

47 CFR PART 15 SUBPART C ISED CANADA RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

FOR

MAGIC LEAP ONE – LIGHTPACK LIGHTWEAR

MODEL NUMBER: M1001/M1002

FCC ID: 2AM5NM1000 IC: 23045-M1000

REPORT NUMBER: R11694639-E4

ISSUE DATE: 2018-07-02

Prepared for MAGIC LEAP, INC. **7500 WEST SUNRISE BOULEVARD** PLANTATION, FL 33322, USA

Prepared by **UL LLC** 12 LABORATORY DR. **RESEARCH TRIANGLE PARK, NC 27709 USA** TEL: (919) 549-1400

NVLAP Lab code: 200246-0

Revision History

Ver.	lssue Date	Revisions	Revised By
1	2018-06-13	Initial Issue	Brian T. Kiewra
2	2018-06-21	Revised duty cycle calculation in Section 8.1	Brian T. Kiewra
3	2018-06-25	Revised to cover module 1 only.	Brian T. Kiewra
4	2018-06-27	Revised simultaneous transmission statement in Section 5.5	Brian T. Kiewra
5	2018-06-29	Revised serial numbers in Section 1 and removed reference to module 2 in section 5.1	Brian T. Kiewra
6	2018-07-02	Added calibration interval note in Section 6.	Brian T. Kiewra

Page 2 of 97

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	.5
2.	TES	T METHODOLOGY	.6
3.	FAC	ILITIES AND ACCREDITATION	.6
4.	CAL	IBRATION AND UNCERTAINTY	.7
4	1.	MEASURING INSTRUMENT CALIBRATION	.7
4	2.	SAMPLE CALCULATION	.7
4	3.	MEASUREMENT UNCERTAINTY	.7
5.	EQI	JIPMENT UNDER TEST	.8
5	1.	DESCRIPTION OF EUT	.8
5	2.	MAXIMUM OUTPUT POWER	.8
5	3.	DESCRIPTION OF AVAILABLE ANTENNAS	.8
5	4.	SOFTWARE AND FIRMWARE	.8
5	5.	WORST-CASE CONFIGURATION AND MODE	.9
5.	6.	DESCRIPTION OF TEST SETUP1	10
6.	TES	T AND MEASUREMENT EQUIPMENT1	1
6. 7.	TES ME	T AND MEASUREMENT EQUIPMENT1 ASUREMENT METHODS1	1 3
6. 7. 8.	TES MEA ANT	T AND MEASUREMENT EQUIPMENT1 ASUREMENT METHODS	1 3 4
6. 7. 8. 8.	TES MEA ANT	T AND MEASUREMENT EQUIPMENT	1 3 4 4
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2.	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 YENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1 20 dB AND 99% BANDWIDTH 1	11 3 14 14 16
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2.	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1 20 dB AND 99% BANDWIDTH 1 2 HOPPING FREQUENCY SEPARATION 2	11 13 14 16 16 20
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2.	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1 20 dB AND 99% BANDWIDTH 1 2 HOPPING FREQUENCY SEPARATION 2 3 NUMBER OF HOPPING CHANNELS 2	 11 13 14 16 16 20 22
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2.	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1. 20 dB AND 99% BANDWIDTH 1 2. HOPPING FREQUENCY SEPARATION 2 3. NUMBER OF HOPPING CHANNELS 2 4. AVERAGE TIME OF OCCUPANCY 2	 11 13 14 16 16 20 22 25
6. 7. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	T AND MEASUREMENT EQUIPMENT1ASUREMENT METHODS1TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1BASIC DATA RATE GFSK MODULATION1120 dB AND 99% BANDWIDTH2HOPPING FREQUENCY SEPARATION3NUMBER OF HOPPING CHANNELS4AVERAGE TIME OF OCCUPANCY5OUTPUT POWER2	 11 13 14 16 16 20 22 25 29
6. 7. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1. 20 dB AND 99% BANDWIDTH 1 2. HOPPING FREQUENCY SEPARATION 2 3. NUMBER OF HOPPING CHANNELS 2 4. AVERAGE TIME OF OCCUPANCY 2 5. OUTPUT POWER 2 6. AVERAGE POWER 3	 11 13 14 16 20 22 25 29 30
6. 7. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 DASIC DATA RATE GFSK MODULATION 1 1. 20 dB AND 99% BANDWIDTH 1 2. HOPPING FREQUENCY SEPARATION 2 3. NUMBER OF HOPPING CHANNELS 2 4. AVERAGE TIME OF OCCUPANCY 2 5. OUTPUT POWER 2 6. AVERAGE POWER 3 7. CONDUCTED SPURIOUS EMISSIONS 3	 11 13 14 14 16 16 20 22 22 25 29 30 31
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	T AND MEASUREMENT EQUIPMENT 1 ASUREMENT METHODS 1 YENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 BASIC DATA RATE GFSK MODULATION 1 1. 20 dB AND 99% BANDWIDTH 1 2. HOPPING FREQUENCY SEPARATION 2 3. NUMBER OF HOPPING CHANNELS 2 4. AVERAGE TIME OF OCCUPANCY 2 5. OUTPUT POWER 2 6. AVERAGE POWER 3 7. CONDUCTED SPURIOUS EMISSIONS 3 8. AND SP% BANDWIDTH 3	11 13 14 14 16 20 22 230 311 36
6. 7. 8. 8. 8.	TES MEA ANT 1. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2	T AND MEASUREMENT EQUIPMENT1ASUREMENT METHODS1SUREMENT METHODS1VITAL PORT TEST RESULTS1ON TIME AND DUTY CYCLE1BASIC DATA RATE GFSK MODULATION11. 20 dB AND 99% BANDWIDTH12. HOPPING FREQUENCY SEPARATION23. NUMBER OF HOPPING CHANNELS24. AVERAGE TIME OF OCCUPANCY25. OUTPUT POWER26. AVERAGE POWER37. CONDUCTED SPURIOUS EMISSIONS3ENHANCED DATA RATE QPSK MODULATION31. 20 dB AND 99% BANDWIDTH32. HOPPING FREQUENCY SEPARATION4	11 13 14 14 16 20 22 230 311 36 40

Page 3 of 97

8.3.4.	AVERAGE TIME OF OCCUPANCY	45
8.3.5.	OUTPUT POWER	49
8.3.6.	AVERAGE POWER	50
8.3.7.	CONDUCTED SPURIOUS EMISSIONS	51
8. <i>4. El</i> 8.4.1.	NHANCED DATA RATE 8PSK MODULATION 20 dB AND 99% BANDWIDTH	56 56
8.4.2.	HOPPING FREQUENCY SEPARATION	60
8.4.3.	NUMBER OF HOPPING CHANNELS	62
8.4.4.	AVERAGE TIME OF OCCUPANCY	65
8.4.5.	OUTPUT POWER	69
8.4.6.	AVERAGE POWER	70
8.4.7.	CONDUCTED SPURIOUS EMISSIONS	71
9. RADIA	ATED TEST RESULTS	76
9.1. LI	MITS AND PROCEDURE	76
9.2. BA	ASIC DATA RATE GFSK MODULATION	77
9.3. El	NHANCED DATA RATE 8PSK MODULATION	84
9.4. R	ADIATED WORST-CASE	91
10. AC I	POWER LINE CONDUCTED EMISSIONS	94
11. SET	UP PHOTOS	97
	EPORT	97

Page 4 of 97

1. ATTESTATION OF TEST RESULTS

ISED CANADA RSS-GEN Issue 4

COMPANY NAME:	Magic Leap, Inc. 7500 West Sunrise Boulevard Plantation, FL 33322, USA	Magic Leap, Inc. 7500 West Sunrise Boulevard Plantation, FL 33322, USA			
EUT DESCRIPTION:	Magic Leap One – Lightpack I	Magic Leap One – Lightpack Lightwear			
MODEL: M1001/M1002					
SERIAL NUMBER:	PB1067B00000, PB1067B000	001, PB1067B00002			
DATE TESTED:	2017-12-15 to 2018-06-07				
	APPLICABLE STANDARD)S			
	STANDARD	TEST RESULTS			
CFR	47 Part 15 Subpart C	Compliant			
ISED CA	ANADA RSS-247 Issue 2	Compliant			

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For UL LLC By:

Jeffrey Moser Operations Leader UL – Consumer Technology Division

Prepared By:

Compliant

Brian T. Kiewra Project Engineer UL – Consumer Technology Division

Page 5 of 97

UL LLC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Perimeter Park Dr., Suite B, Morrisville, NC 27560, USA.

12 Laboratory Dr., RTP, NC 27709
Chamber A
Chamber C

2800 Perimeter Park Dr., Suite B,				
Morrisville, NC 27560				
Chamber NORTH				
🛛 Chamber SOUTH				

The onsite chambers are covered under Industry Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://www.nist.gov/nvlap/.</u>

Page 6 of 97

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	Required by standard
Occupied Channel Bandwidth	2.00%	±5 %
RF output power, conducted	1.3 dB	±1,5 dB
Power Spectral Density, conducted	2.47 dB	±3 dB
Unwanted Emissions, conducted	2.94 dB	±3 dB
All emissions, radiated	5.36 dB	±6 dB
Temperature	2.26 °C	±3 °C
Supply voltages	2.40%	±3 %
Time	3.39%	±5 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Magic Leap One – Lightpack Lightwear with BT/BLE/802.11a/b/g/n/ac. Covers Models M1001 and M1002. The difference between the two models is the size of the headband on the Lightwear.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

MODULE 1

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	9.24	8.39
2402 - 2480	DQPSK	7.96	6.25
2402 - 2480	Enhanced 8PSK	8.32	6.79

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes antennas with the following maximum gains:

Band of Operation (MHz)	Ant0 gain (dBi)	Ant1 gain (dBi)	Ant2 gain (dBi)
2401-2483	1.54	0.4	-0.8
5150-5250	3.3	4.6	NA
5250-5350	3.2	4.5	NA
5500-5700	2.5	3.7	NA
5745-5850	0.6	4.5	NA

BT transmits on ANT1, therefore has a maximum gain of +0.4dB.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was PEQ5.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission (<1GHz and >18GHz) and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. 1-18GHz radiated emissions were performed with the EUT set to transmit at low, a middle, and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Z axis was worst-case orientation for MODULE 1; therefore, all final radiated testing was performed with the EUT in Z orientation.

8DPSK mode data is used to represent DQPSK mode, likewise DH5 data rate data represents DH1 and DH3 data rates.

Simultaneous transmission of the following was investigated:

- Proprietary BLE and 2.4 GHz WiFi
- Proprietary BLE and BLE
- Proprietary BLE and Bluetooth
- Proprietary BLE and 5 GHz WiFi
- 2.4GHz and 5GHz (11a)
- 2.4GHz and 5GHz (11a) and Proprietary BLE
- 2.4GHz and Bluetooth and Proprietary BLE
- 5GHz and Bluetooth
- 5GHz and Bluetooth and Proprietary BLE

The following does not simultaneously transmit and thus was not considered:

• BLE and Bluetooth

Device was found to still be compliant.

Refer to UL Document R11694639-ST1 for simultaneous transmission data.

Page 9 of 97

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	Description Manufacturer Model Serial Number FCC ID						
Power Supply	Salcomp	M3002	Non-Serialized	NA			

I/O CABLES

	I/O Cable List							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	USB-C	1	USB-C	DC/Data	<3m	None		
2	Hardwired	1	Hardwired	Data	<3m	Connects Lightwear to Lightpack		

TEST SETUP

The EUT is setup as standalone equipment.

SETUP DIAGRAM FOR TESTS

Refer to UL Document R11694639-EP4 for diagram.

Page 10 of 97

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Note: All equipment was within calibration interval at time of use.

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SA0020	Spectrum Analyzer	Agilent Technologies	E4446A	2017-04-25	2018-04-25
T177	Spectrum Analyzer	Agilent Technologies	E4446A	2017-03-30	2018-03-30
T177	Spectrum Analyzer	Agilent Technologies	E4446A	2018-04-12	2019-04-12
SN 161024885	Environmental Meter	Fisher Scientific	15-077-963	2016-12-23	2018-12-23
Additional Equi	ipment used				
PWM001	RF Power Meter	Keysight Technologies	N1912A	2017-05-23	2018-05-23
PWS006	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2017-05-18	2018-05-18
MM0168	True RMS Multimeter	Agilent	U1232A	2017-10-25	2018-10-30
BT0001	BT Callbox	Rohde & Schwarz	CBT 1153.9000.35	NA	NA
NA	Directional Coupler	Mini-Circuits	ZUDC10-183+	NA	NA

Test Equipment Used - Wireless Conducted Measurement Equipment
--

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - North Chamber)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
30-1000 MHz					
AT0073	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2017-07-18	2018-07-31
Gain-Loss Chains					
N-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2017-06-11	2018-06-11
Receiver & Software					
SA0027	Spectrum Analyzer	Agilent	N9030A	2018-04-04	2019-04-04
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
Additional Equipment used					
s/n 161024690	Environmental Meter	Fisher Scientific	15-077-963	2016-12-21	2018-12-21

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 11 of 97

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.		
0.009-30MHz (Loop Ant.)							
AT0059	Active Loop Antenna	EMCO	6502	2017-06-05	2018-06-30		
30-1000 MHz	30-1000 MHz						
AT0074	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2017-06-15	2018-06-15		
1-18 GHz							
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2017-04-05	2018-04-05		
18-40 GHz							
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2017-10-10	2018-10-10		
Gain-Loss Cha	ins						
S-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2017-09-15	2018-09-15		
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2017-06-11	2018-06-11		
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2017-12-31	2018-12-31		
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2017-03-03	2018-03-03		
Receiver & Sof	tware						
SA0025	Spectrum Analyzer	Agilent	N9030A	2017-04-10	2018-04-10		
SA0026 (18- 40GHz RSE)	Spectrum Analyzer	Agilent	N9030A	2017-02-17	2018-02-28		
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA		
Additional Equ	ipment used						
s/n 161024887	Environmental Meter	Fisher Scientific	15-077-963	2016-12-23	2018-12-23		

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 D01 v04 Zero-Span Spectrum Analyzer Method

20 dB BW: ANSI C63.10 Section 6.9.2.

99% Occupied Bandwidth: ANSI C63.10, Section 6.9.3

Hopping Frequency Separation: ANSI C63.10 Section 7.8.2

Number of Hopping Channels: ANSI C63.10 Section 7.8.3

Average Time of Occupancy: ANSI C63.10 Section 7.8.4

Output Power: ANSI C63.10 Section 7.8.5

Out-of-band emissions in non-restricted bands: ANSI C63.10 Section 7.8.6 & 7.8.8

Out-of-band emissions in restricted bands: ANSI C63.10:2013 Sections 6.3-6.6

AC Line Conducted Emissions: ANSI C63.10:2013 Sections 6.2

Page 13 of 97

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

Module 1

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4 GHz band						
Bluetooth GFSK	2.885	3.751	0.769	76.91%	1.14	0.347
Bluetooth 8PSK	2.888	3.754	0.769	76.93%	1.14	0.346
Bluetooth DQPSK	2.888	3.750	0.770	77.01%	1.13	0.346

DUTY CYCLE PLOTS – MODULE 1

Page 14 of 97

Page 15 of 97

8.2. BASIC DATA RATE GFSK MODULATION

8.2.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only. Test per ANSI C63.10 Sections 6.9.2 and 6.9.3

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1%-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Module 1			
Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	912	899.4592
Middle	2441	952	900.0316
High	2480	992	907.1337

Page 16 of 97

20 dB BANDWIDTH PLOTS - MODULE 1

Page 17 of 97

99% BANDWIDTH PLOTS - MODULE 1

Page 18 of 97

Page 19 of 97

8.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to \geq RBW kHz. The sweep time is coupled.

Page 20 of 97

HOPPING FREQUENCY SEPARATION PLOT - MODULE 1

Ch. A	Ch. B	Ch. 1 to Ch. 2 Sep.	Max. 20 dB BW	Margin
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	0.992	-0.008

Page 21 of 97

8.2.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300kHz). The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels declared.

Page 22 of 97

NUMBER OF HOPPING CHANNELS - MODULE 1

Page 23 of 97

Page 24 of 97

8.2.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii) IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

MODU	LE 1
------	------

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
GFSK Norma	al Mode				
DH1	0.381	32	0.122	0.4	-0.278
DH3	1.636	14	0.229	0.4	-0.171
DH5	2.884	12	0.346	0.4	-0.054
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		-
	(msec)	0.8	(sec)	(sec)	(sec)
		seconds			
GFSK AFH Mode					
DH1	0.381	8	0.030	0.4	-0.370
DH3	1.636	3.5	0.057	0.4	-0.343
DH5	2.884	3	0.087	0.4	-0.313

PULSE WIDTH - DH1 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH1 – MODULE 1

Page 26 of 97

UL LLC

PULSE WIDTH - DH3 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3 - MODULE 1

Page 27 of 97

PULSE WIDTH - DH5 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5 - MODULE 1

Page 28 of 97

8.2.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	9.24	0.40	21	-11.76
Middle	2441	8.79	0.40	21	-12.21
High	2480	8.69	0.40	21	-12.31

MODULE 1

TEST INFORMATION

Date: 2018-05-16 Project: 11696439 Tester: Jeffrey Cabrera

Page 29 of 97

8.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.5 dB (including 10.8 dB directional coupler and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

MODULE 1

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.73
Middle	2441	8.64
High	2480	8.39

TEST INFORMATION

Test Date: 2018-05-16 Project: 11696439 Tested By: Jeffrey Cabrera

Page 30 of 97

8.2.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

SPURIOUS EMISSIONS, LOW CHANNEL - MODULE 1

Page 32 of 97

SPURIOUS EMISSIONS, MID CHANNEL - MODULE 1

Page 33 of 97

SPURIOUS EMISSIONS, HIGH CHANNEL - MODULE 1

Page 34 of 97

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON - MODULE 1

Page 35 of 97

8.3. ENHANCED DATA RATE QPSK MODULATION

8.3.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only. Test per ANSI C63.10 Sections 6.9.2 and 6.9.3

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

MODULE 1

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1330	1214.9
Middle	2441	1350	1213.9
High	2480	1342	1214.9

Page 36 of 97
20 dB BANDWIDTH PLOTS - MODULE 1

Page 37 of 97

99% BANDWIDTH PLOTS - MODULE 1

Page 38 of 97

Page 39 of 97

8.3.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1) IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to \geq RBW. The sweep time is coupled.

Page 40 of 97

HOPPING FREQUENCY SEPARATION PLOT - MODULE 1

Ch. A	Ch. B	Ch. 1 to Ch. 2 Sep.	Max. 20 dB BW	2/3 20 dB BW	Margin
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	1.350	0.900	-0.100

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.35 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 900 kHz).

8.3.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii) IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels declared.

Page 42 of 97

NUMBER OF HOPPING CHANNELS PLOTS- MODULE 1

Page 43 of 97

Page 44 of 97

8.3.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

<u>RESULTS</u>

MODULE 1

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.387	31	0.120	0.4	-0.280
DH3	1.638	21	0.344	0.4	-0.056
DH5	2.886	13	0.375	0.4	-0.025

Note: for AFH (DQPSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.

PULSE WIDTH - DH1 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1 - MODULE 1

Page 46 of 97

PULSE WIDTH - DH3 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3 - MODULE 1

Page 47 of 97

PULSE WIDTH - DH5 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5 - MODULE 1

Page 48 of 97

8.3.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a power meter.

<u>RESULTS</u>

MODULE 1

Channel	Frequency	Output Power	Directional	Limit	Margin
	(MHz)	(dBm)	Gain (dBi)	(dBm)	(dB)
Low	2402	7.69	0.40	21	-13.31
Middle	2441	7.20	0.40	21	-13.80
High	2480	7.96	0.40	21	-13.04

TEST INFORMATION

Test Date: 2018-05-16 Project: 11696439 Tested By: Jeffrey Cabrera

Page 49 of 97

8.3.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.5 dB (including 10.8 dB directional coupler and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

MODULE 1

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	5.20
Middle	2441	4.65
High	2480	5.72

TEST INFORMATION

Test Date: 2018-05-16 Project: 11696439 Tested By: Jeffrey Cabrera

Page 50 of 97

8.3.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

SPURIOUS EMISSIONS, LOW CHANNEL - MODULE 1

Page 52 of 97

SPURIOUS EMISSIONS, MID CHANNEL - MODULE 1

Page 53 of 97

SPURIOUS EMISSIONS, HIGH CHANNEL – MODULE 1

Page 54 of 97

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON - MODULE 1

Page 55 of 97

8.4. ENHANCED DATA RATE 8PSK MODULATION

8.4.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only. Test per ANSI C63.10 Sections 6.9.2 and 6.9.3

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

MODULE 1

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1348	1213.0
Middle	2441	1360	1214.5
High	2480	1350	1220.1

Page 56 of 97

20 dB BANDWIDTH PLOTS - MODULE 1

Page 57 of 97

99% BANDWIDTH PLOTS- MODULE 1

Page 58 of 97

Page 59 of 97

8.4.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is \geq RBW. The sweep time is coupled.

HOPPING FREQUE	ENCY SEPA	RATION			
🔆 🔆 Agilent 15:09:23 May 1	6,2018		L	Measure	
APv8.2(032118),40882, MOR Ref 20 dBm #Atten #Peak	:-Con1 30 dB	▲ Mł	kr1 1.000 MHz 0.46 dB	Meas Off	
Log 10 dB/	1R		- and the above and the second	Channel Power	
dB				Occupied BW	
#PAvg				ACP	
M1 S2 S3 FC AA				Multi Carrier Power	
£(f): FTun Swp				Power Stat CCDF	
Center 2.441 500 GHz Span 5 MHz More 1 of 2 #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (1001 pts) 1 of 2					
Copyright 2000-2011 Ag	ilent Technologi	es			

HOPPING FREQUENCY SEPARATION PLOT - MODULE 1

Page 60 of 97

Ch. A	Ch. B	Ch. 1 to Ch. 2	Max. 20 dB BW	2/3 20 dB BW	Margin
(MHz)	(MHz)	Sep. (MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	1.360	0.907	-0.093

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.36 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 907 kHz).

Page 61 of 97

8.4.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels declared.

Page 62 of 97

NUMBER OF HOPPING CHANNELS PLOTS - MODULE 1

Page 63 of 97

Page 64 of 97

8.4.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

<u>RESULTS</u>

MODULE 1

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.387	32	0.124	0.4	-0.276
DH3	1.637	18	0.295	0.4	-0.105
DH5	2.888	14	0.404	0.4	0.004

Note: for AFH (8PSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.

PULSE WIDTH - DH1 -MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1 - MODULE 1

Page 66 of 97

PULSE WIDTH - DH3 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3 - MODULE 1

Page 67 of 97

PULSE WIDTH - DH5 - MODULE 1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5 - MODULE 1

Page 68 of 97

8.4.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a power meter.

<u>RESULTS</u>

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	7.99	0.40	21	-13.01
Middle	2441	7.47	0.40	21	-13.53
High	2480	8.32	0.40	21	-12.68

MODULE 1

TEST INFORMATION

Test Date: 2018-05-16 Project: 11696439 Tested By: Jeffrey Cabrera

Page 69 of 97

8.4.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.5 dB (including 10.80 dB direction coupler and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

MODULE 1

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	5.35
Middle	2441	4.80
High	2480	4.99

TEST INFORMATION Test Date: 2018-05-16 Project: 11696439 Tested By: Jeffrey Cabrera

Page 70 of 97

8.4.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

ISED RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

SPURIOUS EMISSIONS, LOW CHANNEL - MODULE 1

Page 72 of 97
SPURIOUS EMISSIONS, MID CHANNEL - MODULE 1

Page 73 of 97

SPURIOUS EMISSIONS, HIGH CHANNEL - MODULE 1

Page 74 of 97

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON - MODULE 1

Page 75 of 97

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz measurements and 1.5 m above the ground plane for above 1GHz measurements. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 120 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements for the 30-1000 MHz range, 9 kHz for peak detection measurements for the 0.15-30 MHz range and 200 Hz for peak detection measurements or 200 Hz for quasi-peak detection measurements for the 9 to 150 kHz range. Peak detection is used unless otherwise noted as quasi-peak.

For peak measurements above 1 GHz, the resolution bandwidth is set to 1 MHz and the video bandwidth is set to 3 MHz. For average measurements above 1GHz, the resolution bandwidth and video bandwidth are set as described in ANSI C63.10:2013 for the applicable measurement. The particular averaging method used for this test program was by measuring using a Peak detector with the resolution bandwidth set to 1MHz and a reduced video bandwidth, based on 1/Ton where Ton is the transmit on time.

The spectrum from 1 to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. For 9kHz to 1000 MHz and 18 to 26 GHz investigation, the worst-case channel was selected.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 76 of 97

9.2. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	40.57	Pk	31.9	-24.3	48.17	-	-	74	-25.83	191	137	Н
2	* 2.339	42.95	Pk	31.7	-24.3	50.35	-	-	74	-23.65	191	137	Н
3	* 2.39	30.95	V1TR	31.9	-24.3	38.55	54	-15.45	-	-	191	137	Н
4	* 2.388	31.33	V1TR	31.9	-24.3	38.93	54	-15.07	-	-	191	137	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 77 of 97

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	40.82	Pk	31.9	-24.3	48.42	-	-	74	-25.58	84	142	V
2	* 2.39	43.39	Pk	31.9	-24.3	50.99	-	-	74	-23.01	84	142	V
3	* 2.39	30.99	V1TR	31.9	-24.3	38.59	54	-15.41	-	-	84	142	V
4	* 2.389	31.31	V1TR	31.9	-24.3	38.91	54	-15.09	-	-	84	142	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector V1TR: VB=1/Ton, where: Ton is packet duration

Page 78 of 97

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.48	Pk	32.4	-24.2	48.68	-	-	74	-25.32	235	363	Н
2	* 2.489	43.62	Pk	32.4	-24.2	51.82	-	-	74	-22.18	235	363	Н
3	* 2.484	31.33	V1TR	32.4	-24.2	39.53	54	-14.47	-	-	235	363	Н
4	* 2.484	31.43	V1TR	32.4	-24.2	39.63	54	-14.37	-	-	235	363	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 79 of 97

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	42.47	Pk	32.4	-24.2	50.67	-	-	74	-23.33	3	292	V
2	* 2.498	51.56	Pk	32.3	-24.2	59.66	-	-	74	-14.34	3	292	V
3	* 2.484	31.19	V1TR	32.4	-24.2	39.39	54	-14.61	-	-	3	292	V
4	* 2.5	32.7	V1TR	32.3	-24.2	40.8	54	-13.2	-	-	3	292	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 80 of 97

RADIATED SPUROUS AND HARMONICS - MODULE 1

Low Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 1.081	41.76	PK-U	27.2	-24.4	44.56	-	-	74	-29.44	161	209	Н
	* 1.081	34.75	V1TR	27.2	-24.4	37.55	54	-16.45	-	-	161	209	Н
4	* 2.493	51.61	PK-U	32.4	-24.7	59.31	-	-	74	-14.69	165	108	Н
	* 2.491	30.34	V1TR	32.4	-24.7	38.04	54	-15.96	-	-	165	108	Н
1	* 1.081	43.09	PK-U	27.2	-24.4	45.89	-	-	74	-28.11	210	231	V
	* 1.081	36.63	V1TR	27.2	-24.4	39.43	54	-14.57	-	-	210	231	V
3	* 2.492	53.37	PK-U	32.4	-24.7	61.07	-	-	74	-12.93	77	106	V
	* 2.492	32.23	V1TR	32.4	-24.7	39.93	54	-14.07	-	-	77	106	V
6	* 5	46.05	PK-U	34	-31.5	48.55	-	-	74	-25.45	255	204	Н
	* 4.997	31.33	V1TR	34	-31.5	33.83	54	-20.17	-	-	255	204	Н
5	* 5	51.69	PK-U	34	-31.5	54.19	-	-	74	-19.81	309	106	V
	* 4.996	35.61	V1TR	34	-31.5	38.11	54	-15.89	-	-	309	106	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, where: Ton is packet duration

Mid Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.081	41.89	PK-U	27.2	-24.4	44.69	-	-	74	-29.31	165	184	Н
	* 1.081	34.81	V1TR	27.2	-24.4	37.61	54	-16.39	-	-	165	184	Н
3	* 1.233	36.72	PK-U	28.4	-23.5	41.62	-	-	74	-32.38	205	154	Н
	* 1.232	24.8	V1TR	28.4	-23.5	29.7	54	-24.3	-	-	205	154	Н
4	* 2.489	51.3	PK-U	32.4	-24.6	59.1	-	-	74	-14.9	354	238	Н
	* 2.489	29.59	V1TR	32.4	-24.6	37.39	54	-16.61	-	-	354	238	Н
2	* 1.081	43.14	PK-U	27.2	-24.4	45.94	-	-	74	-28.06	202	104	V
	* 1.081	36.17	V1TR	27.2	-24.4	38.97	54	-15.03	-	-	202	104	V
5	* 2.496	54.02	PK-U	32.4	-24.7	61.72	-	-	74	-12.28	56	152	V
	* 2.494	32.21	V1TR	32.4	-24.7	39.91	54	-14.09	-	-	56	152	V
6	* 4.979	44.9	PK-U	34	-31.4	47.5	-	-	74	-26.5	258	243	Н
	* 4.981	31	V1TR	34	-31.4	33.6	54	-20.4	-	-	258	243	Н
7	* 4.994	50.16	PK-U	34	-31.5	52.66	-	-	74	-21.34	228	163	V
	* 4.996	34.06	V1TR	34	-31.5	36.56	54	-17.44	-	-	228	163	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

High Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.081	42.05	PK-U	27.2	-24.4	44.85	-	-	74	-29.15	169	202	Н
	* 1.081	34.97	V1TR	27.2	-24.4	37.77	54	-16.23	-	-	169	202	Н
3	* 1.224	37.91	PK-U	28.3	-23.6	42.61	-	-	74	-31.39	131	165	Н
	* 1.224	29.29	V1TR	28.3	-23.6	33.99	54	-20.01	-	-	131	165	Н
5	* 2.492	50.35	PK-U	32.4	-24.7	58.05	-	-	74	-15.95	137	179	Н
	* 2.492	29.22	V1TR	32.4	-24.7	36.92	54	-17.08	-	-	137	179	Н
2	* 1.081	43.49	PK-U	27.2	-24.4	46.29	-	-	74	-27.71	195	104	V
	* 1.081	36.56	V1TR	27.2	-24.4	39.36	54	-14.64	-	-	195	104	V
4	* 2.28	36.96	PK-U	31.8	-23.7	45.06	-	-	74	-28.94	233	397	V
	* 2.28	25.45	V1TR	31.8	-23.7	33.55	54	-20.45	-	-	233	397	V
6	* 2.489	52.26	PK-U	32.4	-24.6	60.06	-	-	74	-13.94	71	303	V
	* 2.49	30.64	V1TR	32.4	-24.6	38.44	54	-15.56	-	-	71	303	V
7	* 4.988	46.96	PK-U	34	-31.5	49.46	-	-	74	-24.54	251	157	Н
	* 4.99	31.89	V1TR	34	-31.5	34.39	54	-19.61	-	-	251	157	Н
8	* 4.998	51.43	PK-U	34	-31.5	53.93	-	-	74	-20.07	146	197	V
	* 4.997	35.95	V1TR	34	-31.5	38.45	54	-15.55	-	-	146	197	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, where: Ton is packet duration

9.3. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	40.44	Pk	31.9	-24.3	48.04	-	-	74	-25.96	182	103	Н
2	* 2.388	43.29	Pk	31.9	-24.3	50.89	-	-	74	-23.11	182	103	Н
3	* 2.39	31.17	V1TR	31.9	-24.3	38.77	54	-15.23	-	-	182	103	Н
4	* 2.359	31.51	V1TR	31.8	-24.3	39.01	54	-14.99	-	-	182	103	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 84 of 97

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.359	43.32	Pk	31.8	-24.3	50.82	-	-	74	-23.18	314	205	V
4	* 2.388	31.17	V1TR	31.9	-24.3	38.77	54	-15.23	-	-	314	205	V
1	* 2.39	40.36	Pk	31.9	-24.3	47.96	-	-	74	-26.04	314	205	V
3	* 2.39	30.95	V1TR	31.9	-24.3	38.55	54	-15.45	-	-	314	205	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 85 of 97

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	44.97	Pk	32.4	-24.2	53.17	-	-	74	-20.83	175	111	Н
2	* 2.491	52.84	Pk	32.4	-24.2	61.04	-	-	74	-12.96	175	111	Н
3	* 2.484	32.75	V1TR	32.4	-24.2	40.95	54	-13.05	-	-	175	111	Н
4	* 2.484	32.82	V1TR	32.4	-24.2	41.02	54	-12.98	-	-	175	111	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 86 of 97

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	46.14	Pk	32.4	-24.2	54.34	-	-	74	-19.66	254	139	V
2	* 2.493	47.63	Pk	32.4	-24.2	55.83	-	-	74	-18.17	254	139	V
3	* 2.484	33.65	V1TR	32.4	-24.2	41.85	54	-12.15	-	-	254	139	V
4	* 2.484	33.58	V1TR	32.4	-24.2	41.78	54	-12.22	-	-	254	139	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 87 of 97

RADIATED SPURIOUS AND HARMONICS - MODULE 1

Low Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.081	41.11	PK-U	27.2	-24.4	43.91	-	-	74	-30.09	158	196	Н
	* 1.081	34.22	V1TR	27.2	-24.4	37.02	54	-16.98	-	-	158	196	Н
2	* 2.494	52.8	PK-U	32.4	-24.7	60.5	-	-	74	-13.5	150	109	Н
	* 2.492	30.08	V1TR	32.4	-24.7	37.78	54	-16.22	-	-	150	109	Н
4	* 1.081	42.99	PK-U	27.2	-24.4	45.79	-	-	74	-28.21	201	107	V
	* 1.081	36.22	V1TR	27.2	-24.4	39.02	54	-14.98	-	-	201	107	V
5	* 2.489	53.27	PK-U	32.4	-24.6	61.07	-	-	74	-12.93	153	192	V
	* 2.49	31.81	V1TR	32.4	-24.6	39.61	54	-14.39	-	-	153	192	V
3	* 4.978	45.16	PK-U	34	-31.3	47.86	-	-	74	-26.14	225	180	Н
	* 4.977	30.95	V1TR	34	-31.3	33.65	54	-20.35	-	-	225	180	Н
6	* 4.997	50.9	PK-U	34	-31.5	53.4	-	-	74	-20.6	131	195	V
	* 4.997	34.9	V1TR	34	-31.5	37.4	54	-16.6	-	-	131	195	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 88 of 97

Mid Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.081	41.75	PK-U	27.2	-24.4	44.55	-	-	74	-29.45	159	189	Н
	* 1.081	34.49	V1TR	27.2	-24.4	37.29	54	-16.71	-	-	159	189	Н
2	* 2.497	52.93	PK-U	32.3	-24.7	60.53	-	-	74	-13.47	174	154	Н
	* 2.495	32.13	V1TR	32.4	-24.7	39.83	54	-14.17	-	-	174	154	Н
4	* 1.082	42.87	PK-U	27.2	-24.4	45.67	-	-	74	-28.33	203	106	V
	* 1.081	36.18	V1TR	27.2	-24.4	38.98	54	-15.02	-	-	203	106	V
5	* 2.49	47.15	PK-U	32.4	-24.7	54.85	-	-	74	-19.15	203	199	V
	* 2.49	27.49	V1TR	32.4	-24.6	35.29	54	-18.71	-	-	203	199	V
3	* 4.993	45.3	PK-U	34	-31.5	47.8	-	-	74	-26.2	226	199	Н
	* 4.99	30.98	V1TR	34	-31.5	33.48	54	-20.52	-	-	226	199	Н
6	* 4.978	52.07	PK-U	34	-31.4	54.67	-	-	74	-19.33	126	179	V
	* 4.977	35.66	V1TR	34	-31.3	38.36	54	-15.64	-	-	126	179	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

Page 89 of 97

High Channel

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0069 AF (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.082	41.77	PK-U	27.2	-24.4	44.57	-	-	74	-29.43	170	190	Н
	* 1.081	34.23	V1TR	27.2	-24.4	37.03	54	-16.97	-	-	170	190	Н
2	* 2.5	54.28	PK-U	32.3	-24.8	61.78	-	-	74	-12.22	169	153	Н
	* 2.492	32.09	V1TR	32.4	-24.7	39.79	54	-14.21	-	-	169	153	Н
4	* 1.03	43.21	PK-U	27.2	-24.7	45.71	-	-	74	-28.29	75	110	V
	* 1.032	29.33	V1TR	27.2	-24.7	31.83	54	-22.17	-	-	75	110	V
5	* 1.081	42.82	PK-U	27.2	-24.4	45.62	-	-	74	-28.38	190	106	V
	* 1.081	36.12	V1TR	27.2	-24.4	38.92	54	-15.08	-	-	190	106	V
6	* 2.494	53.68	PK-U	32.4	-24.7	61.38	-	-	74	-12.62	102	110	V
	* 2.493	32.12	V1TR	32.4	-24.7	39.82	54	-14.18	-	-	102	110	V
3	* 4.985	44.3	PK-U	34	-31.5	46.8	-	-	74	-27.2	279	376	Н
	* 4.986	30.4	V1TR	34	-31.5	32.9	54	-21.1	-	-	279	376	Н
7	* 4.978	38.92	PK-U	34	-31.4	41.52	-	-	74	-32.48	125	115	V
	* 4.978	35	V1TR	34	-31.4	37.6	54	-16.4	-	-	125	115	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, RMS Average where: Ton is packet duration

9.4. RADIATED WORST-CASE

SPURIOUS EMISSIONS .009 TO 30 MHz (WORST-CASE CONFIGURATION) - MODULE 1

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (specification distance / test distance).

Although these tests were performed at a test site other than an open area test site, adequate comparison measurements were confirmed against an open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF (dB/m)	Cbl (dB)	Corrected Reading dB(uV/m)	FCC QP 15.209 (projected to 3m)	QP Margin (dB)	FCC AV 15.209 (projected to 3m)	AV Margin (dB)	FCC PK 15.209 (projected to 3m)	PK Margin (dB)	Azimuth (Degs)
4	.03034	44.26	Pk	13.7	.1	58.06	-	-	117.97	-59.91	137.97	-79.91	0-360
1	.25766	44.63	Pk	10.3	.1	55.03	-	-	99.38	-44.35	119.38	-64.35	0-360
5	.89019	33.43	Pk	10.5	.1	44.03	68.61	-24.58	-	-	-	-	0-360
2	.96197	32.78	Pk	10.6	.1	43.48	67.94	-24.46	-	-	-	-	0-360
6	1.23561	29.66	Pk	10.6	.2	40.46	65.77	-25.31	-	-	-	-	0-360
3	1.93094	24.98	Pk	10.6	.2	35.78	69.54	-33.76	-	-	-	-	0-360

Pk - Peak detector

Page 91 of 97

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION) - MODULE 1

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0073 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	150.0086	49.48	Pk	17.7	-30.5	36.68	43.52	-6.84	0-360	199	Н
2	197.3632	51.8	Qp	17.5	-30.1	39.2	43.52	-4.32	14	130	Н
3	202.7004	50.52	Pk	16.9	-30.1	37.32	43.52	-6.2	0-360	102	Н
4	203.9866	47.5	Qp	16.3	-30.1	33.7	43.52	-9.82	108	244	Н
5	205.8008	50.43	Pk	15.8	-30	36.23	43.52	-7.29	0-360	102	Н
6	211.979	51.37	Qp	15.9	-30.1	37.17	43.52	-6.35	115	110	Н
7	213.1575	55.41	Qp	15.9	-30.1	41.21	43.52	-2.31	92	161	Н
8	215.0538	53.8	Qp	16	-30	39.8	43.52	-3.72	106	156	Н
9	218.1024	52.73	Pk	16.1	-30	38.83	46.02	-7.19	0-360	102	Н
10	224.2031	52.96	Pk	16.4	-30	39.36	46.02	-6.66	0-360	199	Н
11	228.9559	53.75	Qp	16.8	-29.9	40.65	46.02	-5.37	41	139	Н
12	244.7058	51.84	Pk	17.3	-29.8	39.34	46.02	-6.68	0-360	102	Н
13	348.8299	46.81	Qp	19.9	-29.2	37.51	46.02	-8.51	59	105	Н
14	791.9769	39.13	Pk	26.5	-27.3	38.33	46.02	-7.69	0-360	102	Н
15	840.0087	40.58	Qp	27.3	-27	40.88	46.02	-5.14	208	105	Н
16	888.0034	40.1	Qp	27.4	-26.5	41	46.02	-5.02	286	102	Н
17	133.0429	49.8	Qp	18.9	-30.7	38	43.52	-5.52	267	116	V
18	147.5352	50.84	Qp	17.8	-30.5	38.14	43.52	-5.38	301	107	V
19	197.3658	49.91	Pk	17.5	-30.1	37.31	43.52	-6.21	0-360	102	V
20	213.166	50.9	Qp	15.9	-30.1	36.7	43.52	-6.82	85	103	V
21	224.3032	51.58	Pk	16.4	-30	37.98	46.02	-8.04	0-360	199	V
22	228.9038	51.31	Pk	16.8	-29.9	38.21	46.02	-7.81	0-360	199	V
23	236.6048	49.05	Pk	17.2	-29.8	36.45	46.02	-9.57	0-360	199	V
24	887.9856	35.31	Qp	27.4	-26.5	36.21	46.02	-9.81	21	113	V

Pk - Peak detector

Qp - Quasi-Peak detector

Page 92 of 97

SPURIOUS EMISSIONS 18 TO 26.5 GHz (WORST-CASE CONFIGURATION) - MODULE 1

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0076 AF (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 20.048	46.61	Pk	32.8	-40	39.41	54	-14.59	74	-34.59	0-360	149	Н
2	* 22.77	46.87	Pk	33.7	-39	41.57	54	-12.43	74	-32.43	0-360	101	Н
3	* 23.844	45.89	Pk	34	-38.7	41.19	54	-12.81	74	-32.81	0-360	249	Н
4	* 18.356	47.38	Pk	32.3	-40.5	39.18	54	-14.82	74	-34.82	0-360	201	V
5	* 21.272	47.28	Pk	33.2	-39.6	40.88	54	-13.12	74	-33.12	0-360	299	V
6	24.156	46.07	Pk	34	-38.2	41.87	54	-12.13	74	-32.13	0-360	201	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

Page 93 of 97

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56 "	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both lines.

Page 94 of 97

LINE 1 RESULTS - MODULE 1

CE 150K-30MHz FCC_15-207 Step Rove.TST

	Range 1: Line-L1 .15 - 30MHz													
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit	Margin (dB)	Avg Limit	Margin (dB)				
1	.177	42.75	Pk	.2	10	52.95	64.63	-11.68	-	-				
2	.174	22.28	Av	.2	10	32.48	-	-	54.77	-22.29				
3	.558	28.83	Pk	0	9.9	38.73	56	-17.27	-	-				
4	.555	15.22	Av	0	9.9	25.12	-	-	46	-20.88				
5	1.191	23.52	Pk	0	10	33.52	56	-22.48	-	-				
6	1.182	10.09	Av	0	10	20.09	-	-	46	-25.91				
7	4.323	26.72	Pk	0	10	36.72	56	-19.28	-	-				
8	4.317	13.3	Av	0	10	23.3	-	-	46	-22.7				
9	6.486	25.59	Pk	.1	10	35.69	60	-24.31	-	-				
10	6.462	11.04	Av	.1	10	21.14	-	-	50	-28.86				
11	24.183	26.2	Pk	.2	10.2	36.6	60	-23.4	-	-				
12	24.183	.87	Av	.2	10.2	11.27	-	-	50	-38.73				
13	25.443	15.4	Pk	.3	10.2	25.9	60	-34.1	-	-				
14	25.488	4.14	Av	.3	10.2	14.64	-	-	50	-35.36				

Pk - Peak detector

Av - Average detection

Page 95 of 97

LINE 2 RESULTS - MODULE 1

	Range 2: Line-L2 .15 - 30MHz													
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit	Margin (dB)	Avg Limit	Margin (dB)				
15	.153	45.17	Pk	.2	10	55.37	65.84	-10.47	-	-				
16	.153	22.91	Av	.2	10	33.11	-	-	55.84	-22.73				
17	.435	28.18	Pk	.1	9.9	38.18	57.16	-18.98	-	-				
18	.435	9.98	Av	.1	9.9	19.98	-	-	47.16	-27.18				
19	.57	26.95	Pk	0	9.9	36.85	56	-19.15	-	-				
20	.57	16.66	Av	0	9.9	26.56	-	-	46	-19.44				
21	2.301	25.71	Pk	0	10	35.71	56	-20.29	-	-				
22	2.301	13.31	Av	0	10	23.31	-	-	46	-22.69				
23	24.537	12.57	Pk	.2	10.2	22.97	60	-37.03	-	-				
24	24.537	.37	Av	.2	10.2	10.77	-	-	50	-39.23				
25	25.221	22.08	Pk	.2	10.2	32.48	60	-27.52	-	-				
26	25.221	27	Av	.2	10.2	10.13	-	-	50	-39.87				

Pk - Peak detector

Av - Average detection

Page 96 of 97

11. SETUP PHOTOS

Refer to UL Document R11694639-EP4 for photos.

END OF REPORT

Page 97 of 97