3DV4 - SN3995; ConvF(4.97, 4.97, 4.97); Calibrated: 04/05/2017; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1435; Calibrated: 10/02/2017 - Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx -; SEMCAD X Version 14.6.10 (7372) Configuration/d=10mm, Pin=100mW 2 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.3 W/kg Configuration/d=10mm, Pin=100mW 2 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 40.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.07 W/kg; SAR(10 g) = 1.97 W/kg Maximum value of SAR (measured) = 14.8 W/kg

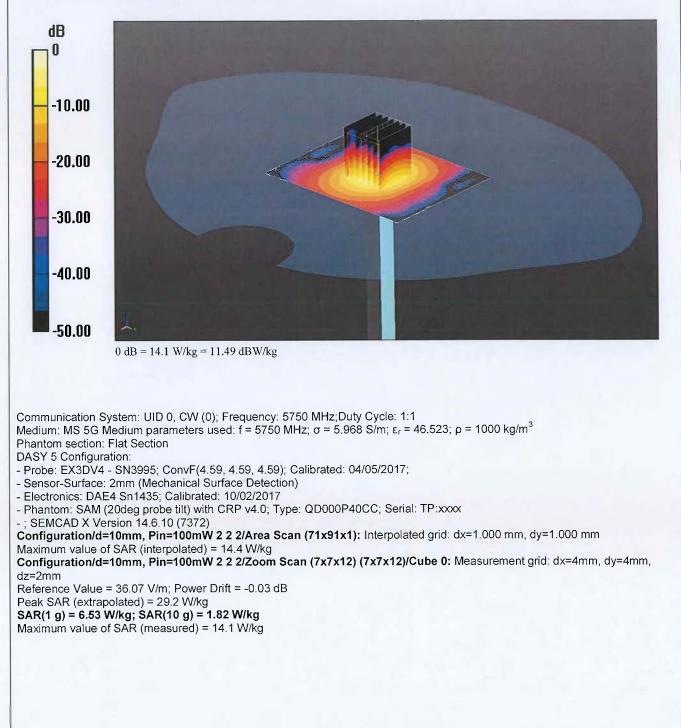

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 13 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: 5GHz Dipole SN:1168; Type: D5GHzV2; Serial: SN 1168

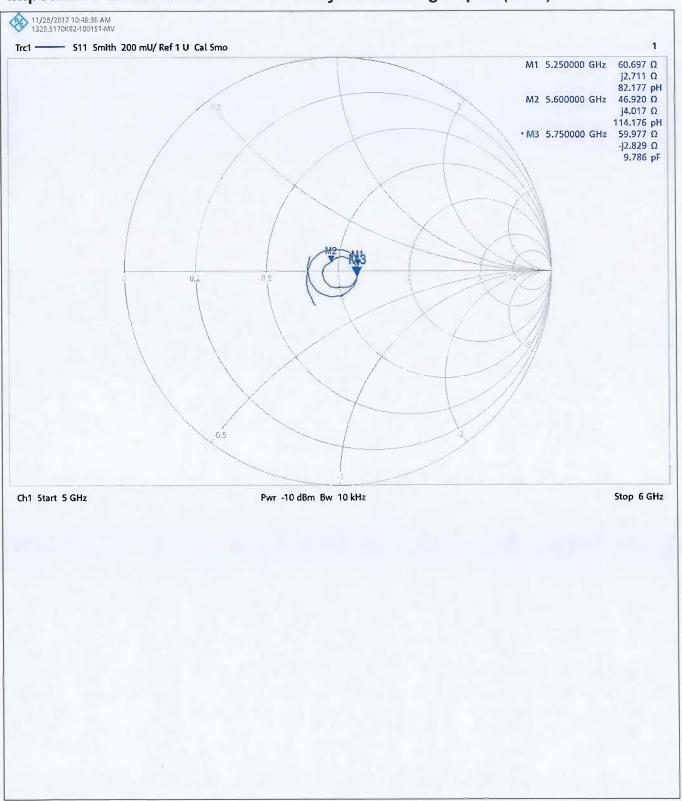

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 14 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: 5GHz Dipole SN:1168; Type: D5GHzV2; Serial: SN 1168



CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 15 of 16

Impedance Measurement Plot for Body Stimulating Liquid (MSL)

CERTIFICATE NUMBER : 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 16 of 16

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01F

Instrument ID: 1168

Calibration Date: 23/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01F

Instrument ID: 1168

Calibration Date: 23/Nov/2017

Calibration Due Date: