

Test report No.
Page
Issued date
FCC ID

: 12985473H-R2 : 1 of 28 : October 23, 2019 : 2AM4XZERS01

RADIO TEST REPORT

Test Report No.: 12985473H-R2

Applicant : Panasonic Corporation

Type of Equipment : Magi'c Box

Model No. : ZERS1901

FCC ID : 2AM4XZERS01

Test regulation : FCC Part 15 Subpart C: 2019

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 12985473H-R.12985473H-R1 replaced with this report.

Date of test: September 29 and 30, 2019

Representative test engineer:

Akihiko Maeda

Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

- The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
- There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2
Page : 2 of 28
Issued date : October 23, 2019
FCC ID : 2AM4XZERS01

REVISION HISTORY

Original Test Report No.: 12985473H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12985473H	October 9, 2019	-	-
1	12985473H-R1	October 21, 2019	P 11	Correction of explanatory note *1)
1	12985473H-R1	October 21, 2019	P 15	Deletion of explanatory note
1	12985473H-R1	October 21, 2019	P 18	Correction of explanatory note for duty factor
1	12985473H-R1	October 21, 2019	P 22	Correction of test data
2	12985473H-R2	October 23, 2019	P22	Correction of explanatory note *2) Addition of reference chart

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2
Page : 3 of 28
Issued date : October 23, 2019
FCC ID : 2AM4XZERS01

Reference: Abbreviations (Including words undescribed in this report)

The American Association for Laboratory Accreditation MCS Modulation and Coding Scheme AC MRA Mutual Recognition Arrangement Alternating Current AFH N/A Not Applicable Adaptive Frequency Hopping NIST AM Amplitude Modulation National Institute of Standards and Technology Amp, AMP Amplifier NS No signal detect. American National Standards Institute ANSI NSA Normalized Site Attenuation Antenna Ant, ANT NVLAP National Voluntary Laboratory Accreditation Program Access Point ΑP OBW Occupied Band Width ASK Amplitude Shift Keying OFDM Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter ΑV PCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer вт Bluetooth PK Peak BT LE Bluetooth Low Energy Pseudo random Noise PN BW BandWidth PRBS Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection RMS Root Mean Square DQPSK Differential QPSK RSS Radio Standards Specifications DSSS Direct Sequence Spread Spectrum Receiving Rх EDR Enhanced Data Rate SA, S/A Spectrum Analyzer EIRP, e.i.r.p. Equivalent Isotropically Radiated Power SG Signal Generator EMC ElectroMagnetic Compatibility SVSWR Site-Voltage Standing Wave Ratio **EMI** ElectroMagnetic Interference TR Test Receiver European Norm Transmitting ΕN Tx ERP, e.r.p. Effective Radiated Power VBW Video BandWidth EU European Union Vert. Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. Federal Communications Commission FHSS Frequency Hopping Spread Spectrum FM Frequency Modulation Frequency Freq. Frequency Shift Keying FSK GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System Global Positioning System GPS Horizontal Hori. ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE. Institute of Electrical and Electronics Engineers IF Intermediate Frequency ILAC International Laboratory Accreditation Conference ISED Innovation, Science and Economic Development Canada ISO International Organization for Standardization

UL Japan, Inc. Ise EMC Lab.

JAB

LAN

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Japan Accreditation Board

Laboratory Information Management System

Local Area Network

Test report No. Page Issued date FCC ID : 12985473H-R2 : 4 of 28 : October 23, 2019 : 2AM4XZERS01

CONTENTS **PAGE SECTION 1:** Equipment under test (E.U.T.).....5 **SECTION 2: SECTION 3: SECTION 4:** Operation of E.U.T. during testing......9 **SECTION 5: SECTION 6:** Average Output Power ________16

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 5 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

SECTION 1: Customer information

Company Name : Panasonic Corporation

Address : 1006 Kadoma, Kadoma City, Osaka, 571-8506 Japan

Telephone Number : +81-50-3487-8129 Contact Person : Masaaki Noda

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (E.U.T.)
- SECTION 4: Operation of E.U.T. during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Magi'c Box Model No. : ZERS1901

Serial No. : Refer to SECTION 4.2
Rating : DC 3 V to DC 15 V
Receipt Date of Sample : September 12, 2019

(Information from test lab.)

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab.

2.2 Product Description

Model: ZERS1901 (referred to as the EUT in this report) is a Magi'c Box.

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 2478 MHz
Modulation : 2-GFSK, 2Mbps
Antenna type : Chp Antenna

Antenna Gain : -6 dBi

Clock frequency (Maximum) : RF: 24 MHz, MPU: 16 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2
Page : 6 of 28
Issued date : October 23, 2019
FCC ID : 2AM4XZERS01

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on July 19, 2019 and effective August 19, 2019 except 15.258

Title : FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	N/A	N/A	*1)
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: -	FCC: Section 15.247(a)(2) ISED: RSS-247 5.2(a)		Complied a)	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: RSS-Gen 6.12	FCC: Section 15.247(b)(3) ISED: RSS-247 5.4(d)	See data.	Complied b)	Conducted
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied c)	Conducted
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	3.1 dB	Complied#d), e)	Conducted (below 30 MHz)/
Restricted Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	14868.000 MHz, PK, Horizontal		Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- c) Refer to APPENDIX 1 (data of Power Density)
- d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test was not performed on since the EUT does not have AC Power ports.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

 Test report No.
 : 12985473H-R2

 Page
 : 7 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99% Occupied	RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.3 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

Radiated emission

Measurement		
distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.9 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	5.0 dB
	6 GHz to 18 GHz	5.3 dB
1 m	10 GHz to 26.5 GHz	5.8 dB
	26.5 GHz to 40 GHz	5.8 dB
10 m	1 GHz to 18 GHz	5.2 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 8 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	i-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 9 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

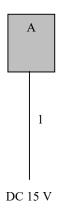
Mode	Remarks*			
Transmitting (Tx)	PN9			
*All tests except for Duty confirmation test was performed with transmitting duty was 100 %.				
*Power of the EUT was set by the software as follows;				
Power settings: 0x3f00				
*This setting of software is the worst case.				
Any conditions under the normal use do not exceed the condition of setting.				
In addition, end users cannot change the settings of the output power of the product.				

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
6dB Bandwidth	Transmitting (Tx)	2478 MHz
99% Occupied Bandwidth		
Spurious Emission (Radiated /Conducted)		
Maximum Peak Output Power		
Power Density		

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Test report No.
 : 12985473H-R2

 Page
 : 10 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Magi'c Box	ZERS1901	FFFF370F0001: for AT* FFFF370F0002: for other tests	Panasonic Corporation	EUT

^{*}AT: Antenna Terminal conducted test

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	3.0	Unshielded	Unshielded	_

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2 : 11 of 28 : October 23, 2019 : 2AM4XZERS01

Page **Issued date** FCC ID

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

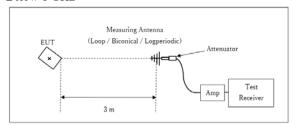
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Peak with Duty Factor *1)	RBW: 100 kHz
		VBW: 3 MHz		VBW: 300 kHz

^{*1)} For Pulse emission: The Average value was calculated by reducing Duty factor from PK (PK value – Duty factor). For Duty factor, please refer to Page 22.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

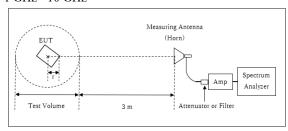
 Test report No.
 : 12985473H-R2


 Page
 : 12 of 28

 Issued date
 : October 23, 2019

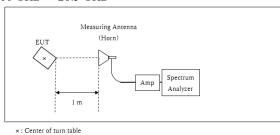
 FCC ID
 : 2AM4XZERS01

Figure 2: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table


1 GHz - 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz - 26.5 GHz

Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 3.75 m

Test Volume : 1.5 m (Test Volume has been calibrated based on CISPR 16-1-4.) $r=0.0\ m$

*The test was performed with r = 0.0 m since test was performed severer condition.

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 13 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	5 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

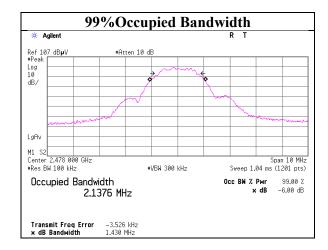
Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

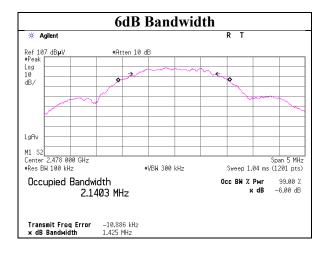
 $^{(9 \}text{ kHz} - 150 \text{ kHz}: RBW = 200 \text{ Hz}, 150 \text{ kHz} - 30 \text{ MHz}: RBW = 9.1 \text{ kHz})$

Test report No. : 12985473H-R2
Page : 14 of 28
Issued date : October 23, 2019
FCC ID : 2AM4XZERS01

APPENDIX 1: Test data

6 dB Bandwidth and 99 % Occupied Bandwidth


Report No. 12985473H


Test place Ise EMC Lab. No.4 Measurement Room

Date September 30, 2019
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Akihiko Maeda

Mode Tx

Frequency	99% Occupied	6dB Bandwidth	Limit for
	Bandwidth		6dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2478	2137.6	1.425	> 0.5000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2 Page : 15 of 28 **Issued date** : October 23, 2019 FCC ID : 2AM4XZERS01

Maximum Peak Output Power

12985473H Report No.

Ise EMC Lab. No.4 Measurement Room Test place

September 30, 2019 Date 24 deg. C / 56 % RH Temperature / Humidity Engineer Akihiko Maeda

Mode Tx

					Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	sult	Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2478	-8.55	1.00	10.10	2.55	1.80	30.00	1000	27.45	-6	-3.45	0.45	36.02	4000	39.47	

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 16 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

Average Output Power (Reference data)

Report No. 12985473H

Test place Ise EMC Lab. No.4 Measurement Room

Date September 30, 2019
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Akihiko Maeda

Mode Tx

Freq.	Reading	Cable	Atten.	Res	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2478	-8.83	1.00	10.10	2.27	1.69	0.00	2.27	1.69

Sample Calculation:

 $Result \ (Time \ average) = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss \ Result \ (Burst \ power \ average) = Time \ average + Duty \ factor$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 12985473H-R2 Page : 17 of 28 Issued date : October 23, 2019 : 2AM4XZERS01 FCC ID

Radiated Spurious Emission

Report No. 12985473H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

September 29, 2019 September 29, 2019 Temperature / Humidity 26 deg. C / 54 % RH 23 deg. C / 67 % RH Engineer Akihiko Maeda Akihiko Maeda (Above 1 GHz) (Below 1 GHz)

Tx 2478 MHz Mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	63.749	QP	21.7	7.0	8.0	32.2	-	4.5	40.0	35.5	
Hori.	71.130	QP	21.5	6.3	8.1	32.1	-	3.7	40.0	36.3	
Hori.	75.462	QP	21.7	6.5	8.1	32.1	-	4.2	40.0	35.8	
Hori.	79.075	QP	21.6	6.7	8.2	32.1	-	4.4	40.0	35.6	
Hori.	82.875	QP	21.6	7.3	8.2	32.1	-	5.0	40.0	35.0	
Hori.	96.015	QP	21.9	9.6	8.4	32.1	-	7.7	43.5	35.8	
Hori.	2390.000	PK	43.2	27.3	5.3	34.3	-	41.5	73.9	32.4	
Hori.	2483.500	PK	44.3	28.1	5.4	34.2	-	43.6	73.9	30.3	
Hori.	4956.000	PK	51.4	31.9	7.6	33.5	-	57.4	73.9	16.5	
Hori.	7434.000	PK	50.1	36.3	8.9	33.5	-	61.8	73.9	12.1	
Hori.	9912.000	PK	51.4	38.8	9.8	33.8	-	66.1	73.9	7.8	
Hori.	12390.000	PK	55.2	38.6	-0.8	32.8	-	60.2	73.9	13.7	
Hori.	14868.000	PK	62.2	40.7	0.2	32.3	-	70.8	73.9	3.1	
Hori.	17346.000	PK	56.9	41.1	1.3	32.1	-	67.1	73.9	6.8	
Hori.	19824.000	PK	51.6	40.3	-1.3	32.3	-	58.4	73.9	15.5	
Hori.	24780.000	PK	52.6	40.5	0.0	32.2	•	60.9	73.9	13.0	
Vert.	63.749	QP	22.7	7.0	8.0	32.2	-	5.5	40.0	34.5	
Vert.	71.130	QP	25.1	6.3	8.1	32.1	-	7.3	40.0	32.7	
Vert.	75.462	QP	27.5	6.5	8.1	32.1	-	10.0	40.0	30.0	
Vert.	79.075	QP	29.1	6.7	8.2	32.1	-	11.9	40.0	28.1	
Vert.	82.875	QP	26.1	7.3	8.2	32.1	-	9.5	40.0	30.5	
Vert.	96.015	QP	27.4	9.6	8.4	32.1	•	13.2	43.5	30.3	
Vert.	2390.000	PK	43.6	27.3	5.3	34.3	-	41.9	73.9	32.0	
Vert.	2483.500	PK	43.9	28.1	5.4	34.2	-	43.2	73.9	30.7	
Vert.	4956.000	PK	52.6	31.9	7.6	33.5	-	58.6	73.9	15.3	
Vert.	7434.000	PK	48.8	36.3	8.9	33.5	-	60.5	73.9	13.4	
Vert.	9912.000	PK	52.0	38.8	9.8	33.8	-	66.7	73.9	7.2	
Vert.	12390.000	PK	56.7	38.6	-0.8	32.8	-	61.7	73.9	12.2	
Vert.	14868.000	PK	60.3	40.7	0.2	32.3	-	68.9	73.9	5.0	
Vert.	17346.000	PK	59.5	41.1	1.3	32.1	-	69.7	73.9	4.2	
Vert.	19824.000	PK	52.7	40.3	-1.3	32.3	-	59.5	73.9	14.4	
Vert.	24780.000	PK	55.1	40.5	0.0	32.2	-	63.4	73.9	10.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2478.000	PK	81.4	28.0	5.4	34.2	80.6	-	-	Carrier
Hori.	2400.000	PK	35.2	27.0	5.3	34.3	33.3	60.6	27.3	
Vert.	2478.000	PK	81.6	28.0	5.4	34.2	80.8	-	-	Carrier
Vert.	2400.000	PK	34.5	27.0	5.3	34.3	32.6	60.8	28.2	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz $20\log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{dB}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 Test report No.
 : 12985473H-R2

 Page
 : 18 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

PK with Duty factor

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	PK	43.2	27.3	5.3	34.3	-20.5	21.0	53.9	32.9	*
Hori.	2483.500	PK	44.3	28.1	5.4	34.2	-20.5	23.1	53.9	30.8	*
Hori.	4956.000	PK	51.4	31.9	7.6	33.5	-20.5	36.9	53.9	17.0	*
Hori.	7434.000	PK	50.1	36.3	8.9	33.5	-20.5	41.3	53.9	12.6	*
Hori.	9912.000	PK	51.4	38.8	9.8	33.8	-20.5	45.6	53.9	8.3	*
Hori.	12390.000	PK	55.2	38.6	-0.8	32.8	-20.5	39.7	53.9	14.2	*
Hori.	14868.000	PK	62.2	40.7	0.2	32.3	-20.5	50.3	53.9	3.6	*
Hori.	17346.000	PK	56.9	41.1	1.3	32.1	-20.5	46.6	53.9	7.3	*
Hori.	19824.000	PK	51.6	40.3	-1.3	32.3	-20.5	37.9	53.9	16.0	*
Hori.	24780.000	PK	52.6	40.5	0.0	32.2	-20.5	40.4	53.9	13.5	*
Vert.	2390.000	PK	43.6	27.3	5.3	34.3	-20.5	21.4	53.9	32.5	*
Vert.	2483.500	PK	43.9	28.1	5.4	34.2	-20.5	22.7	53.9	31.2	*
Vert.	4956.000	PK	52.6	31.9	7.6	33.5	-20.5	38.1	53.9	15.8	*
Vert.	7434.000	PK	48.8	36.3	8.9	33.5	-20.5	40.0	53.9	13.9	*
Vert.	9912.000	PK	52.0	38.8	9.8	33.8	-20.5	46.2	53.9	7.7	*
Vert.	12390.000	PK	56.7	38.6	-0.8	32.8	-20.5	41.2	53.9	12.7	*
Vert.	14868.000	PK	60.3	40.7	0.2	32.3	-20.5	48.4	53.9	5.5	*
Vert.	17346.000	PK	59.5	41.1	1.3	32.1	-20.5	49.2	53.9	4.7	*
Vert.	19824.000	PK	52.7	40.3	-1.3	32.3	-20.5	39.0	53.9	14.9	*
Vert.	24780.000	PK	55.1	40.5	0.0	32.2	-20.5	42.9	53.9	11.0	*

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ Gain(Amprifier) + Duty factor (Refer to Duty confirmation data sheet)

^{*}Above noise was synchronized with carrier frequency.

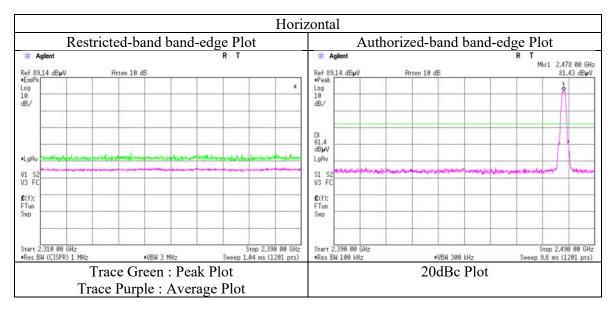
st Duty Factor was calculated with the 1 Data transmission period.

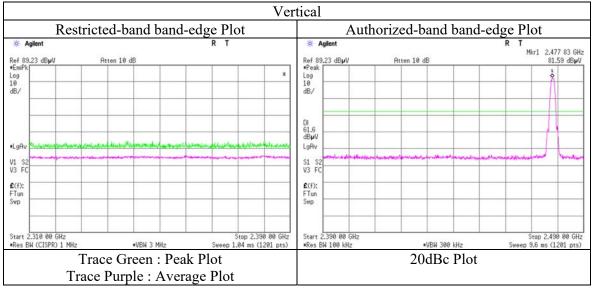
 Test report No.
 : 12985473H-R2

 Page
 : 19 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 12985473H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date September 29, 2019
Temperature / Humidity 26 deg. C / 54 % RH
Engineer Akihiko Maeda
(Above 1 GHz)

Mode Tx 2478 MHz

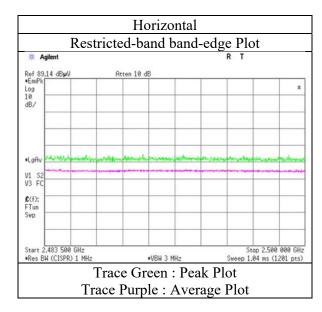
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

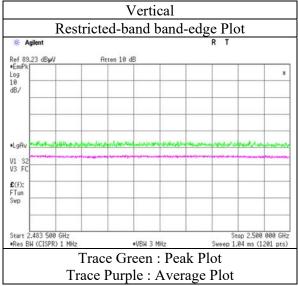
Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12985473H-R2
Page : 20 of 28
Issued date : October 23, 2019
FCC ID : 2AM4XZERS01


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 12985473H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date September 29, 2019
Temperature / Humidity 26 deg. C / 54 % RH
Engineer Akihiko Maeda
(Above 1 GHz)

Mode Tx 2478 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

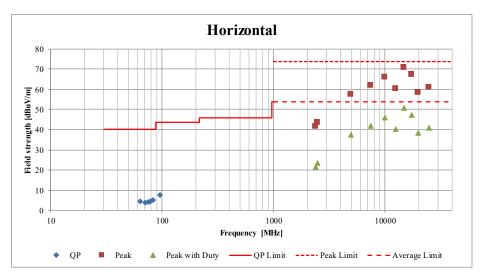
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

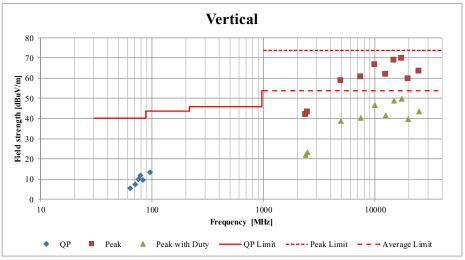
 Test report No.
 : 12985473H-R2

 Page
 : 21 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01


Radiated Spurious Emission (Plot data, Worst case)


Report No. 12985473H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date September 29, 2019 September 29, 2019
Temperature / Humidity 26 deg. C / 54 % RH 23 deg. C / 67 % RH
Engineer Akihiko Maeda (Above 1 GHz) (Below 1 GHz)

Mode Tx 2478 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 22 of 28

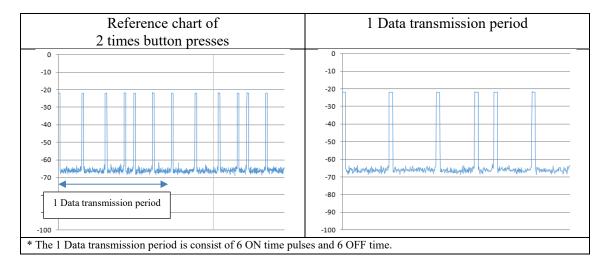
 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

Duty confirmation

Report No. 12985473H

Test place Ise EMC Lab. No.4 Measurement Room


Date September 30, 2019
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Akihiko Maeda

Mode Tx

Measued ON time *1)	1 Data Transmission	Duty cycle *3)	Duty factor *4)
	period *2)		
[ms]	[ms]		[dB]
0.69	7.27	0.095	-20.5

^{*1)} Measured ON Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

^{*4)} Duty factor = 20log₁₀(Duty Cycle)

- * The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis.
- * A time-domain resolution of 0.00125 msec/bin is achievable with a 10 msec sweep time
- * Measured ON time is calculated by multiplying the number of bins during an observation period by the dwell time per bin, with the analyzer set to peak detection.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2) 1} Data Transmission period = (Number of analyzer bins showing ON and OFF time at the worst case) * (dwell time per bin)

^{*3)} Duty cycle = Measured ON time / 1 Data transmission period

 Test report No.
 : 12985473H-R2

 Page
 : 23 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

Conducted Spurious Emission

Report No. 12985473H

Test place Ise EMC Lab. No.4 Measurement Room

Date September 30, 2019
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Akihiko Maeda
Mode Tx 2478 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
13.58	-98.9	1.00	9.8	2.0	1	-86.1	300	6.0	-24.8	44.9	69.7	
200.00	-90.0	1.00	9.8	2.0	1	-77.2	300	6.0	-16.0	21.5	37.5	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12985473H-R2

 Page
 : 24 of 28

 Issued date
 : October 23, 2019

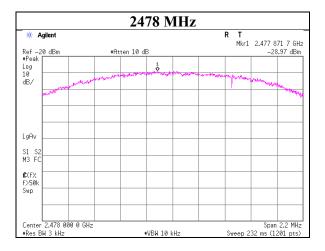
 FCC ID
 : 2AM4XZERS01

Power Density

Report No. 12985473H

Test place Ise EMC Lab. No.4 Measurement Room

Date September 30, 2019
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Akihiko Maeda


Mode Tx

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2478	-28.97	1.00	10.10	-17.87	8.00	25.87

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12985473H-R2

 Page
 : 25 of 28

 Issued date
 : October 23, 2019

 FCC ID
 : 2AM4XZERS01

APPENDIX 2: Test instruments

Test Instruments

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/01/2019	04/30/2021	24
RE	178648	EMI measurement program	TSJ	TEPTO-DV	-	_	-	-
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/20/2019	08/31/2020	12
RE	142226	Measure	KOMELON	KMC-36	_	_	-	-
RE/AT	141900	Spectrum Analyzer	AGILENT	E4440A	MY46185823	11/15/2018	11/30/2019	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	06/27/2019	06/30/2020	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	05/09/2019	05/31/2020	12
RE	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) 1608S087(5 m)	08/06/2019	08/31/2020	12
RE	141579	Pre Amplifier	AGILENT	8449B	3008A02142	01/21/2019	01/31/2020	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/11/2019	09/30/2020	12
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	04/12/2019	04/30/2020	12
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	06/28/2018	06/30/2020	24
RE	141562	Thermo-Hygrometer	CUSTOM	CTH-201	0010	01/11/2019	01/31/2020	12
RE	141547	DIGITAL HITESTER	HIOKI	3805	60500120	02/25/2019	02/29/2020	12
RE	142227	Measure	KOMELON	KMC-36	_	_	-	-
RE	141899	Spectrum Analyzer	AGILENT	E4448A	MY46180655	08/07/2019	08/31/2020	12
RE	141425	Biconical Antenna	Schwarzbeck	VHA9103+BBA910 6	1302	08/24/2019	08/31/2020	12
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck	VUSLP9111B	9111B-192	08/24/2019	08/31/2020	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/05/2019	02/29/2020	12
RE	141397	Coaxial Cable	UL Japan	-	-	06/18/2019	06/30/2020	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/08/2019	02/29/2020	12
RE	141556	Thermo-Hygrometer	CUSTOM	CTH-201	0003	12/05/2018	12/31/2019	12
AT	141810	Power Meter	ANRITSU	ML2495A	824014	10/09/2018	10/31/2019	12
AT	141832	Power sensor	ANRITSU	MA2411B	738174	10/09/2018	10/31/2019	12
AT	141532	DIGITAL HITESTER	НІОКІ	3805	51201197	01/29/2019	01/31/2020	12
AT	141568	Thermo-Hygrometer	CUSTOM	CTH-201	2901	01/11/2019	01/31/2020	12
AT	141361	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	03/04/2019	03/31/2020	12
AT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/02/2018	11/30/2019	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN