

Tel: (908) 927 9288 Fax: (908) 927 0728

Electromagnetic Emission Compliance Test Report

Equipment Under

PLT600

Test

(EUT)

Model DQ00602

Applicant ImpulseRadar Sweden AB

In Accordance With FCC Part 15, Subpart F

Tested by Advanced Compliance Laboratory, Inc.

210 Cougar Court

Hillsborough, New Jersey 08844

Authorized by Wei Li Signature

Lab Manager

Date September 7, 2023

AC Lab Report 0048-230821-01 **Number**

Lab Code:200101-0

The test result in this report is supported and covered by the NVLAP accreditation.

Table of Contents

Section 1.	Summary of Test Results	. 3
Section 2.	General Equipment & Test Configuration	6
Section 3.	Test Methodology & Facilities	8
Section 4.	Measurement Data	9
Section 5.	FCC ID Labeling	1 5
Section 6.	Setup Photos	16
Section 7.	EUT Photos	50

Section 1. Summary of Test Results

Manufacturer: ImpulseRadar Sweden AB

Product Name: PLT600

Model/Parts No.: DQ00602

S/N: PT001

General: All measurements are traceable to national standards

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15, Sub Part F.

New Submission Production Ur

Class I Permissive Change Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

"See Summary of Test Data"

NVLAP LAB CODE: 200101-0

Advanced Compliance Laboratory, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Advanced Compliance Laboratory, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary of Test Data

Compliance Requirement	FCC Rule Part	Test No.	Result
		Section 4	
Cross Reference	15.505	1	Complies
Marketing of UWB Equipment	15.507	2	Complies
Pulse Repetition Frequency(PRF)	15.509	3	Complies
UWB Bandwidth	15.509(a)	4	Complies
General Operational Requirements for LF Imaging System	15.509(b)	5	Complies
Spurious Radiated Emissions≤960MHz	15.509(d) 15.209	6	Complies
Spurious Radiated Emissions>960MHz	15.509(d) 15.209	7	Complies
Radiated Emissions in GPS Bands	15.509(e) 15.209	8	Complies
Highest Radiated Emission at f _M	15.509(f) 15.209	9	Complies
Technical Requirements Applicable to All UWB Devices	15.521	10	Complies
Coordination Requirement	15.525	11	N/A
Antenna Requirement	15.203	12	N/A
Radio Frequency Exposure	FCC OET Bulletin 65	13	N/A
Conducted Emissions	15.507	14	*
Transmission Duration	15.509(c)	15	**

^{*} NOT APPLICABLE to the EUT as it is a battery-powered device;

** NOT APPLICABLE to the EUT as it is not a handheld device.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std.	norm.	±2.36	±2.99	±1.83
Uncertainty u_c				

Date: 09/07/2023

Wei Li

Lab Manager

Advanced Compliance Lab

Section 2. General Equipment & Test Configuration

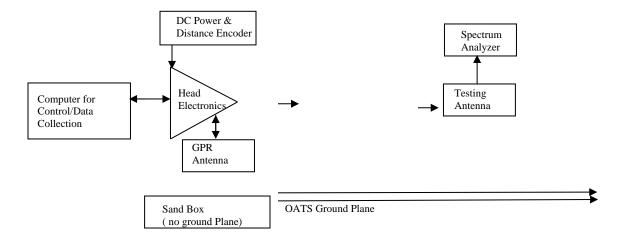
2.1. EUT Specification

EUT	PLT600, Model No. DQ00602 manufactured by ImpulseRadar, is an ultra-wide band ground penetrating radar (GPR) intended for geophysical surveying and non-destructive testing.				
Supply Voltage	12 VDC, provided by AC/DC Transformer				
Operating Frequency	106.5MHz and 920.0MHz				
-10dB UWB Bandwidth	813.5 MHz				
Modulation Type	250KHz Pulse Repetition Frequency (PRF)				
Peak Emissions in a 50 MHz Bandwidth	N/A. Max. peak emissions is under 1GHz				
Antenna	Dipole Antenna				
Hardware Version	N/A				
Software Version	N/A				

2.2. Description of Operation

The system performs time domain reflectometry by radiating a radio frequency impulse with a repetition frequency of 250KHz from a transmitting dipole (TX dipole). Transitions between materials exhibiting different wave impedance through which the electromagnetic wave travels cause the wave to be reflected. These reflections are received by the receiving dipole (RX dipole) and sampled by the instrument. Results may be displayed in real time on the system screen and recorded on an internal solid state disk

drive for later analysis. In the field, the system is powered from a removable rechargeable battery.


2.3. System Diagram

See Attachment provided by Applicant.

2.4. General EUT Setup

The EUT is operated in continuous transmission mode with the antennas permanently mounted in an all in one plastic housing with the controlling electronics and battery.

All measurements shall be made at room temperature and at nominal DC input voltage (provided by a battery). The EUT is placed directly on the dry sand with no ground plane under it.

2.5. Operational Frequency channel(s) for testing:

- Circuitry Clocks: 80MHz, 160MHz
- Antenna center frequency is 600MHz.

Section 3. Test Methodology & Facilities

3.1 Measurement Procedure

The tests documented in this report were performed in accordance with ANSI C63.4 /C63.10, FCC CFR 47 Part 2 & 15, Industry Canada RSS-220 (Issue 1/2009) & FCC Order, ET Docket No. 980153(FCC02-08). Test procedure described in FCC "KDB 393764, UWB Compliance Measurements" is used in this report. The test methods used to generate the data is this test report is in accordance with ANSI C63.10:2013, American National Standard for Testing Unlicensed Wireless Devices.

In accordance with ANSI C63.10:2013, Section 10.2.2, the device under test was placed on a bed of dry sand and rotated through 16 azimuth angles (Clause 5.4) to determine which produced the highest emission relative to the limit. The azimuth that produced the highest emission relative to the limit was used for all radiated emission measurements.

3.2. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at Hillsborough, New Jersey, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods".

This site is accepted by FCC to perform measurements under Part 15 or 18 (Registration # 90601, MRA designation No. US5347) and also designated by IC as "site IC 3130A". ACL is accredited by NVLAP, Laboratory Code 200101-0. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

3.3. Test and Measurement Equipment

The following test and measurement equipment was utilized for the tests documented in this report:

Manufacture	Model	Serial No.	Description	Cal Due dd/mm/ yy
Hewlett-Packard	HP8546A	3448A00290	EMI Receiver	25/09/23
Agilent	E4440A	US40420700	3Hz-26.5GHz Spectrum Analyzer	17/06/24
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	15/10/23
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	15/10/23
EMCO	3115	4945	Double Ridge Guide Horn Antenna	12/06/24
Narda	BW- 10W5	3037	10dB, 5W in-line Power Attenuator	15/01/24
Belden	9913	ACL23	RF 18'Coxial Cable	15/01/24

All Test Equipment Used is Calibrated, Traceable to NIST Standards. 2 Year Interval.

Section 4. Measurement Data

Test No.1

Name of Test:	Cross Reference	Test Standard:	15.505
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum 15.505(a)

Standard: Equipment under test complies with all the relevant and

applicable requirements of Subpart A, Subpart B and Section 15.201 through 15.204 and Section 15.207 of Subpart C. 15.505(b)

The Digital circuitry portion of the EUT has been tested and verified

to comply with 47 CFR Part 15, subpart B.

Method of Measurement:

- a) Except where specifically stated otherwise within this subpart, the provisions of Subparts A and B and of Sections 15.201 through 15.204 and Section 15.207 of Subpart C of this part apply to unlicensed UWB intentional radiators. The provisions of Sections 15.35(c) and 15.205 do not apply to devices operated under this subpart. The provisions of Footnote US 246 to the Table of Frequency Allocations contained in Section 2.106 of this chapter do not apply to devices operated under this subpart.
- b) The requirements of Subpart F apply only to the radio transmitter, i.e., the intentional radiator, contained in the UWB device. Other aspects of the operation of a UWB device may be subject to requirements contained elsewhere in this chapter. In particular, a UWB device that contains digital circuitry not directly associated with the operation of the transmitter also is subject to the requirements for unintentional radiators in Subpart B of this chapter. Similarly, an associated receiver that operates (tunes) within the frequency range 30 MHz to 960 MHz is subject to the requirements in Subpart B of this chapter.

Test Result:	Complies				
Test Data:	Data and Plots				
Project Number:		0048-230821-01			
	EUT:	DQ00602			
S/N:		PT001			
	Tested By:	David Tu			
Temperature:		70°F			
Humidity:		30%			

Spurious Radiated Emissions from Digital Circuitry (RF off) complies with FCC Part 15.109 (Class A), measured per ANSI C63.4 with standard setup.

Freq. (MHz)	H,V	Height (m)	Angle (degree)	SA* Reading (dBuV/m)	Refer to Part 15.109 3m Limit (dBuV/m)	Margin (dB)	Result
45.3	Н	1.8	090	35.7	49.6	-13.9	Pass
50.8	Η	1.6	090	36.8	49.6	-12.8	Pass
65.3	Н	1.6	090	34.5	49.6	-15.1	Pass
99.7	Н	1.6	135	33.1	54	-20.9	Pass
124.8	Н	1.6	135	34.1	54	-19.9	Pass
163.5	Н	1.6	090	37.4	54	-16.6	Pass
191.5	Н	1.6	090	38.5	54	-15.5	Pass
199	Н	1.6	090	41.4	54	-12.6	Pass
200	Н	1.1	135	39.1	54	-14.9	Pass
220	Н	1.1	135	32.5	56.9	-24.4	Pass
406	Н	1.0	135	34.9	56.9	-22.0	Pass
430	Н	1.0	090	36.5	56.9	-20.4	Pass
446	Н	1.0	090	36.4	56.9	-20.5	Pass
545	Н	1.0	090	36.7	56.9	-20.2	Pass
600	Н	1.0	135	37.3	56.9	-19.6	Pass
1570	Η	1.1	090	40.7	60.0	-19.3	Pass
1880	Н	1.1	090	42.5	60.0	-17.5	Pass
2720	Η	1.1	090	46.9	60.0	-13.1	Pass
40.6	V	1.2	000	42.9	49.6	-6.7	Pass

43.2	V	1.2	000	38.8*	49.6	-10.8	Pass
44	V	1.2	000	39.3*	49.6	-10.3	Pass
50.8	V	1.2	000	44.1	49.6	-5.5	Pass
64.9	V	1.2	000	38.7	49.6	-10.9	Pass
139.7	V	1.1	045	43.3	54	-10.7	Pass
150.3	V	1.1	045	44.0*	54	-10.0	Pass
158.4	V	1.1	045	43.8*	54	-10.2	Pass
199.6	V	1.1	000	44.7*	54	-9.3	Pass
200.3	V	1.1	000	43.5	54	-10.5	Pass
224	V	1.1	000	38.8	56.9	-18.1	Pass
320	V	1.1	315	32.8	56.9	-24.1	Pass
348	V	1.1	315	33.4	56.9	-23.5	Pass
448	V	1.1	315	37.4	56.9	-19.5	Pass
600	V	1.1	315	37.5	56.9	-19.4	Pass
732	V	1.1	315	39.1	56.9	-17.8	Pass
1523	V	1.1	000	40.6	60.0	-19.4	Pass
1576	V	1.1	000	41.0	60.0	-19	Pass
1820	V	1.1	000	42.1	60.0	-17.9	Pass
2282	V	1.1	000	44.1	60.0	-15.9	Pass

^{*}Quasi-peak reading. For emissions that have peak values close to (or over) the specification limit (if any) will be also measured in the quasi-peak or average mode to determine the compliance.

Test No.2

Name of Test:	Marketing of UWB Equipment	Test Standard:	15.507
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum 15.507/ 2.909

The responsible party is properly informed about the responsible for **Standard:**

ensuring that the equipment is marketed only to eligible parties, and

provide correct information on the customers and users. (See Important note for the US customers of the

Installation Guide and User Manual)

Measurement:

Method of In some cases, the operation of UWB devices is limited to specific parties, e.g., law enforcement, fire and rescue organizations operating under the auspices of a state or local government. The marketing of UWB devices must be directed solely to parties eligible to operate the equipment. The responsible party, as defined in Section 2.909 of this chapter, is responsible for ensuring that the equipment is marketed only to eligible parties. Marketing of the equipment in any other manner may be considered grounds for revocation of the grant of certification issued for the equipment.

Test Result:	Complies
Test Data:	NA

Test No.3

Name of Test:	Pulse Repetition Frequency (PRF)	Test Standard:	15.509(d)
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum Definition:

Standard: Pulse Repetition Frequency (PRF) is the trigger repetition frequency.

PRF declared by applicant: Total 250KHz

Method of Tested at 3-meter OATS per ANSI C63.4

Measurement: Spectrum Analyzer Settings:

RBW: 30KHz VBW: ≥RBW Detector: Peak Span: As required Sweep: Auto

Test Result:	Complies
Test Data:	PRF =250KHz

Test No.4

Name of Test:	UWB Bandwidth	Test Standard:	15.509(a) 15.503(a)
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum Standard:

Definition:

The bandwidth of a UWB emission is defined by the points on the emission spectrum where the amplitude is 10 dB below the maximum emission amplitude (i.e., the -10 dB points), as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M . The center frequency f_C , equals $(f_H + f_L)$ /2. The fractional bandwidth equals $2 * (f_H - f_L) / (f_H + f_L)$.

In cases where the measured emission spectrum contains multiple (more than two) -10 dB points, the outermost points define the bandwidth (i.e., the widest bandwidth is assumed).

Limits:

The UWB bandwidth of an imaging system operating under the provisions of this section must be below 10.6 GHz.

Method of Measurement:

Tested at 3-meter OATS per ANSI C63.4

Spectrum Analyzer Settings:

RBW: 1MHz VBW: 3MHz Detector: Peak

Span: As required (to display a full spectrum of the RF emission)

Sweep: Auto

Test Procedure:

- 1) The receiving antenna which varied from 1 to 4 m to find the highest emission is positioned 3 m away from the EUT.
- 2) Measure the Highest radiated emission at f_M as described in the test No. 9.
- 3) Recorded the upper and lower frequency that are at the side of the band bounded by the points at 10 dB below the highest radiated UWB emission level. Measuring the bandwidth of a UWB device using a radiated test set-up, it is imperative that appropriate adjustments be made to the measured amplitude levels to account for the frequency-dependent components of the measurement system (e.g., antenna gain

or factor, pre-amplifier gain, cable loss, etc). Since UWB emissions can have bandwidths several GHz wide, these frequency-dependent characteristics can vary dramatically over the fundamental emission. According to the nature of the broadband emission characteristics, significant care must be taken to capture the true spectrum of emission, extremely narrow sweep widths is recommended.

4) The UWB bandwidth is the different of the upper and lower frequency recorded.

Test Result:	Complies
Test Data:	Data and Plots

Measurement Data (Values in MHz):

fм	The highest emission peak	428.0
f∟	10 dB below the lowest peak	106.5
f _H	10 dB above the highest peak	920.0
fc	Calculated: (f _H + f _L)/2	513.25
Bandwidth	Calculated: (fн - f∟)	813.5
Fractional BW	Calculated: $2*(f_H - f_L)/(f_H + f_L)$	1.585

Note: The Fraction Bandwidth is also greater than 0.2.

Measurement Plots:

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

	Section:			UWB Bandwidth		
		Plot Name:	10dB UW	B Bandwid	th in Anech	noic Chamber
	Con	figuration:	Peak,	Stand alon	e, Continue	operation
(
	MARKER ACTV DET: PEAK 428.0 MHz MEAS DET: PEAK QP AVG 59.64 dBµV/m MKR 420.0 MHz 59.64 dBµV/m					
L06 10	REF 80.0 dB	μV/m				
dB/						
ATN 10 dB						
DL			797	NAME OF THE PROPERTY OF THE PR	a commenced like derivation	
49.6	W -		W-Mayer-	~ 1	11 s.d.1 &v\-4\to 1	
dBµV/i VA SB	n					
SC FC ACORR						
	START 200.0 MHz					

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Section:	UWB Bandwidth			
Plot Name:	10dB UWB Bandwidth in Anechoic Chamber			
Configuration:	Lower edge, Stand alone, Continue operation			
MARKER ACTV DET: PEAK 106.5 MHz MEAS DET: PEAK QP AVG 49.36 dBμV/m MKR 106.5 MHz 49.36 dBμV/m				
DL				
START 30.0 MHz #IF BW 1.0 MHz #AVG				

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Section:	UWB Bandwidth			
Plot Name:	10dB UWB Bandwidth in Anechoic Chamber			
Configuration:	High edge, Stand alone, Continue operation			
MARKER ACTV DET: PEAK 920.0 MHz MEAS DET: PEAK QP AVG 48.92 dBµV/m MKR 920.0 MHz 48.92 dBµV/m				
LOG REF 80.0 dB \(\text{U/m} \) 10 dB/ ATN 10 dB DL 49.6 dB \(\text{U/m} \) VA SB SC FC	The same of the sa			
START 200.0 MHz #IF BW 1.0 MHz #AVG	STOP 1.0000 GHz BW 3 MHz SWP 20.0 msec			

Test No.5

Name of Test:	General Operational Requirements for LFIS	Test Standard:	15.509(b)
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum 15.509(b) &RSS-220 6

Standard: Operation under the provisions of this section is limited to GPRs and

wall imaging systems operated for the purposes with law enforcement, fire fighting, emergency rescue, scientific research,

commercial mining, or construction.

Method of The manufacturer Shall state that the device under test complies with

Measurement: the requirements outlined in section FCC Part 15.509 (b).

Test Result:	Complies
Test Data:	NA

Test No.6

Name of Test:	Spurious Radiated Emissions ≤960MHz	Test Standard:	15.509(d) 15.209
Tested By:	David Tu	Test Date:	08/21/2023-09/07/2023

Minimum Definition:

Standard: The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in Section 15.209.

Limits:

Frequency	Field Strengths Limits	Measuring RBW	Distance
(MHz)	(dBµV/m)	kHz	(meters)
0.009-0.490	67,6-20*Logf(kHz)	1	300
0.490-1.705	87,6-20*Logf(kHz)	9	30
1.705-30	29,5	9	30
30-88	40,0	120	3
88-216	43,5	120	3
216-960	46,0	120	3

Method of Tested at 3-meter OATS per ANSI C63.4

Measurement: Spectrum Analyzer Settings:

RBW: 120KHz VBW: ≥3x RBW Detector: Quasi-Peak Span: As required Sweep: Auto

Test Procedure:

- 1) The EUT was placed on sandpit area filled with dry sand initially placed in front of the ground plane (0° degree position)
- 2) The receiving antenna which varied from 1 to 4 m to find the highest emission is positioned 3 m away from the EUT.
- 3) The receiving antenna was positioned in horizontal polarization.
- 4) The measurements were made with the detector set to peak with a bandwidth of 120 kHz during monitoring the frequency range below 960 MHz.
- 5) Upon detection of a suspect emission signal, its amplitude and frequency were noted.
- 6) It is recommended to demodulate the received signals for suitable discrimination of the ambient emission from the EUT emission.
- 7) At the worst case combination of the EUT operating mode and antenna height, the field strength measure was recorded. At each of the frequencies were a field strength was recorded the final measurement was performed with a Quasi-Peak detector.
- 8) The receiving antenna was positioned in vertical polarization and the steps 2 to 6 was repeated.
- 9) The EUT was rotating from 0° to 360° degrees with 45° step increment and the steps 4 to 7 was repeated.
- 10) All the worst case combination field strength emissions founded of each EUT position and antenna polarization was recorded in the following table and compared with the applicable limits.

Test Result:	Complies
Test Data:	Data

Project Number:	0048-230821-01	
EUT:	EUT: DQ00602	
S/N:	PT001	
Tested By:	David Tu	
Temperature:	70°F	
Humidity:	30%	

Worst Case Scenario: the worst case combination field strength emissions founded of each EUT position and antenna polarization was recorded in the following table and compared with the applicable limits.

• EUT Position (angle) : 45 ° interval.

• Antenna Polarization: Horizontal & Vertical; Antenna Height: 1-4m

Freq.* (MHz)	H,V	SA QP Reading (dBuV/ m)	Height (m)	Angle (degree)	Refer to Part 15.209 3m Limit (dBuV/m)	Margin (dB)	Result
114.7	Н	33.6	1.8	090	43.5	-9.9	Pass
139.5	Н	33.4	1.8	090	43.5	-10.1	Pass
160.2	Н	33.9	1.8	090	43.5	-9.6	Pass
190.1	Н	37.6	1.8	090	43.5	-5.9	Pass
236.8	Н	34.5	1.6	045	46.0	-11.5	Pass
257.6	Н	35.2	1.6	090	46.0	-10.8	Pass
273.6	Н	36.9	1.1	225	46.0	-9.1	Pass
296.0	Н	37.1	1.1	045	46.0	-8.9	Pass
299.2	Н	37.0	1.0	225	46.0	-9.0	Pass
332.8	Н	37.9	1.0	225	46.0	-8.1	Pass
368.0	Н	36.5	1.0	180	46.0	-9.5	Pass
422.4	Н	36.3	1.1	135	46.0	-9.7	Pass
52.1	V	33.2*	1.2	000	40.0	-6.8	Pass
76.6	V	34.4	1.2	000	40.0	-5.6	Pass
117.2	V	37.3	1.2	000	43.5	-6.2	Pass
139.2	V	37.4	1.1	225	43.5	-6.1	Pass
140.8	V	35.5	1.1	000	43.5	-8.0	Pass
163.3	V	37.5	1.2	000	43.5	-6.0	Pass
167.7	V	38.0	1.2	090	43.5	-5.5	Pass

196.3	V	40.4	1.1	315	43.5	-3.1	Pass
232.0	V	39.5	1.1	000	46.0	-6.5	Pass
268.8	V	40.7	1.1	000	46.0	-5.3	Pass
281.6	V	40.1*	1.1	315	46.0	-5.9	Pass
291.2	V	38.5	1.1	045	46.0	-7.5	Pass
294.4	V	40.1	1.1	225	46.0	-5.9	Pass
334.4	V	39.8	1.1	000	46.0	-6.2	Pass
352.0	V	41.5	1.1	315	46.0	-4.5	Pass
400.0	V	40.1	1.1	090	46.0	-5.9	Pass
420.8	V	41.9	1.1	315	46.0	-4.1	Pass
480.0	V	40.3*	1.1	315	46.0	-5.7	Pass

^{*}Emissions from Digital circuitry (identified in Test No.1 for FCC Part 15 B) excluded.

**Quasi-Peak Readings

Test No.7

Name of Test:	Spurious Radiated Emissions >960MHz	Test Standard:	15.509(d) 15.209
Tested By:	David Tu	Test Date:	08/21/2023-09/07/2023

Minimum Definition:

Standard:

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

Limits:

Frequency	EIRP @ 3 meters (1 MHz BW)	Field strength @ 3 meters (1 MHz BW)	Field strength @ 1 meters (1 MHz BW)
(MHz)	(dBm)	(dBµV/m)	(dBµV/m)
960-1610	-	29,9	39,4
1610-1990	-	41,9	51,4
1990-3100	-	43,9	53,4
3100-10600	-	53,9	63,4
Above 10600	-	43,9	53,9

Remark: The limits were converted from EIRP to field strength at 3 and 1 meter according to FCC 15.503(k).

Method of Tested at 3-meter OATS per ANSI C63.4

Measurement: Spectrum Analyzer Settings:

RBW: 1MHz VBW: ≥3x RBW

Detector: RMS Average Detector

Span: As required Sweep: Auto

Test Procedure:

- 1) The EUT was placed on sandpit area filled with dry sand initially placed in front of the ground plane (0° degree position)
- 2) The receiving antenna is placed at 1 meter away from the EUT and it is pointed in the direction of the radiating head with an inclination of -10° to find the highest emission.
- 3) The receiving antenna was positioned in horizontal polarization.
- 4) The measurements were made with the detector set to RMS with a bandwidth of 1 MHz during monitoring the frequency range above 960 MHz.
- 5) Upon detection of a suspect emission signal, its amplitude and frequency were noted.
- 6) It is recommended to demodulate the received signals for suitable discrimination of the ambient emission from the EUT emission.
- 7) At the worst case combination of the EUT operating mode and antenna height, the field strength measure was recorded.
- 8) The receiving antenna was positioned in vertical polarization and the steps 2 to 6 were repeated.
- 9) The EUT was rotating from 0° to 360° degrees with 45° step increment and the steps 4 to 7 was repeated.
- 10) All the worst case combination field strength emissions founded of each EUT position and antenna polarization was recorded in the following table and compared with the applicable limits.

Test Result:	Complies
Test Data:	Data

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	David Tu	
Temperature:	70°F	
Humidity:	30%	

Worst Case Scenario: the worst case combination field strength emissions founded of each EUT position and antenna polarization was recorded in the following table and compared with the applicable limits.

• EUT Position (angle) : 45 ° interval.

• Antenna Polarization: Horizontal & Vertical; Antenna Height: 1m-4m.

Refer to SA** 15.509(d) Average 15.209 &RSS-Freq.* Height Angle Margin H,V Reading Result (MHz) (m) 220 3.4, 6.2(c), (dB) (degree) @1m 6.2(d) Limit (dBuV/m) (dBuV/m) -6.3 Pass 1008 Η 33.1 1.1 225 39.4 -8.1 Pass 1048 Н 31.3 1.1 225 39.4 -10.5 Pass 1096 Н 28.9 1.1 090 39.4 -11.2 Pass Н 1240 28.2 1.1 090 39.4 -8.3 ٧ Pass 1008 31.1 39.4 1.0 315 -10.6 Pass ٧ 1176 28.8 1.0 315 39.4 -10.6 Pass ٧ 1400 28.8 1.0 000 39.4 -10.9 Pass 1464 V 28.5 1.0 000 39.4

NOTE:

^{*} Emissions from Digital circuitry (identified in Test No.1 for FCC Part 15B) are excluded.

^{**}SA (Spectrum Analyzer) Reading Setup: Average Reading for above 960MHz; 1m/3m distance factor applied if needed.

Test No.8

Name of Test:	Radiated Emissions in GPS Bands	Test Standard:	15.509(e) 15.209
Tested By:	David Tu	Test Date:	08/21/2023-09/07/2023

Minimum Definition:

Standard: In addition to the radiated emission limits specified for frequency above 960 MHz, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz in the GPS frequency bands.

Limits:

Frequency (MHz)	EIRP @ 3 meters (1 MHz BW) (dBm)	Field strength @ 3 meters (1 MHz BW) (dBµV/m)	Field strength @ 1 meters (1 MHz BW) (dBµV/m)
1164-1240	-75.3	19.9	29.4
1559-1610	-75.3	19.9	29.4

Remark: The limits were converted from EIRP to field strength at 3 and 1 meter according to FCC 15.503(k).

Method of Tested at 3-meter OATS per ANSI C63.4

Measurement: Spectrum Analyzer Settings:

RBW: 1KHz VBW: >3xRBW

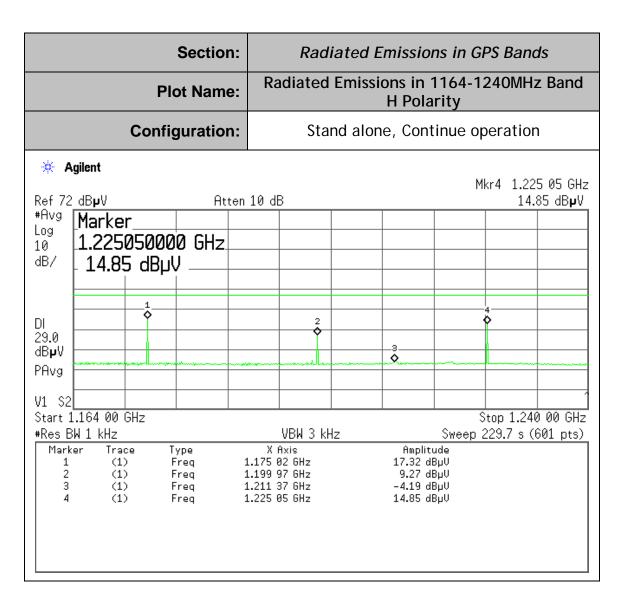
Detector: RMS Average Detector

Span: As required Sweep: Auto

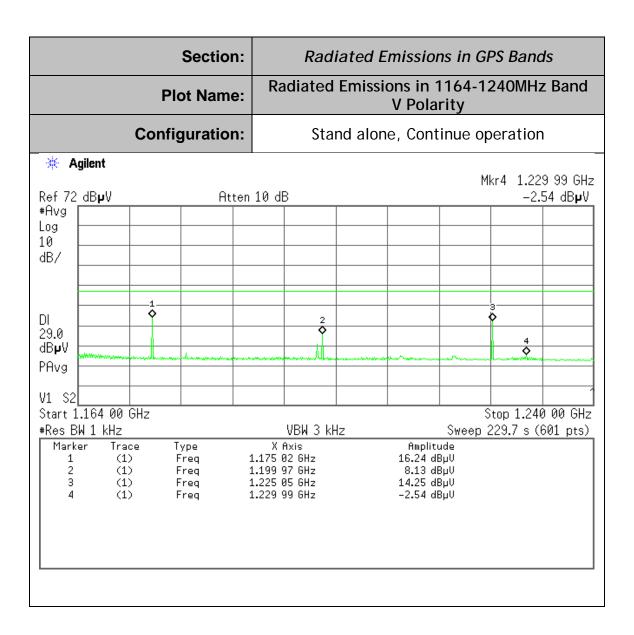
Test Procedure:

- 1) The EUT was placed on sandpit area filled with dry sand initially placed in front of the ground plane (0° degree position)
- 2) The receiving antenna is placed at 1 meter away from the EUT and it is pointed in the direction of the radiating head with an inclination of -10° to find the highest emission.
- 3) The receiving antenna was positioned in horizontal polarization.
- 4) The measurements were made with the detector set to RMS during monitoring the frequency range above 960 MHz.
- 5) Upon detection of a suspect emission signal, its amplitude and frequency were noted.
- 6) It is recommended to demodulate the received signals for suitable discrimination of the ambient emission from the EUT emission.
- 7) At the worst case combination of the EUT operating mode and antenna height, the field strength measure was recorded.
- 8) The receiving antenna was positioned in vertical polarization and the steps 2 to 6 were repeated.
- 9) The EUT was rotating from 0° to 360° degrees with 45° step increment and the steps 4 to 7 was repeated.
- 10) All the worst case combination field strength emissions founded of each EUT position and antenna polarization was recorded in the following table and compared with the applicable limits.

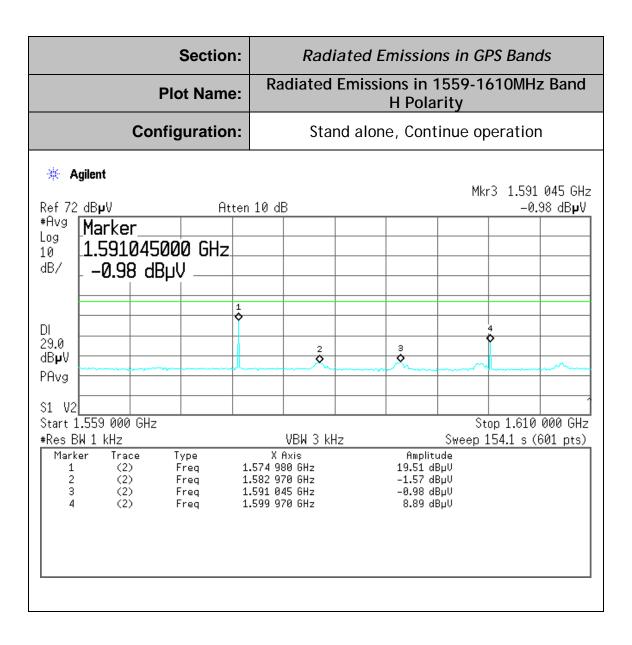
Test Result:	Complies
Test Data:	Data and Plot

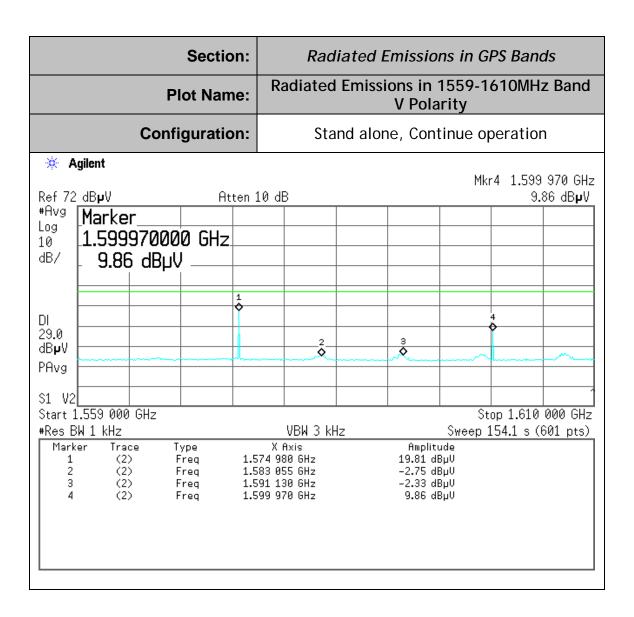

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	David Tu	
Temperature:	7 0°F	
Humidity:	30%	

Worst Case Scenario: All maximum Field strength emissions were found at the following test set-up conditions:


Freq. (MHz)	H,V	SA Reading (dBuV/m)	Height (m)	Angle (degree)	1m Limit (dBuV/m)	Margin (dB)	Result
1168.5	Н	-2.38	1.0	090	29.4	-31.78	Pass
1180.5	Н	-3.01	1.0	090	29.4	-32.41	Pass
1211.4	Н	-4.19	1.0	090	29.4	-33.59	Pass
1218.6	Н	-4.04	1.0	090	29.4	-33.44	Pass
1583.0	Η	-1.57	1.0	135	29.4	-30.97	Pass
1591.0	Н	-0.98	1.0	135	29.4	-30.38	Pass
1598.0	Н	-1.10	1.0	135	29.4	-30.50	Pass
1606.7	Н	-0.99	1.0	135	29.4	-30.39	Pass
1169.5	V	0.43	1.0	045	29.4	-28.97	Pass
1187.8	V	-1.03	1.0	045	29.4	-30.43	Pass
1212.5	V	0.38	1.0	045	29.4	-29.02	Pass
1300.0	V	-2.54	1.0	045	29.4	-31.94	Pass
1583.1	V	-2.75	1.0	180	29.4	-32.15	Pass
1591.1	V	-2.33	1.0	180	29.4	-31.73	Pass
1598.0	V	-2.38	1.0	180	29.4	-31.78	Pass
1606.5	V	-2.32	1.0	180	29.4	-31.72	Pass

There were no broadband emissions related to the UWB transmitter. Measured signals were narrowband and related to the microprocessor / clocks and do not fall under the requirements of this section.


Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature:	: 70°F	
Humidity:	30%	


Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	: Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature: 70°F		
Humidity:	30%	

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Test No.9

Name of Test:	Highest Radiated Emission at f	Test Standard:	15.509(f) 15.209
Tested By:	David Tu	Test Date:	08/21/2023-09/07/2023

Minimum Definition:

Standard:

For UWB devices where the frequency at which the highest radiated emission occurs, f_M, is above 960 MHz, there is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on f_M.

Limits:

The peak emission level contained within a 50 MHz bandwidth cantered on f_M mast be limited to a maximum of 0 dBm EIRP.

EIRP limit (dBm)	Field strength limit @ 3 meters for 50MHz RBW (dBuV/m) (dBµV/m)	Field strength limit @ 3 meters (measured with 1 MHz RBW) (dBµV/m)
0	95.2	61.23

The limits were converted from EIRP to field strength at 3 meter according to FCC 15.503(k).

As the measurement was employed with a 1 MHz resolution bandwidth the applicable limit is adjusted with a $20\log(1/50)$ dB factor.

 $20 \log (1/50) dBm = -33.97 dBm$. -33.97 dBm = 61.23 dBuV/m.

Method of Tested at 3-meter OATS per ANSI C63.4

Measurement: Spectrum Analyzer Settings:

RBW: 1MHz VBW: ≥3x RBW Detector: Peak Span: As required Sweep: Auto

Test Procedure:

- 1) The EUT was placed on sandpit area filled with dry sand initially placed in front of the ground plane (0° degree position).
- 2) The receiving antenna which varied from 1 to 4 m to find the highest emission is positioned 3 m away from the EUT.
- 3) The receiving antenna was positioned in horizontal polarization.
- 4) The measurements were made with the detector set to peak with a bandwidth of 1 MHz during monitoring the frequency range inside the UWB of the EUT.
- 5) At the worst case combination of the EUT operating mode and antenna height, the field strength measure was recorded.
- 6) The receiving antenna was positioned in vertical polarization and the steps 4 to 6 were repeated.
- 7) The EUT was rotating from 0° to 360° degrees with 45° step increment and the steps 4 to 7 was repeated.
- 8) Record the peak emission from the EUT.

Test Result:	Complies
Test Data:	

Project Number:	0048-230821-01	
EUT:	DQ00602	
S/N:	PT001	
Tested By:	David Tu	
Temperature:	: 70°F	
Humidity:	30%	

Worst Case Scenario: The maximum peak level of emission is found at the following test set-up conditions:

Freq. (MHz)	H,V	SA Peak Reading At 1 meter (dBuV/m)	RBW	Reading corrected for 3 meter	Limit (dBuV/m)	Margin (dB)	Result
281.6**	V		3MHz	56.3	N/A		

^{* 1}m measurement for low signal level. ** max. emission @3m, but under 1GHz.

Test No.10

Name of Test:	Technical Requirements Applicable to ALL UWB Devices	Test Standard:	15.521
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Requirement Description

15.521(a)	The EUT is not employed for the operation of toys, operation onboard an aircraft, ship and satellite.
15.521(b)	Permanent attached antenna, no External radio frequency power amplifiers and antenna modifications are permitted.
15.521(c)	The Digital circuitry portion of the EUT has been tested and verified to comply with 47 CFR Part 15, subpart B.
15.521(d)	Considered
15.521(e)	The f_M , frequency at which the highest radiated emission occurs is contained within the measured UWB bandwidth.
15.521(f)	The EUT is not intended to detection of tags or the transfer or data or voice information.
15.521(g)	Considered
15.521(h)	Considered
15.521(i)	Prohibition in Sections 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions is not applied.
15.521(j)	Battery operating device not connected to AC power lines.
15.521(a)	The EUT is not employed for the operation of toys, operation onboard an aircraft, ship and satellite.
Test Result:	Complies
Test Data:	NA

Test No.11

Name of Test:	Coordination Requirement	Test Standard:	15.525
Tested By:	Wei Li	Test Date:	08/21/2023- 09/07/2023

Standard:

Minimum The responsible party is properly informed about the required coordination requirement and provide correct information to the customers and users about their specific care and legislative obligations.

> (See Important note for the US customers of the Installation Guide and User Manual)

Measurement:

- **Method of** (a) UWB imaging systems require coordination through the FCC before the equipment may be used. The operator shall comply with any constraints on equipment usage resulting from this coordination.
 - (b) The users of UWB imaging devices shall supply operational areas to the FCC Office of Engineering and Technology, which shall coordinate this information with the Federal Government through the National Telecommunications and Information Administration.
 - (c) The manufacturers, or their authorized sales agents, must inform purchasers and users of their systems of the requirement to undertake detailed coordination of operational areas with the FCC prior to the equipment being operated.
 - (d) Users of authorized, coordinated UWB systems may transfer them to other qualified users and to different locations upon coordination of change of ownership or location to the FCC and coordination with existing authorized operations.
 - (e) The FCC/NTIA coordination report shall identify those geographical areas within which the operation of an imaging system requires additional coordination or within which the operation of an imaging system is prohibited.
 - (f) The coordination of routine UWB operations shall not take longer than 15 business days from the receipt of the coordination request by NTIA.

Test Result:	
Test Data:	NA

Test No. 12

Name of Test:	Antenna Requirement	Test Standard:	15.203
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023

Minimum An intentional radiator shall be designed to ensure that no antenna Standard: other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply.

Method of The antenna utilized by the device under test is an internal, non user **Measurement:** replaceable unit.

Test Result:	
Test Data:	NA

Test No.13

Name of Test:	ame of Test: Radio Frequency Exposure		FCC OET Bulletin 65	
Tested By:	WEI LI	Test Date:	08/21/2023- 09/07/2023	

Minimum Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1)) **Standard:** Limits:

From §1.1310 Table 1 (B), for Public $S = 1.0 \text{ mW/cm}^2$

for Professional, $S = 5.0 \text{ mW/cm}^2$

Method of Measurement:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$
 Equation

$$S = 0.0795 * 10 ^ ((P + G)/10)/ d^2$$
 Equation

(2) where

(1)

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Equation (1) and the measured peak power is used to calculate the MPE distance.

Equation (2) and the measured peak power is used to calculate the Power density.

Test Result:	
Test Data:	NA

Calculation

For GPR UWB Transmitter:

For FCC Approval:

1-mW Test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions.

For this EUT, max emission level is under the 0dBm limit set in Part 15F. No RF hazard need to be concerned.

The max. power density can be obtain by using the max. P+G=0dBm and d=20cm, and plug all three items into equation (2), yielding,

Power	Max. Output	Calculated
Density	Power+	Power
Limit	Antenna]	Density
(mW/cm ²)	Gain (dBm)	(mW/cm^2)
1.0/5.0	0	0.0002

For UWB and WiFi Transmitters transmitting simultaneously:

For FCC Application, the following evaluation is for combined MPE compliance: While d=20cm, if

$$[Pd(1)/LPd(1)] + [Pd(2)/LPd(2)] + + [Pd(n)/LPd(n)] < 1$$

then, the device complies with FCC's RF radiation exposure limit for general population as a mobile device. Where;

Pd(n) = Power density of nth transmitter at 20cm.

LPd(n) = Power density limit for the nth transmitter

From WiFi module's MPE report (FCC ID: 2AKKWWIZFI630S): Worse case is 802.11b mode.

Calculated Result and Limit

IEEE 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles	oaiculateu i	tesuit and i	-111111							
Mode Frequency (MHz) output power (dBm) output power (dBm) Target power (dBm) (dBi) (Linear) Density (S) Power Density (mW (S) Test Result IEEE 2412 16.01 39.90 16±1 3.2 2.10 0.02088 1 Compiles 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles						Ante	nna gain		Limited	
Mode Frequency (MHz) power (dBm) power (dBm) (dBi) (Linear) (S) (mW (S) (mW (S)) Density (mW (S)) Test Result IEEE 2412 16.01 39.90 16±1 3.2 2.10 0.02088 1 Compiles 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles								Power	of	
Mode (MHz) power (dBm) power (dBm) power (dBm) power (dBm) (dBi) (Linear) (S) (mW (S) (mW (cm2)) Result IEEE 2412 16.01 39.90 16±1 3.2 2.10 0.02088 1 Compiles 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles		Emagnamary	output	output	Target			Density	Power	Tost
(dBm) (mW) (dBm)	Mode		power	power	power	(dD;)	(T:)	(S)	Density	
IEEE 2412 16.01 39.90 16±1 3.2 2.10 0.02088 1 Compiles 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles		(MITIZ)	(dBm)	(mW)	(dBm)	(ubi)	(Linear)	(mW	(S)	Result
IEEE 2412 16.01 39.90 16 ± 1 3.2 2.10 0.02088 1 Compiles 802.11b 2437 16.05 40.27 16 ± 1 3.2 2.10 0.02088 1 Compiles								/cm2)	(mW	
IEEE 802.11b 2437 16.05 40.27 16±1 3.2 2.10 0.02088 1 Compiles									/cm2)	
802.11b 2437 16.05 40.27 16 ± 1 3.2 2.10 0.02088 1 Compiles	IEEE	2412	16.01	39.90	16±1	3.2	2.10	0.02088	1	Compiles
$\begin{bmatrix} 802.116 \\ 2462 \\ \end{bmatrix}$ 2462 $\begin{bmatrix} 15.41 \\ 34.75 \\ \end{bmatrix}$ $\begin{bmatrix} 15\pm 1 \\ 3.2 \\ \end{bmatrix}$ 2.10 $\begin{bmatrix} 0.01663 \\ \end{bmatrix}$ 1 Compiles		2437	16.05	40.27	16±1	3.2	2.10	0.02088	1	Compiles
		2462	15.41	34.75	15 ± 1	3.2	2.10	0.01663	1	Compiles

We can use $\,$ reported $0.02088mW/\,cm^2$ as the max. power density for WiFi transmission. Therefore

 $[\ Pd(1)\ /\ LPd(1)\] + [\ Pd(2)\ /\ LPd(2)\] = 0.0002/1 + 0.02088/1 = 0.02108 < 1$

The EUT meets RF radiation exposure limit for general population as a mobile device.

Test No.14

Name of Test:	Conducted Emissions	Test Standard:	15.507
Tested By:	-	Test Date:	08/21/2023- 09/07/2023

Standard:

Minimum 15.507 &RSS-GEN

Limit

Frequency Range	Limits (dBµV)	
(MHz)	Quasi-Peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5.0	56	46
5.0 to 30.0	60	50
* Decreases with the	e logarithm of the freq	uencv.

Measurement:

Method of Test measurements were made in accordance with ANSI C63.4-2003, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

Spectrum Analyzer Setting:

Frequency Range: 150KHz to 30MHz

RBW: 9KHz VBW: 30KHz

Detector: Peak/QP/Average

Test Result:	NA (The EUT is only powered via a lithium-ion battery which is remotely recharged)
Test Data:	NA

Test No.15

Name of Test:	Transmission Duration	Test Standard:	15.509(c)
Tested By:	-	Test Date:	08/21/2023- 09/07/2023

Minimum 15.509 (c)

Standard: A GPR that is designed to be operated while being hand held and a

wall imaging system shall contain a manually operated switch that causes the transmitter to cease operation within 10 seconds of being released by the operator. In lieu of a switch located on the imaging system, it is permissible to operate an imaging system by remote control provided the imaging system ceases transmission within 10

seconds of the remote switch being released by the operator.

Method of NA Measurement:

Test Result:	NA
Test Data:	NA