

Report No.: SZEM170300261304 Page: 1 of 134

Appendix B

E-UTRA Band 26(824-849)

Report No.: SZEM170300261304 Page: 2 of 134

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	13
	2.1 For LTE	14
	2.1.1 Test Band = LTE band26(824-849)	
3	MODULATION CHARACTERISTICS	20
	3.1 FOR LTE	20
	3.1.1 Test Band = LTE band26(824-849)	20
4	BANDWIDTH	30
	4.1 FOR LTE	
	4.1.1 Test Band = LTE band26(824-849)	
5	BAND EDGES COMPLIANCE	61
	5.1 For LTE	61
	5.1.1 Test Band = LTE band26(824-849)	61
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	101
	6.1 FOR LTE	101
	6.1.1 Test Band = LTE band26(824-849)	101
7	FIELD STRENGTH OF SPURIOUS RADIATION	131
	7.1 For LTE	131
	7.1.1 Test Band = LTE band26(824-849)	131
8	FREQUENCY STABILITY	
	8.1 FREQUENCY ERROR VS. VOLTAGE	132
	8.2 FREQUENCY ERROR VS. TEMPERATURE	133

Report No.: SZEM170300261304 Page: 3 of 134

1 Effective (Isotropic) Radiated Power Output Data

Effective Radiated Power of Transmitter (ERP) for LTE BAND 26(824-849)

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.09	22.07	38.45	PASS
				RB1#2	23.20	22.18	38.45	PASS
				RB1#5	23.02	22.00	38.45	PASS
			LCH	RB3#0	23.21	22.19	38.45	PASS
				RB3#2	23.17	22.15	38.45	PASS
				RB3#3	23.05	22.03	38.45	PASS
				RB6#0	22.15	21.13	38.45	PASS
				RB1#0	23.03	22.01	38.45	PASS
				RB1#2	23.11	22.09	38.45	PASS
				RB1#5	23.05	22.03	38.45	PASS
BAND26 (824-849)	LTE/TM1	1.4M	МСН	RB3#0	23.13	22.11	38.45	PASS
				RB3#2	23.03	22.01	38.45	PASS
				RB3#3	23.06	22.04	38.45	PASS
				RB6#0	22.14	21.12	38.45	PASS
				RB1#0	23.08	22.06	38.45	PASS
				RB1#2	23.24	22.22	38.45	PASS
				RB1#5	22.96	21.94	38.45	PASS
			НСН	RB3#0	23.17	22.15	38.45	PASS
				RB3#2	23.24	22.22	38.45	PASS
				RB3#3	23.22	22.20	38.45	PASS
				RB6#0	22.27	21.25	38.45	PASS

Report No.: SZEM170300261304 Page: 4 of 134

Page: 4 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	22.57	21.55	38.45	PASS		
				RB1#2	22.32	21.30	38.45	PASS		
				RB1#5	22.52	21.50	38.45	PASS		
			LCH	RB3#0	22.36	21.34	38.45	PASS		
				RB3#2	22.40	21.38	38.45	PASS		
				RB3#3	22.44	21.42	38.45	PASS		
				RB6#0	21.19	20.17	38.45	PASS		
				RB1#0	22.64	21.62	38.45	PASS		
	LTE/TM2	1.4M		RB1#2	22.48	21.46	38.45	PASS		
			МСН	RB1#5	22.57	21.55	38.45	PASS		
BAND26 (824-849)				RB3#0	22.33	21.31	38.45	PASS		
				RB3#2	22.45	21.43	38.45	PASS		
				RB3#3	22.41	21.39	38.45	PASS		
				RB6#0	21.27	20.25	38.45	PASS		
				RB1#0	22.48	21.46	38.45	PASS		
				RB1#2	22.41	21.39	38.45	PASS		
				RB1#5	22.06	21.04	38.45	PASS		
			НСН	RB3#0	22.31	21.29	38.45	PASS		
				RB3#2	22.37	21.35	38.45	PASS		
				RB3#3	22.14	21.12	38.45	PASS		
				RB6#0	21.16	20.14	38.45	PASS		

Report No.: SZEM170300261304 Page: 5 of 134

	1	1			Page:	5 of 13	34	
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.37	22.35	38.45	PASS
				RB1#7	23.32	22.30	38.45	PASS
				RB1#14	23.18	22.16	38.45	PASS
			LCH	RB8#0	22.33	21.31	38.45	PASS
				RB8#4	22.25	21.23	38.45	PASS
				RB8#7	22.27	21.25	38.45	PASS
				RB15#0	22.21	21.19	38.45	PASS
				RB1#0	23.28	22.26	38.45	PASS
				RB1#7	23.23	22.21	38.45	PASS
				RB1#14	23.29	22.27	38.45	PASS
BAND26 (824-849)	LTE/TM1	ЗМ	MCH	RB8#0	22.30	21.28	38.45	PASS
				RB8#4	22.29	21.27	38.45	PASS
				RB8#7	22.23	21.21	38.45	PASS
				RB15#0	22.21	21.19	38.45	PASS
				RB1#0	23.39	22.37	38.45	PASS
				RB1#7	23.46	22.44	38.45	PASS
				RB1#14	23.23	22.21	38.45	PASS
			НСН	RB8#0	22.43	21.41	38.45	PASS
				RB8#4	22.41	21.39	38.45	PASS
				RB8#7	22.24	21.22	38.45	PASS
				RB15#0	22.34	21.32	38.45	PASS

Report No.: SZEM170300261304 Page: 6 of 134

Page: 6 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	22.67	21.65	38.45	PASS		
				RB1#7	22.52	21.50	38.45	PASS		
				RB1#14	22.45	21.43	38.45	PASS		
			LCH	RB8#0	21.44	20.42	38.45	PASS		
				RB8#4	21.40	20.38	38.45	PASS		
				RB8#7	21.42	20.40	38.45	PASS		
				RB15#0	21.25	20.23	38.45	PASS		
				RB1#0	22.65	21.63	38.45	PASS		
	LTE/TM2	ЗМ		RB1#7	22.48	21.46	38.45	PASS		
			МСН	RB1#14	22.57	21.55	38.45	PASS		
BAND26 (824-849)				RB8#0	21.40	20.38	38.45	PASS		
				RB8#4	21.35	20.33	38.45	PASS		
				RB8#7	21.44	20.42	38.45	PASS		
				RB15#0	21.39	20.37	38.45	PASS		
				RB1#0	22.57	21.55	38.45	PASS		
				RB1#7	22.56	21.54	38.45	PASS		
				RB1#14	22.53	21.51	38.45	PASS		
			НСН	RB8#0	21.48	20.46	38.45	PASS		
				RB8#4	21.39	20.37	38.45	PASS		
				RB8#7	21.22	20.20	38.45	PASS		
				RB15#0	21.18	20.16	38.45	PASS		

Report No.: SZEM170300261304 Page: 7 of 134

Page: 7 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	23.06	22.04	38.45	PASS		
				RB1#13	23.04	22.02	38.45	PASS		
				RB1#24	22.98	21.96	38.45	PASS		
			LCH	RB12#0	22.33	21.31	38.45	PASS		
				RB12#6	22.31	21.29	38.45	PASS		
				RB12#13	22.19	21.17	38.45	PASS		
				RB25#0	22.23	21.21	38.45	PASS		
				RB1#0	23.10	22.08	38.45	PASS		
	LTE/TM1	5M		RB1#13	22.99	21.97	38.45	PASS		
			МСН	RB1#24	23.07	22.05	38.45	PASS		
BAND26 (824-849)				RB12#0	22.21	21.19	38.45	PASS		
				RB12#6	22.27	21.25	38.45	PASS		
				RB12#13	22.16	21.14	38.45	PASS		
				RB25#0	22.22	21.20	38.45	PASS		
				RB1#0	23.29	22.27	38.45	PASS		
				RB1#13	23.01	21.99	38.45	PASS		
				RB1#24	23.01	21.99	38.45	PASS		
			НСН	RB12#0	22.27	21.25	38.45	PASS		
				RB12#6	22.20	21.18	38.45	PASS		
				RB12#13	22.21	21.19	38.45	PASS		
				RB25#0	22.28	21.26	38.45	PASS		

Report No.: SZEM170300261304 Page: 8 of 134

Page: 8 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	22.55	21.53	38.45	PASS		
				RB1#13	22.34	21.32	38.45	PASS		
				RB1#24	22.40	21.38	38.45	PASS		
			LCH	RB12#0	21.25	20.23	38.45	PASS		
				RB12#6	21.21	20.19	38.45	PASS		
				RB12#13	21.16	20.14	38.45	PASS		
				RB25#0	21.31	20.29	38.45	PASS		
				RB1#0	22.44	21.42	38.45	PASS		
	LTE/TM2	5M		RB1#13	22.34	21.32	38.45	PASS		
			МСН	RB1#24	22.23	21.21	38.45	PASS		
BAND26 (824-849)				RB12#0	21.24	20.22	38.45	PASS		
				RB12#6	21.21	20.19	38.45	PASS		
				RB12#13	21.14	20.12	38.45	PASS		
				RB25#0	21.23	20.21	38.45	PASS		
				RB1#0	22.58	21.56	38.45	PASS		
				RB1#13	22.49	21.47	38.45	PASS		
				RB1#24	22.31	21.29	38.45	PASS		
			НСН	RB12#0	21.44	20.42	38.45	PASS		
				RB12#6	21.21	20.19	38.45	PASS		
				RB12#13	21.11	20.09	38.45	PASS		
				RB25#0	21.23	20.21	38.45	PASS		

Report No.: SZEM170300261304 Page: 9 of 134

Page: 9 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	23.37	22.35	38.45	PASS		
				RB1#25	23.15	22.13	38.45	PASS		
				RB1#49	23.17	22.15	38.45	PASS		
			LCH	RB25#0	22.27	21.25	38.45	PASS		
				RB25#13	22.26	21.24	38.45	PASS		
				RB25#25	22.23	21.21	38.45	PASS		
				RB50#0	22.18	21.16	38.45	PASS		
				RB1#0	23.27	22.25	38.45	PASS		
	LTE/TM1	10M		RB1#25	23.21	22.19	38.45	PASS		
			МСН	RB1#49	23.24	22.22	38.45	PASS		
BAND26 (824-849)				RB25#0	22.28	21.26	38.45	PASS		
				RB25#13	22.16	21.14	38.45	PASS		
				RB25#25	22.23	21.21	38.45	PASS		
				RB50#0	22.26	21.24	38.45	PASS		
				RB1#0	23.43	22.41	38.45	PASS		
				RB1#25	23.16	22.14	38.45	PASS		
				RB1#49	23.03	22.01	38.45	PASS		
			НСН	RB25#0	22.33	21.31	38.45	PASS		
				RB25#13	22.19	21.17	38.45	PASS		
				RB25#25	22.14	21.12	38.45	PASS		
				RB50#0	22.36	21.34	38.45	PASS		

Report No.: SZEM170300261304 Page: 10 of 134

T = 4	T = = 4	T (T (Page:	10 of 1		Manalla
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdic t
				RB1#0	22.66	21.64	38.45	PASS
				RB1#25	22.38	21.36	38.45	PASS
				RB1#49	22.26	21.24	38.45	PASS
			LCH	RB25#0	21.35	20.33	38.45	PASS
				RB25#13	21.22	20.20	38.45	PASS
				RB25#25	21.17	20.15	38.45	PASS
				RB50#0	21.22	20.20	38.45	PASS
				RB1#0	22.54	21.52	38.45	PASS
				RB1#25	22.38	21.36	38.45	PASS
	LTE/TM2	10M	МСН	RB1#49	22.26	21.24	38.45	PASS
BAND26 (824-849)				RB25#0	21.31	20.29	38.45	PASS
				RB25#13	21.28	20.26	38.45	PASS
				RB25#25	21.24	20.22	38.45	PASS
				RB50#0	21.20	20.18	38.45	PASS
				RB1#0	22.68	21.66	38.45	PASS
				RB1#25	22.32	21.30	38.45	PASS
				RB1#49	22.46	21.44	38.45	PASS
			НСН	RB25#0	21.51	20.49	38.45	PASS
				RB25#13	21.21	20.19	38.45	PASS
				RB25#25	21.25	20.23	38.45	PASS
				RB50#0	21.23	20.21	38.45	PASS

Report No.: SZEM170300261304 Page: 11 of 134

Page: 11 of 134										
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict		
				RB1#0	23.68	22.66	38.45	PASS		
				RB1#38	23.34	22.32	38.45	PASS		
			LCH	RB1#74	23.23	22.21	38.45	PASS		
				RB36#0	22.25	21.23	38.45	PASS		
				RB36#18	22.34	21.32	38.45	PASS		
				RB36#39	22.39	21.37	38.45	PASS		
				RB75#0	22.45	21.43	38.45	PASS		
				RB1#0	23.83	22.81	38.45	PASS		
	LTE/TM1	15M		RB1#38	23.35	22.33	38.45	PASS		
			МСН	RB1#74	23.39	22.37	38.45	PASS		
BAND26 (824-849)				RB36#0	22.51	21.49	38.45	PASS		
				RB36#18	22.29	21.27	38.45	PASS		
				RB36#39	22.44	21.42	38.45	PASS		
				RB75#0	22.37	21.35	38.45	PASS		
				RB1#0	23.75	22.73	38.45	PASS		
				RB1#38	23.34	22.32	38.45	PASS		
				RB1#74	23.27	22.25	38.45	PASS		
			HCH	RB36#0	22.49	21.47	38.45	PASS		
				RB36#18	22.41	21.39	38.45	PASS		
				RB36#39	22.42	21.40	38.45	PASS		
				RB75#0	22.45	21.43	38.45	PASS		

Report No.: SZEM170300261304 Page: 12 of 134

	_ .				Faye.	12 01		[]
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.84	21.82	38.45	PASS
				RB1#38	22.47	21.45	38.45	PASS
				RB1#74	22.54	21.52	38.45	PASS
			LCH	RB36#0	21.42	20.40	38.45	PASS
				RB36#18	21.31	20.29	38.45	PASS
				RB36#39	21.37	20.35	38.45	PASS
				RB75#0	21.36	20.34	38.45	PASS
				RB1#0	22.86	21.84	38.45	PASS
	LTE/TM2	15M		RB1#38	22.47	21.45	38.45	PASS
			МСН	RB1#74	22.37	21.35	38.45	PASS
BAND26 (824-849)				RB36#0	21.55	20.53	38.45	PASS
				RB36#18	21.26	20.24	38.45	PASS
				RB36#39	21.30	20.28	38.45	PASS
				RB75#0	21.36	20.34	38.45	PASS
				RB1#0	22.82	21.80	38.45	PASS
				RB1#38	22.28	21.26	38.45	PASS
				RB1#74	22.31	21.29	38.45	PASS
			HCH	RB36#0	21.28	20.26	38.45	PASS
				RB36#18	21.37	20.35	38.45	PASS
				RB36#39	21.31	20.29	38.45	PASS
				RB75#0	21.4	20.38	38.45	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd]

b: SGP=Signal Generator Level

c: RBW > emission bandwidth, VBW > $3 \times RBW$.

Detector: RMS

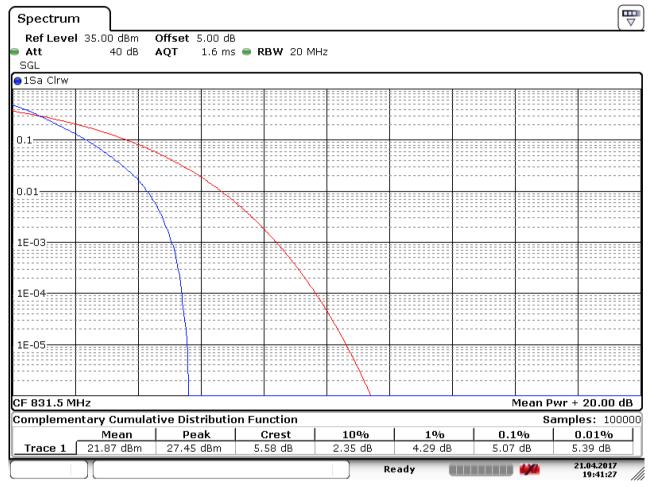
Report No.: SZEM170300261304 Page: 13 of 134

2 Peak-to-Average Ratio

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	5.07	13	PASS
	TM1/15M	MCH	5.22	13	PASS
BAND26		НСН	4.90	13	PASS
(824-849)		LCH	5.68	13	PASS
	TM2/15M	MCH	5.86	13	PASS
		НСН	5.65	13	PASS

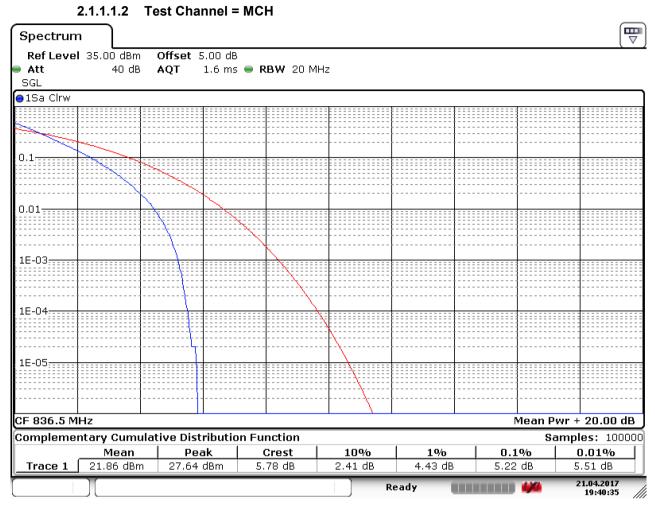
Report No.: SZEM170300261304 Page: 14 of 134


Part II - Test Plots

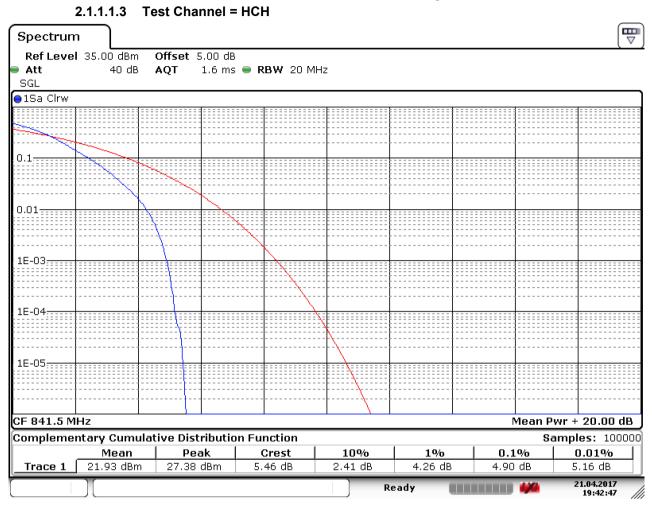
2.1 For LTE

2.1.1 Test Band = LTE band26(824-849)

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=15MHz

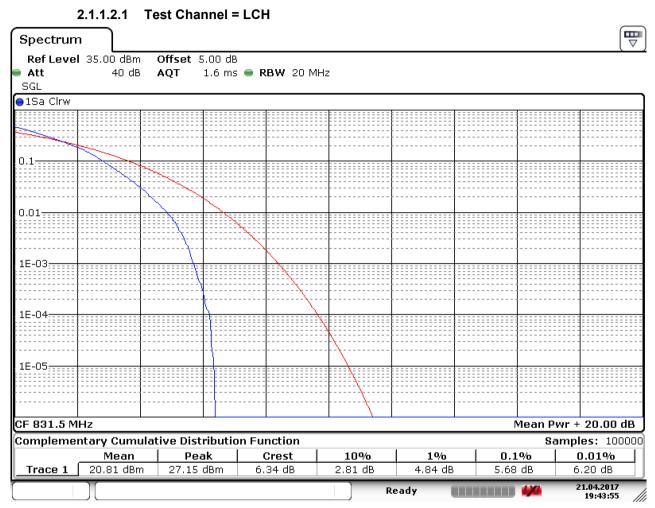

2.1.1.1.1 Test Channel = LCH

Date: 21.APR.2017 19:41:27


Report No.: SZEM170300261304 Page: 15 of 134

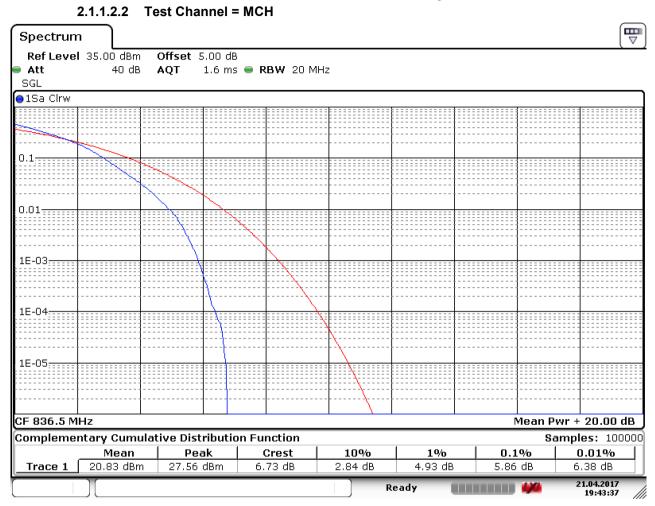
Date: 21.APR.2017 19:40:35

Report No.: SZEM170300261304 Page: 16 of 134

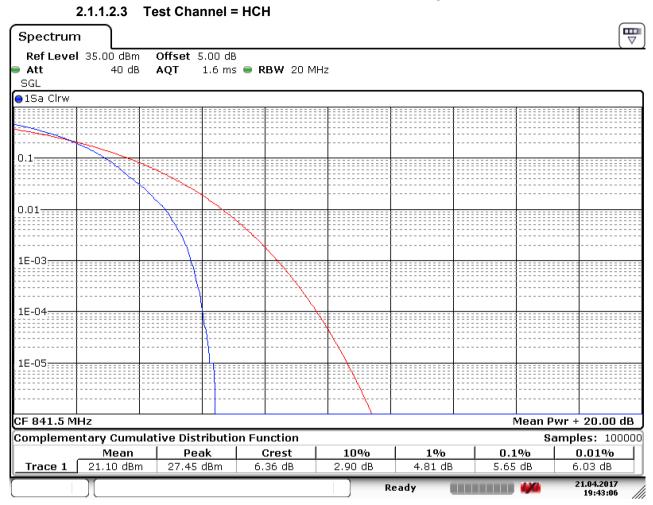


Date: 21.APR.2017 19:42:48

Report No.: SZEM170300261304 Page: 17 of 134


2.1.1.2 Test Mode = LTE/TM2.Bandwidth=15MHz

Date: 21.APR.2017 19:43:56

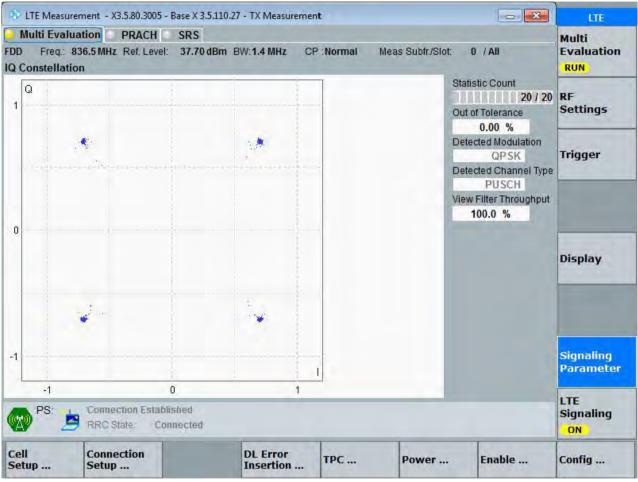

Report No.: SZEM170300261304 Page: 18 of 134

Date: 21.APR.2017 19:43:37

Report No.: SZEM170300261304 Page: 19 of 134

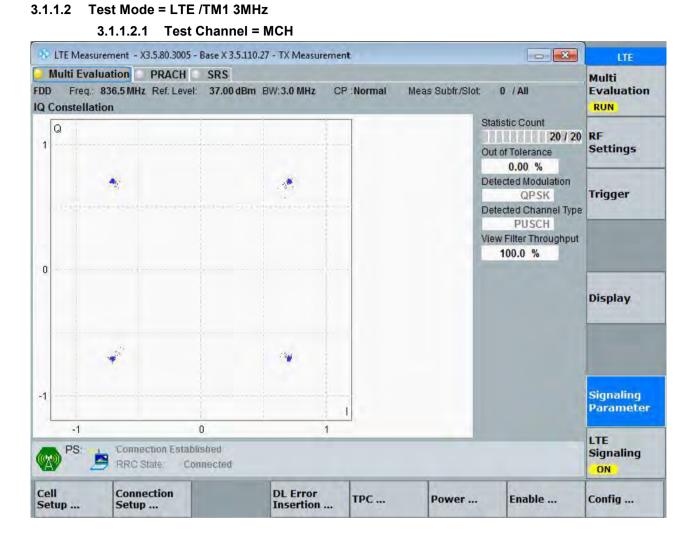
Date: 21.APR.2017 19:43:06

Report No.: SZEM170300261304 Page: 20 of 134

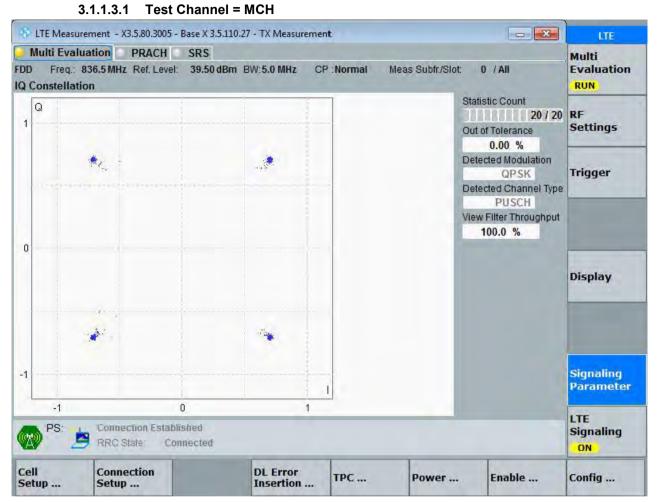

3 Modulation Characteristics

3.1 For LTE

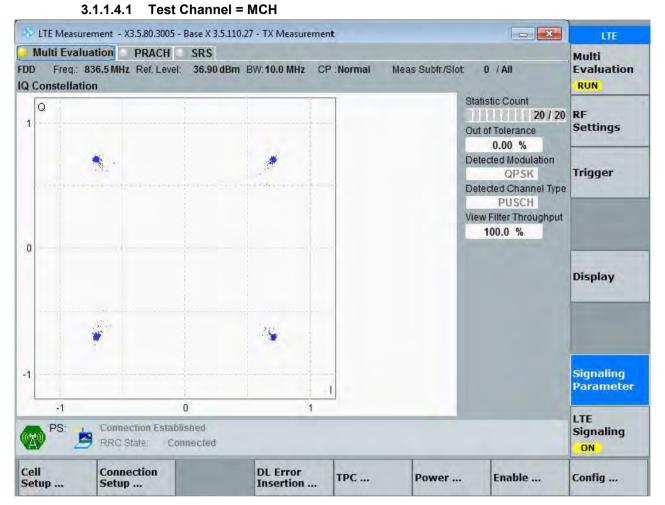
3.1.1 Test Band = LTE band26(824-849)


3.1.1.1 Test Mode = LTE /TM1 1.4MHz

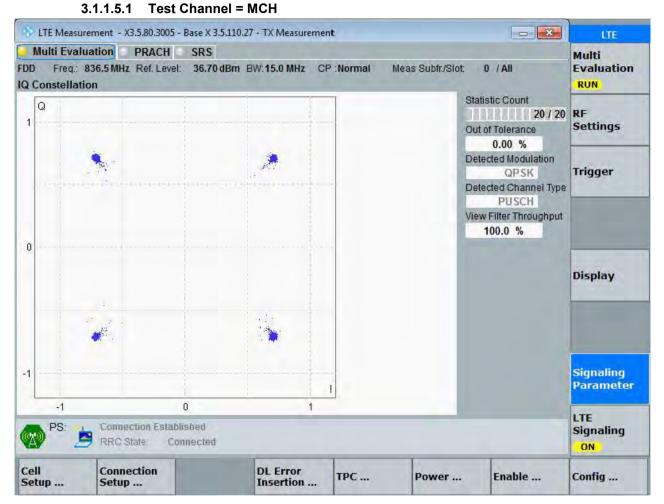
3.1.1.1.1 Test Channel = MCH



Report No.: SZEM170300261304 Page: 21 of 134

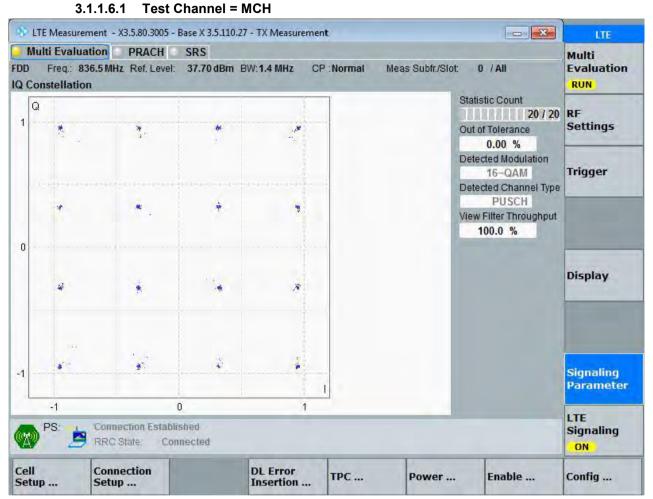

Report No.: SZEM170300261304 Page: 22 of 134

3.1.1.3 Test Mode = LTE /TM1 5MHz


Report No.: SZEM170300261304 Page: 23 of 134

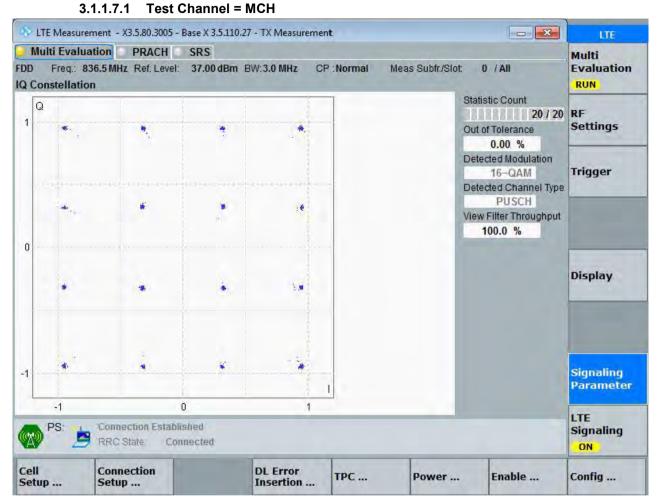
3.1.1.4 Test Mode = LTE /TM1 10MHz

Report No.: SZEM170300261304 Page: 24 of 134

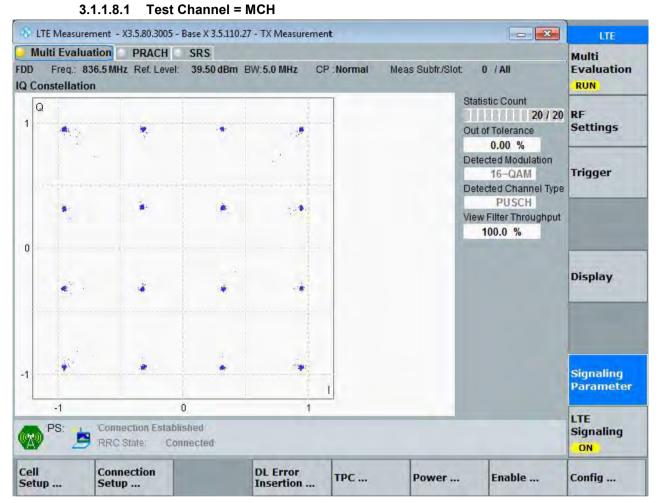


3.1.1.5 Test Mode = LTE /TM1 15MHz

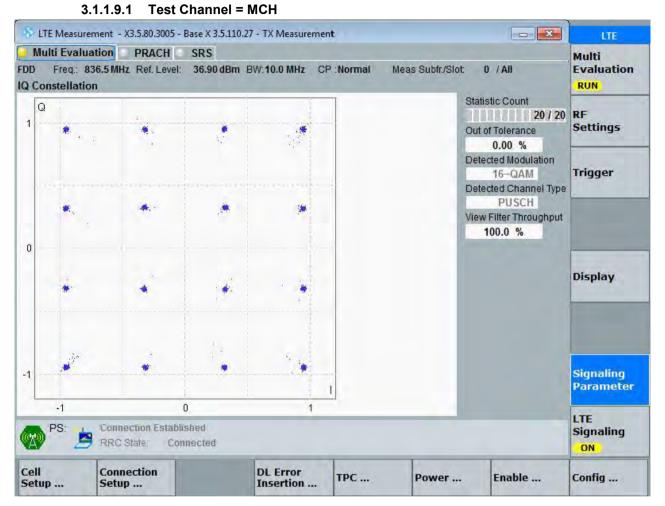
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Condition is sues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SZEM170300261304 Page: 25 of 134

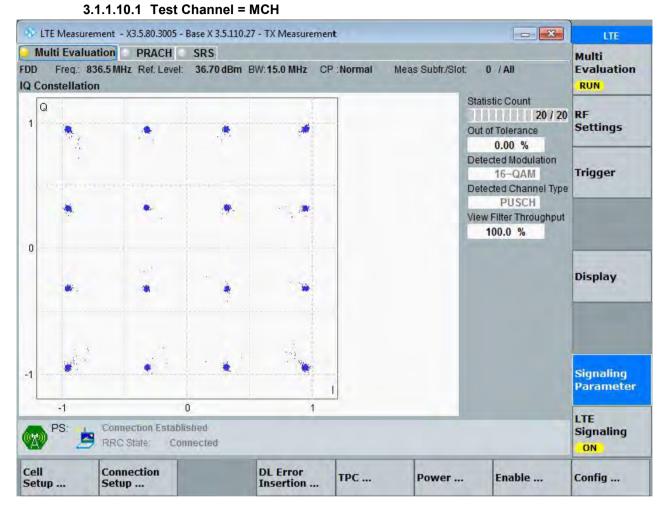
3.1.1.6 Test Mode = LTE /TM2 1.4MHz


Report No.: SZEM170300261304 Page: 26 of 134

3.1.1.7 Test Mode = LTE /TM2 3MHz


Report No.: SZEM170300261304 Page: 27 of 134

3.1.1.8 Test Mode = LTE /TM2 5MHz


Report No.: SZEM170300261304 Page: 28 of 134

3.1.1.9 Test Mode = LTE /TM2 10MHz

Report No.: SZEM170300261304 Page: 29 of 134

3.1.1.10 Test Mode = LTE /TM2 15MHz

Report No.: SZEM170300261304 Page: 30 of 134

4 Bandwidth

Part I - Test Results

Test Band Test Mode		Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict	
		LCH	1.10	1.32	PASS	
	TM1/1.4MHz	MCH	1.10	1.32	PASS	
		HCH	1.10	1.32	PASS	
		LCH	1.10	1.30	PASS	
	TM2/1.4MHz	MCH	1.10	1.33	PASS	
		HCH	1.10	1.32	PASS	
		LCH	2.69	2.94	PASS	
	TM1/ 3MHz	MCH	2.69	2.93	PASS	
		HCH	2.70	2.96	PASS	
		LCH	2.69	2.94	PASS	
	TM2/3MHz	MCH	2.69	2.96	PASS	
		HCH	2.69	2.95	PASS	
	TM1/ 5MHz	LCH	4.49	4.98	PASS	
		MCH	4.48	4.95	PASS	
Band26		HCH	4.50	4.98	PASS	
(824-849)		LCH	4.50	4.95	4.98	
	TM2/ 5MHz	MCH	4.49	4.96	PASS	
		HCH	4.50	4.98	PASS	
		LCH	8.95	9.87	PASS	
	TM1/10MHz	MCH	8.97	9.83	PASS	
		HCH	8.91	9.65	PASS	
		LCH	8.93	9.77	PASS	
	TM2/ 10MHz	MCH	8.97	9.85	PASS	
		HCH	8.93	9.67	PASS	
		LCH	13.55	14.94	PASS	
	TM1/15MHz	MCH	13.61	14.96	PASS	
		HCH	13.40	14.74	PASS	
		LCH	13.52	14.76	PASS	
	TM2/ 15MHz	MCH	13.55	14.96	PASS	
		HCH	13.46	14.80	PASS	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 31 of 134

Part II - Test Plots

4.1 For LTE

4.1.1 Test Band = LTE band26(824-849)

4.1.1.1 Test Mode = LTE/TM1 1.4MHz

4.1.1.1.1 Test Channel = LCH

91Pk View							-
30 dBm				D1[1] Occ Bw			-0,58 dE 32470 MHz 97103 MHz
20 dBm	1 16,980 0	18m-	0.0.0	M1[1]	-	824.	-8.91 dBm 04670 MHz
10 dBm			TJ~~~~	 warnen	2		
0 dBm			/	 			
-10 dBm	D2 -9.0			 	di han	-	
-20 dBm	mark	~~			- VI	mo	m
-30 dBm		-		 -			
-40 dBm		-				· · · · · · ·	1
-50 dBm		-		 			· · · · · · · · · · · · · · · · · · ·

Date: 14.APR 2017 20:41:11

Report No.: SZEM170300261304 Page: 32 of 134

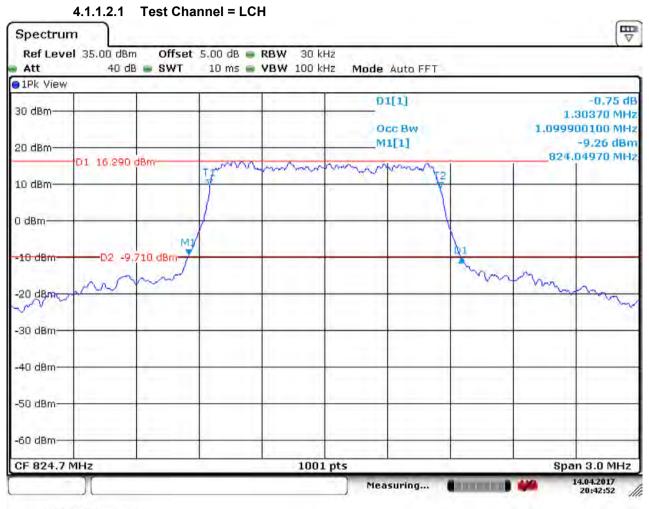
Spectru	m							
Ref Levi Att	el 35.00 dBm 40 dB		5.00 dB 🖷 10 ms 📾	RBW 30 kH: VBW 100 kH:		to FFT		
1Pk View								
30 dBm					D1[1			-0,32 d 1.31870 MH .102897103 MH
20 dBm	D1 17.760	dù co-			M1[1		*	-8,40 dBn -835,83770 MH
	UI 17.700	ивн	Imm	mun	man	~MJ21	T.	-833.83770 MH
10 dBm		-	1			F		
0 dBm		-	/				_	
-10 dBm-	D2 -8,	240 dBm				91		
~20 dBm-	m	m					my	
			5	i = i				
-30 dBm								
-40 dBm—		-						
-50 dBm—	-				-			
-60 dBm—								
CF 836.5	MHz		-	1001	pts			Span 3.0 MHz
					Measur	ing UIIDI	ent 🖬 🚧	14.04.2017 20:45:14

4.1.1.1.2 Test Channel = MCH

Date: 14.APR 2017 20:45:15

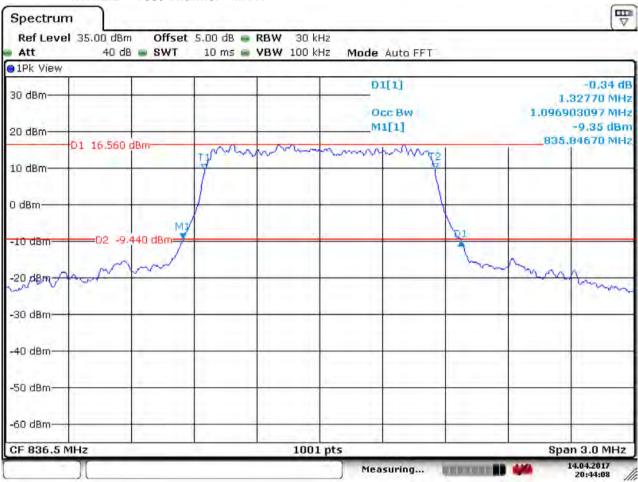
Report No.: SZEM170300261304 Page: 33 of 134

Spectrum									
Ref Level Att	35.00 dBn 40 dB	n Offset B B SWT	5.00 dB 🖷 10 ms 📾	RBW 30 ki VBW 100 ki		Auto FFT	_		
o 1Pk View	1.1	1.1	24						-
30 dBm						[1] :c Bw			-0,39 dB 32470 MHz 00100 MHz
20 dBm	01 17.010	dBm-	-		M1	[1]			-8.91 dBm 64670 MHz
10 dBm			They we	and so a	www	t monto			
0 dBm						1			
-10 dBm	D2 -8,	990 dBm				_	42		
Lordem-	man	n					10	man	mm
-30 dBm									
-40 dBm									
-50 dBm		4	_				-		
-60 dBm									
CF 848.3 M	IHz			1001	pts			Spa	n 3.0 MHz
)()				Meas	suring	10000000		14.04.2017 20:46:13


4.1.1.1.3 Test Channel = HCH

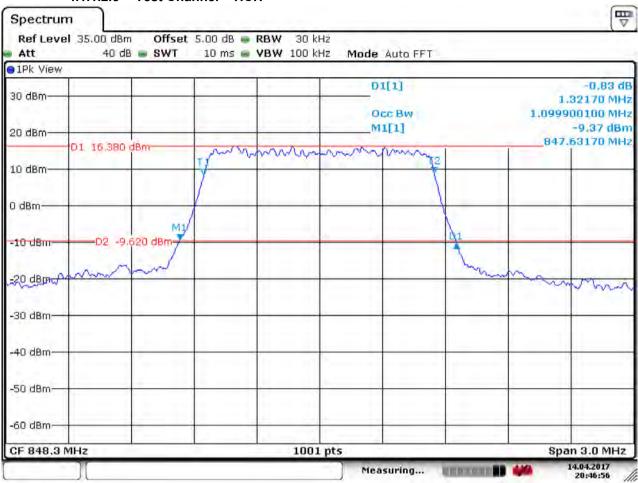
Date: 14.APR 2017 20:46:13

Report No.: SZEM170300261304 Page: 34 of 134


4.1.1.2 Test Mode = LTE/TM2 1.4MHz

Date: 14 APR 2017 20:42:52

Report No.: SZEM170300261304 Page: 35 of 134



4.1.1.2.2 Test Channel = MCH

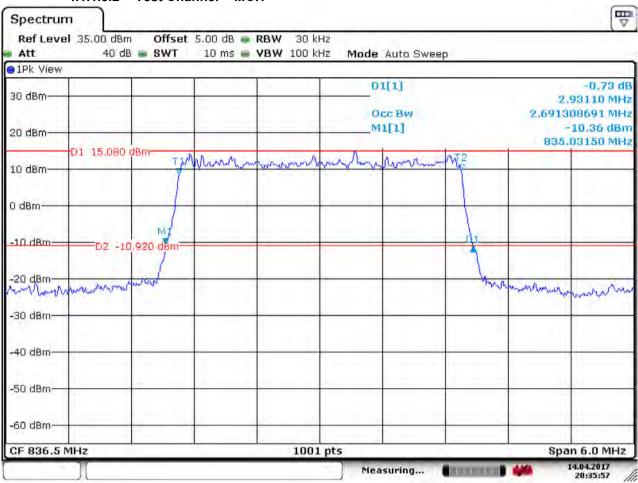
Date: 14.APR 2017 20:44:09

Report No.: SZEM170300261304 Page: 36 of 134

4.1.1.2.3 Test Channel = HCH

Date: 14.APR 2017 20:46:57

Report No.: SZEM170300261304 Page: 37 of 134


4.1.1.3 Test Mode = LTE/TM1 3MHz

4.1.1.3.1 Test Channel = LCH Spectrum Ref Level 35.00 dBm Offset 5.00 dB - RBW 30 kHz 40 dB 📼 SWT Att 10 ms 📾 VBW 100 kHz Mode Auto Sweep 1Pk View D1[1] -0.73 dB 30 dBm-2.93110 MHz Occ Bw 2.691308691 MHz -10.36 dBm M1[1] 20 dBm-824.03150 MHz D1 15.080 dBm TIM M March mound Arma ne 10 dBm-0 dBm-TM. 10 dBm--D2 -10.920 dBm--20 dBm-Jan MAR mannin ter mus An 101 MM MA An -30 dBm--40 dBm--50 dBm--60 dBm-CF 825.5 MHz 1001 pts Span 6.0 MHz 14.04.2017 Measuring... and the second se 11 20:37:45

Date: 14.APR 2017 20:37:45

Report No.: SZEM170300261304 Page: 38 of 134

4.1.1.3.2 Test Channel = MCH

Date: 14.APR 2017 20:35:57

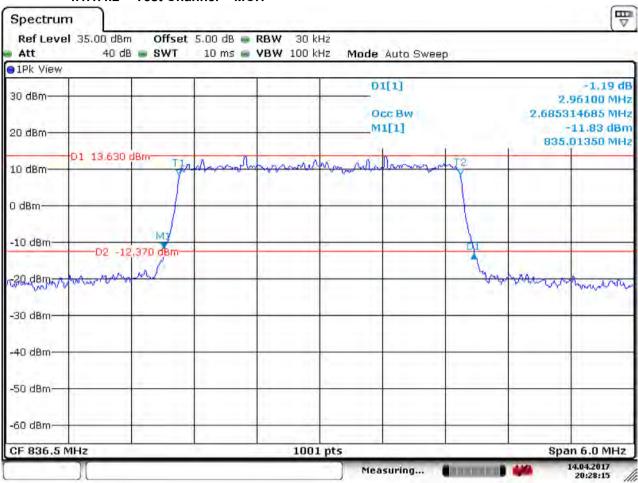
Report No.: SZEM170300261304 Page: 39 of 134

Spectru	m							
Ref Lev Att	el 35.00 dBm 40 dB	Offset	5.00 dB 👄 10 ms 📾	RBW 30 kHz VBW 100 kHz		эер		
🖯 1Pk View	h	1.1.1.1	1.1.1					
30 dBm					D1[1]			-0,31 dB 96410 MHz 02697 MHz
20 dBm—					M1[1]	1.2		12.16 dBm 00750 MHz
10 dBm-	D1 13.790	dBm T1	man marker h	monorma	Mummunulung	mint		
0 dBm								
-10 dBm—	D2 -12	M/ 2,210 dBm-				-		
-20 MBANA	and an and and and and and and and and a	wind				how	mong	ment
-30 dBm—	-							
-40 d8m—								
-50 dBm—								
-60 dBm—								
CF 847.5	MHz			1001 p	ts		Spa	n 6.0 MHz
					Measuring		- MA	4.04.2017 20:25:07

4.1.1.3.3 Test Channel = HCH

Date: 14.APR.2017 20:25:08

Report No.: SZEM170300261304 Page: 40 of 134


4.1.1.4 Test Mode = LTE/TM2 3MHz

4.1.1.4.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB - RBW 30 kHz 40 dB 🖬 SWT Att 10 ms 📾 VBW 100 kHz Mode Auto Sweep 1Pk View D1[1] -0,18 dB 30 dBm-2.94310 MHz Occ Bw 2.691308691 MHz -12.62 dBm M1[1] 20 dBm-824.01950 MHz D1 13,380 dBmarang A 1 Lamor A.D. 10 dBm-Un an An and 0 dBm--10 dBm--D2 -12.620 d8m -20 dBmmound Langer Maller Man manne Maria -30 dBm--40 dBm--50 dBm--60 dBm-CF 825.5 MHz 1001 pts Span 6.0 MHz 14.04.2017 Measuring... NAME OF OCCUPANT OF OWNER 11 20:38:58

Date: 14.APR 2017 20:38:58

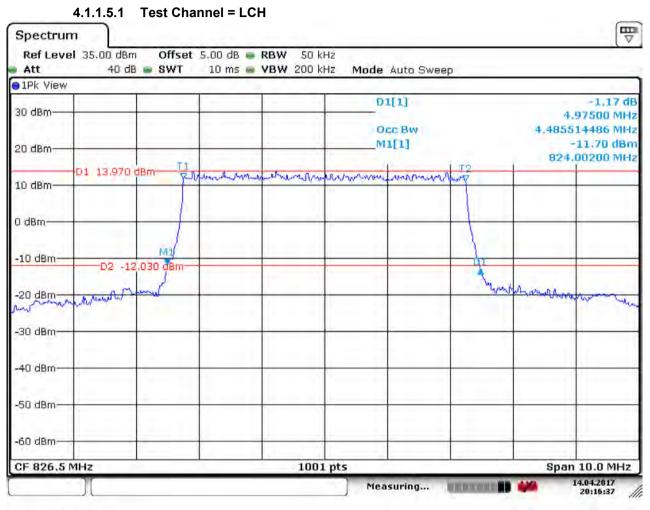
Report No.: SZEM170300261304 Page: 41 of 134

4.1.1.4.2 Test Channel = MCH

Date: 14.APR 2017 20:28:15

Report No.: SZEM170300261304 Page: 42 of 134

Spectrum									
Ref Level Att	35.00 dBn 40 dB		t 5.00 dB 👄 10 ms 📾	RBW 30 kH VBW 100 kH		Auto Swee	ep		
🛛 1Pk View			2						
30 dBm						[1] c Bw			-0,98 dB .94610 MHz 314685 MHz
20 dBm						[1]			-12.33 dBm .01350 MHz
10 dBm	D1 13,280	dBm t1	mannah	manann	nann Ann	hard since any liss	ww.T2		
0 dBm					_	_			
-10 dBm		M/ 2,720 dBm-							
1-20-dam	1 marth mar				_		han	and a war a war a	monorm
-30 dBm					_	_			22.7
-40 dBm									
-50 dBm	-	-			_			-	
-60 dBm			-					-	
CF 847.5 M	IHz			1001	pts			Spa	an 6.0 MHz
)[Meas	uring	H armanna	-	14.04.2017 20:26:29


4.1.1.4.3 Test Channel = HCH

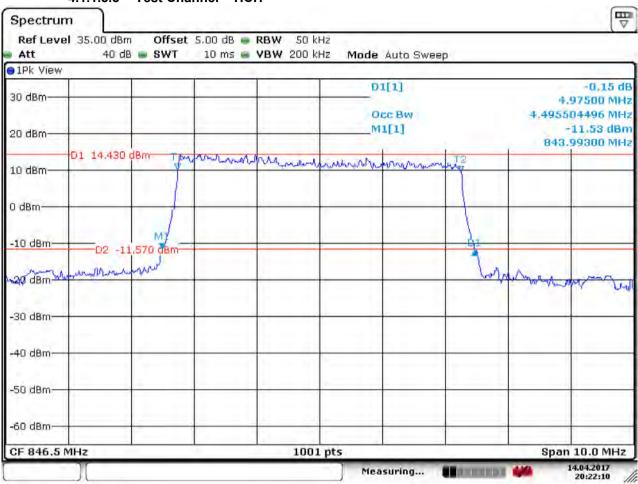
Date: 14 APR 2017 20:26:30

Report No.: SZEM170300261304 Page: 43 of 134

4.1.1.5 Test Mode = LTE/TM1 5MHz

Date: 14.APR 2017 20:16:38

Report No.: SZEM170300261304 Page: 44 of 134


Spectru	m							Em ⊽
Ref Lev Att	el 35.00 dB 40 c		t 5.00 dB 🖷 10 ms 🖷	RBW 50 kH VBW 200 kH		зер		
🔵 1Pk View	/		2					
30 dBm					D1[1] Occ Bw			-1,65 dB 94500 MHz 24476 MHz
20 dBm			-		M1[1]			10.98 dBm 05200 MHz
10 dBm	D1 14,120	dBm Ta	innonhum	an ward war	man want want want want	w		
0 dBm		+						
-10 d8m—		M.	1	1 = 1		- du		
~20 ⁻⁰⁸¹¹⁻	upor the state	mar				from	monutur	www
-30 dBm—	-							
-40 dBm—							()	1
-50 dBm—						-		
-60 dBm—								-
CF 836.5	MHz			1001	pts		Span	10.0 MHz
					Measuring			14.04.2017 20:20:50

4.1.1.5.2 Test Channel = MCH

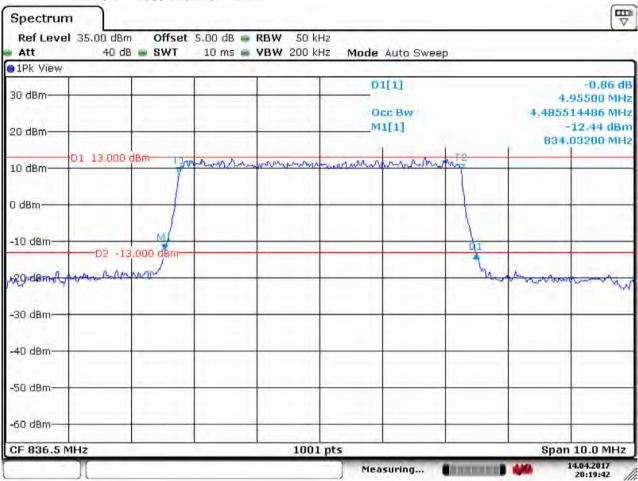
Date: 14.APR 2017 20:20:50

Report No.: SZEM170300261304 Page: 45 of 134

4.1.1.5.3 Test Channel = HCH

Date: 14.APR 2017 20:22:10

Report No.: SZEM170300261304 Page: 46 of 134


4.1.1.6 Test Mode = LTE/TM2 5MHz

4.1.1.6.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB = RBW 50 kHz 40 dB 📟 SWT Att 10 ms 📾 VBW 200 kHz Mode Auto Sweep 1Pk View D1[1] -1.31 dB 30 dBm-4.94500 MHz Occ Bw 4,495504496 MHz -12.14 dBm M1[1] 20 dBm-824.03200 MHz Ť2 D1 12,910 dBm-Allow Marthans An Tin www and the second second and and 10 dBm-WV 0 dBm--10 dBm-D2 -13.090 dBm -20 dBm - Date -Loha north -30 dBm--40 dBm--50 dBm--60 dBm-1001 pts Span 10.0 MHz CF 826.5 MHz 14.04.2017 Measuring... and the second second 11 20:18:07

Date: 14.APR 2017 20:18:07

Report No.: SZEM170300261304 Page: 47 of 134

4.1.1.6.2 Test Channel = MCH

Date: 14 APR 2017 20:19:42

Report No.: SZEM170300261304 Page: 48 of 134

: View Bm D1[1] -0,44 4.97500 M Occ Bw 4.495504496 M M1[1] -11.11 di 844.00200 M
844.00200 M
D1 14.670 dBm
Bm Tornhand Mang Ang Bar T2
m
18m
18m D2 -11,330 dBm
dBm
18m

4.1.1.6.3 Test Channel = HCH

Date: 14.APR.2017 20:23:34

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

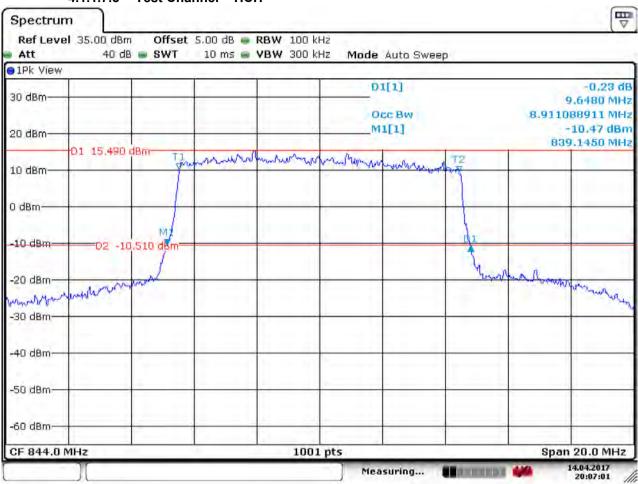
Report No.: SZEM170300261304 Page: 49 of 134

4.1.1.7 Test Mode = LTE/TM1 10MHz

4.1.1.7.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB - RBW 100 kHz 40 dB 📼 SWT Att 10 ms 📾 VBW 300 kHz Mode Auto Sweep 1Pk View D1[1] -0.94 dB 30 dBm-9.8700 MHz Occ Bw 8,951048951 MHz -11.20 dBm M1[1] 20 dBm-824.0250 MHz D1 14,710 dBm T to have been and the second and the second Ard M. Conner 10 dBm-0 dBm-M -10 dBm--D2 -11.290 oBm -20 dBm-MANA mall purson wanter -30 dBm--40 dBm--50 dBm--60 dBm-1001 pts Span 20.0 MHz CF 829.0 MHz 14.04.2017 Measuring... NAME OF OCCUPANT OF OWNER 20:13:47 11

Date: 14 APR 2017 20:13:47

Report No.: SZEM170300261304 Page: 50 of 134


1Pk View	1.1								
30 dBm						D1[1] Occ Bw M1[1]		8.97102	-0.66 dB 8300 MHz 8971 MHz 11.22 dBm 5850 MHz
10 dBm	01 14,530	dBm	puner ma	mummin	multure	and the second second	www		
0 dBm						-			_
-10 dBm	D2 -1	M1 1,470 dBn					- de		
*20 den-^^	man	unnul	-				house	america	what
-30 dBm						1		-	
-40 dBm					-				
-50 dBm	-								
-60 dBm						_			

4.1.1.7.2 Test Channel = MCH

Date: 14.APR 2017 20:12:05

Report No.: SZEM170300261304 Page: 51 of 134

4.1.1.7.3 Test Channel = HCH

Date: 14.APR 2017 20:07:02

Report No.: SZEM170300261304 Page: 52 of 134

4.1.1.8 Test Mode = LTE/TM2 10MHz

4.1.1.8.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB - RBW 100 kHz 40 dB 📟 SWT Att 10 ms 📾 VBW 300 kHz Mode Auto Sweep 1Pk View D1[1] -1,62 dB 30 dBm-9.7700 MHz Occ Bw 8,931068931 MHz M1[1] -12,40 dBm 20 dBm-824.1250 MHz T1 D1 13,490 dBm Т montana unnunn mound Magazon M 10 dBm-0 dBm--10 dBm-D2 -12,510 dam AN AL -20 dBm-Mount Med Man Man -30 dBm--40 dBm--50 dBm--60 dBm-1001 pts Span 20.0 MHz CF 829.0 MHz 14.04.2017 Measuring... and the second second 20:14:58 11

Date: 14.APR 2017 20:14:58

Report No.: SZEM170300261304 Page: 53 of 134

Att	el 35.00 dBn 40 dB			RBW 100 kH VBW 300 kH		геер		
😑 1Pk View	1		1					
30 dBm	-				D1[1] Occ Bw			-0,55 dB 9.8500 MHz 28971 MHz
20 dBm—	la sura				M1[1]	1.		12.04 dBm L.5450 MHz
10 dBm-	-D1 13,570	dBm TI	many	un marked and	hhunnah	manip		
0 dBm								
-10 dBm—		M1 2,430 dBm-				de		
-20rden	month	man				men	monestry and	or anone
-30 dBm—								- mark
-40 dBm—								
-50 dBm—	-	-						
-60 dBm—			-					
CF 836.5	MHz	1	1	1001	pts		Span	20.0 MHz

4.1.1.8.2 Test Channel = MCH

Date: 14.APR 2017 20:10:19

Report No.: SZEM170300261304 Page: 54 of 134

Spectru									
Att	el 35.00 dBr 40 d			RBW 100 ki VBW 300 ki		Auto Swe	ер		
1Pk View	3		2						
30 dBm	-					1[1] cc 8w			-2,10 dB 9.6680 MHz 68931 MHz
20 dBm						1[1]			11.44 dBm 9.1450 MHz
10 dBm	D1 14,180	dBm	an may marship	Murham	man mur	and the state of the	T2 Munp		
0 dBm					_				
-10 dBm—	D2 -1	M1					01		-
-20 dBm—							mon.	- Anymore Party and	-
mount	upan Arino		· · · · ·						and more a
-30 dBm—						-			
-40 dBm—		-							
-50 dBm—		-	-						
-60 dBm—		_							
CF 844.0	MHz		1	1001	pts			Span	20.0 MHz
					Mea	suring	10000000		14.04.2017 20:08:34

4.1.1.8.3 Test Channel = HCH

Date: 14.APR 2017 20:08:35

Report No.: SZEM170300261304 Page: 55 of 134

4.1.1.9 Test Mode = LTE/TM1 15MHz

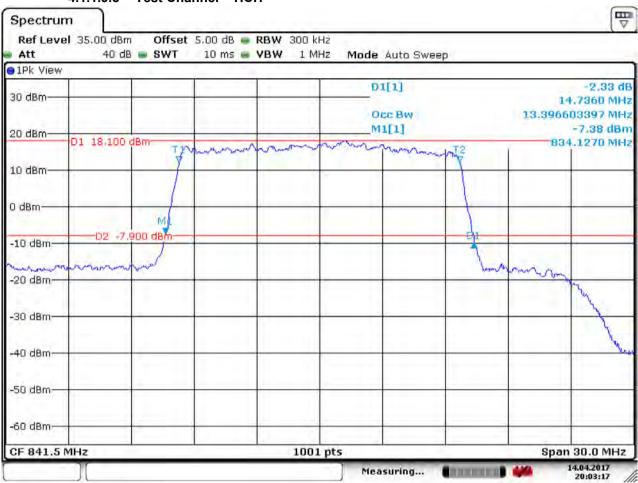
4.1.1.9.1 Test Channel = LCH

Att 40 dB SWT 10 ms 1Pk View	VBW 1 MHz Mode Auto Sweep	
IPK VIEW	D1[1]	-1.24 d
30 dBm	DILL	14.9350 MH
	Occ Bw	13.546453546 MH
20 dBm-	M1[1]	-7.72 dB
D1 17.830 dBm	monter	2 824.0370 MH
10 dBm-		Y
		λ
) dBm	· · · · · · · · · · · · · · · · · · ·	1
MŁ		di
10 dBm D2 -8.170 dBm		
man		how when
29, dBpmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		mu
30 dBm		
40 dBm		
50 dBm		
60 dBm		
CF 831,5 MHz	1001 pts	Span 30.0 MHz

Date: 14.APR 2017 20:02:01

Report No.: SZEM170300261304 Page: 56 of 134

D1[1] Occ Bw	-0.32 dE 14.9630 MH2 13.606393606 MH2
WILLI	-7,90 dBn 829.0070 MHz
mound to	
	- h h - 0 - 1 - 0 - 0 - 1
	mmmm
	and provenes
	Occ Bw M1[1]


4.1.1.9.2 Test Channel = MCH

Date: 14.APR 2017 17:45:37

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 57 of 134

4.1.1.9.3 Test Channel = HCH

Date: 14.APR 2017 20:03:18

Report No.: SZEM170300261304 Page: 58 of 134

4.1.1.10 Test Mode = LTE/TM2 15MHz

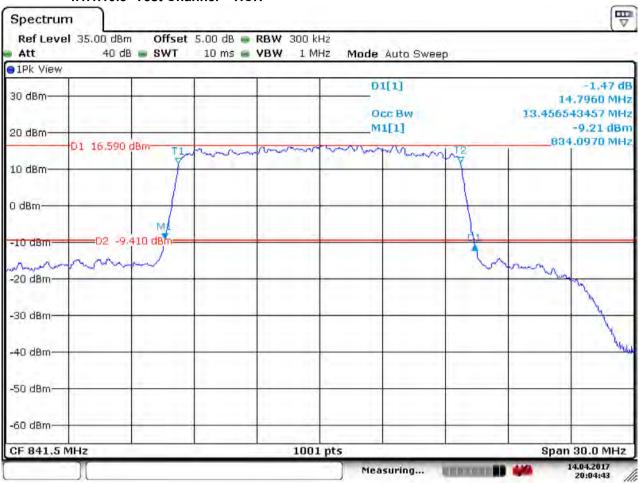
4.1.1.10.1 Test Channel = LCH

91Pk View								
30 dBm					D1[1] Occ Bw			-0.87 de 4.7560 MH2 83516 MH2
20 dBm					M1[1]		-	-7.84 dBn
	01 17,570 0	dBm ⊤∳	month	month	monterion	1252	824	1.0970 MHz
10 dBm		- Y	1			T		
	100							
0 dBm		1	-	· · · · · · · · ·			-	-
	-	M	1	1				
-10 dBm	D2 +8.4	430 dBm-	-			41	-	-
						hur	mm	amo
20.dBin	- man Neutron		1			1.1		and putient
			15					
-30 dBm								
-40 dBm		A	12	11				
. ve denu			· · · · · · · · · · · · · · · · · · ·	11 11 ¹				
-50 dBm								
oo abiii				· · · · · · · · · · · · · · · · · · ·				
-60 dBm				11			1	1
oo dom				1				

Date: 14.APR 2017 20:00:23

Report No.: SZEM170300261304 Page: 59 of 134

Spectrun	n							
Ref Leve Att	1 35.00 dBm 40 dB		5.00 dB 🖷 10 ms 🖷	RBW 300 kH: VBW 1 MH:		еер		
o 1Pk View	S							
30 dBm					D1[1]			-0.81 de 14.9630 MH; 6453546 MH;
20 dBm	D1 16 410	d has			M1[1]	TO		-9.59 dBm 29.0070 MHz
10 dBm	D1 16.410		man	manna	man have been been been been been been been be	white		
0 dBm		+					-	
-10 dBm	D2 -9.	590 d8m-	-			A.		_
-20 dBm—						Jerry.	mond	and when the second
-30 dBm			-				-	
-40 dBm								
-50 dBm							-	
-60 dBm								
CF 836.5	MHz			1001	ots	-	Spa	an 30.0 MHz
					Measuring		-	14.04.2017 17:48:33


4.1.1.10.2 Test Channel = MCH

Date: 14.APR 2017 17:48:34

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

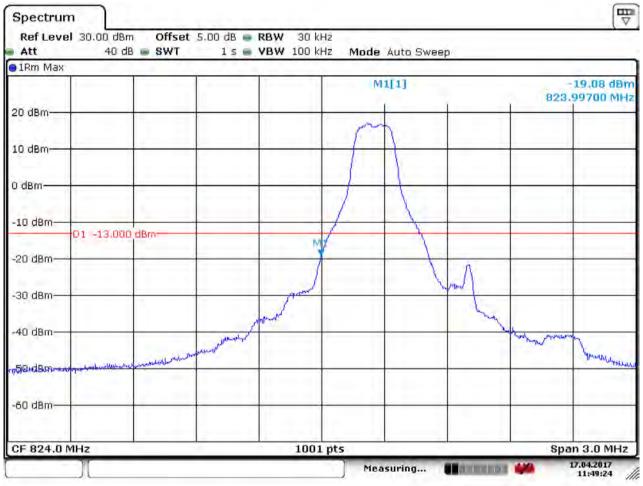
Report No.: SZEM170300261304 Page: 60 of 134

4.1.1.10.3 Test Channel = HCH

Date: 14.APR 2017 20:04:44

Report No.: SZEM170300261304 Page: 61 of 134

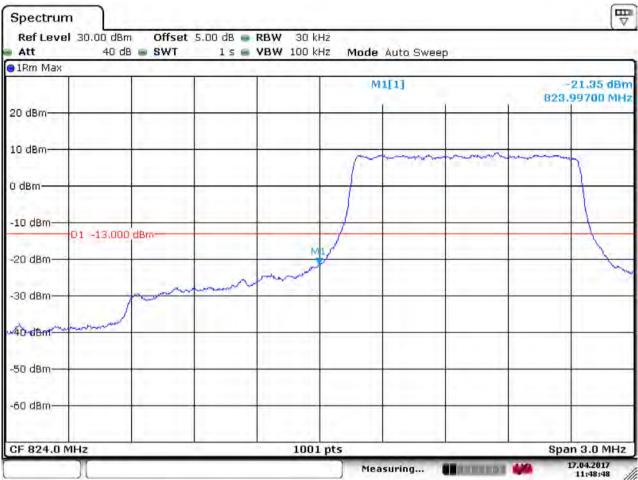
5 Band Edges Compliance


5.1 For LTE

5.1.1 Test Band = LTE band26(824-849)

5.1.1.1 Test Mode = LTE/TM1 1.4MHz

5.1.1.1.1 Test Channel = LCH


5.1.1.1.1.1 Test RB=1RB

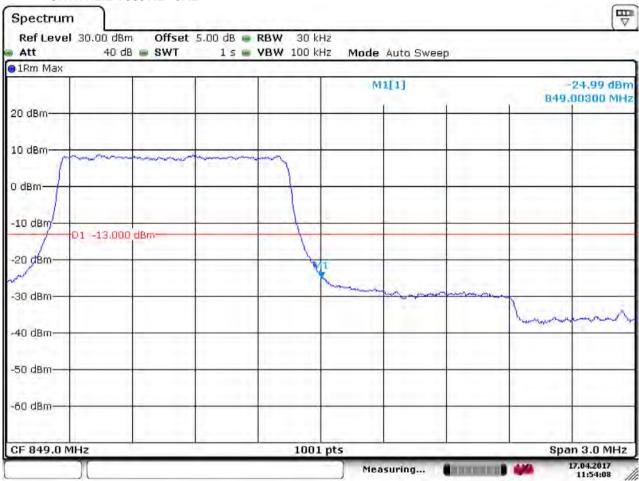
Date: 17 APR 2017 11:49:24

Report No.: SZEM170300261304 Page: 62 of 134

5.1.1.1.1.2 Test RB=6RB

Date: 17.APR 2017 11:48:48

Report No.: SZEM170300261304 Page: 63 of 134



5.1.1.1.2 Test Channel = HCH

Date: 17 APR 2017 11:53:20

Report No.: SZEM170300261304 Page: 64 of 134

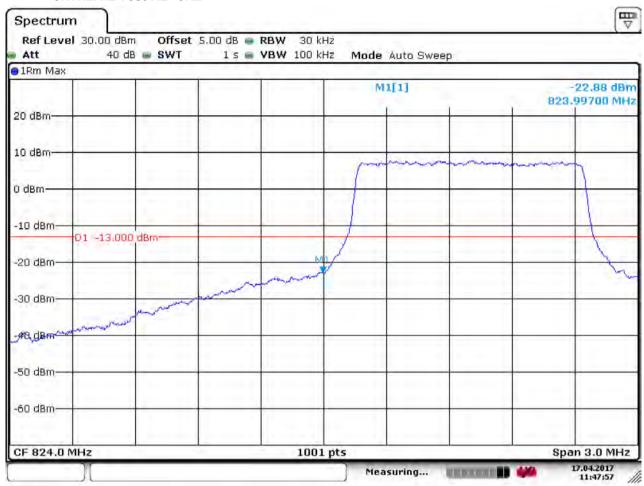
Date: 17.APR 2017 11:54:09

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

5.1.1.1.2.2 Test RB=6RB

Report No.: SZEM170300261304 Page: 65 of 134

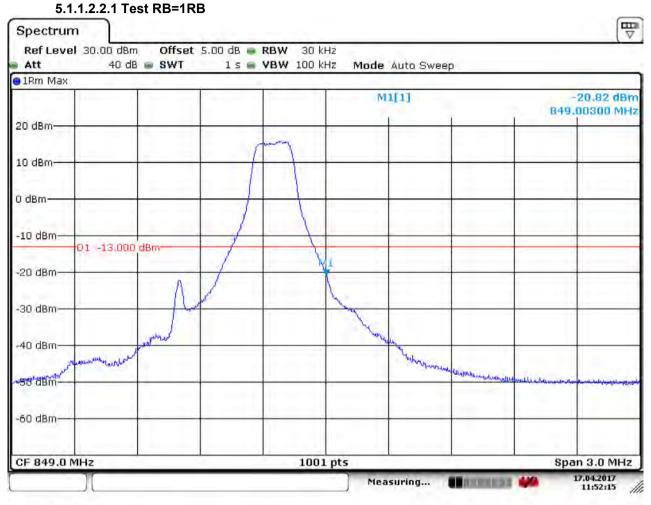
5.1.1.2 Test Mode = LTE/TM2 1.4MHz


5.1.1.2.1 Test Channel = LCH

Date: 17 APR 2017 11:50:10

Report No.: SZEM170300261304 Page: 66 of 134

Date: 17.APR 2017 11:47:57


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

5.1.1.2.1.2 Test RB=6RB

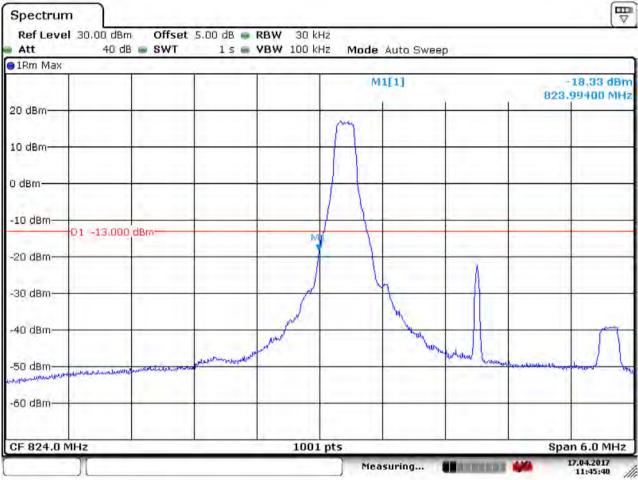
Report No.: SZEM170300261304 Page: 67 of 134

5.1.1.2.2 Test Channel = HCH

Date: 17 APR 2017 11:52:15

Report No.: SZEM170300261304 Page: 68 of 134

5.1.1.2.2.2 Test RB=6RB


Date: 17.APR 2017 11:55:18

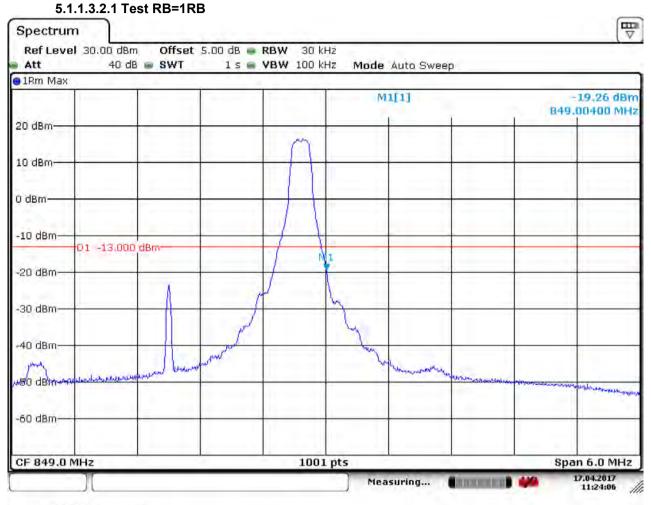
Report No.: SZEM170300261304 Page: 69 of 134

5.1.1.3 Test Mode = LTE/TM1 3MHz 5.1.1.3.1 Test Channel = LCH

5.1.1.3.1.1 Test RB=1RB

Date: 17.APR.2017 11:45:40

Report No.: SZEM170300261304 Page: 70 of 134


Spectrum		est RB=1							
Ref Level			t 5.00 dB 🖷						
Att	40 a	B 📾 SWT	15 📾	VBW 100 ki	HZ MI	ode Auto Swe	ер		
TKU Max									-24.50 dBn .99400 MH:
20 dBm					-				
10 dBm	-	-	1						-
0 dBm	_				- from	chouse - day	and a second and a second and a second	and the Araphy manual	and many and
-10 dBm-0	1 -13.000	dBm-							
-20 dBm				TV	/				1
-30 dBm	-neglocal broken	monum	mon when we have	annon					
-40 dBm	- Magdan	1							
-50 dBm									
-60 dBm									
CF 824.0 MH	łz	-	-	1001	pts			Sp	an 6.0 MHz
)(Measuring			17.04.2017

Date: 17.APR.2017 11:46:13

Report No.: SZEM170300261304 Page: 71 of 134

5.1.1.3.2 Test Channel = HCH

Date: 17.APR 2017 11:24:07

Report No.: SZEM170300261304 Page: 72 of 134

Spectrum Ref Level	30.00 dBm	Offset	5.00 dB 🖷	RBW 30 kH	łz	-	_		
Att 🗧	40 dB	SWT	1 s 📾	VBW 100 kH	iz Mode	Auto Sweep	0		
1Rm Max	_		-						
					M1[1]			-27.23 dBm 849.00400 MHz	
20 dBm		-			-		-		
10 dBm	_				-	_			
0 Bm	mun	and an and the second second	man	moning			-		
-10 dBm									
1	1 -13.000	dBm							
-20 dBm					í				
-30 dBm		-			horner	manner	manut	mathem	nig
-40 dBm									have
-50 dBm		_							
-60 dBm		-							
oo dam									

5.1.1.3.2.2 Test RB=15RB

Date: 17.APR 2017 11:23:23

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 73 of 134

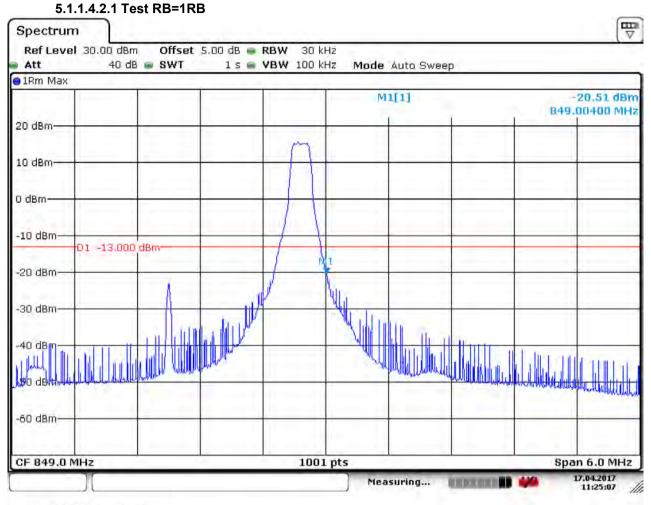
5.1.1.4 Test Mode = LTE/TM2 3MHz

5.1.1.4.1 Test Channel = LCH

Date: 17 APR 2017 11:44:54

Report No.: SZEM170300261304 Page: 74 of 134

Spectrun	n								
Ref Leve Att	l 30.00 dBr 40 d	n Offset B - SWT	5.00 dB 🖷 1 s 📾	RBW 30 ki VBW 100 ki		lode Auto Swi	зер		
18m Max			2		_				-
						M1[1]			-24.11 dBm .99400 MHz
20 dBm			-		-				
10 dBm		-			-				
0 dBm					por	wheen the second se	where had a second	and	manney
-10 dBm	01 -13.000) dBm							
-20 dBm				IVI					
-30 dBm		- som	Musmed and Arasso	ano many and					
-30 dBm	Anonempungh						_		
-50 dBm—									
-60 dBm—	1								
CF 824.0 M	MHz	_		1001	pts			Spa	an 6.0 MHz
)[Measuring	Concerne and		17.04.2017 11:46:58


5.1.1.4.1.2 Test RB=15RB

Date: 17.APR.2017 11:46:59

Report No.: SZEM170300261304 Page: 75 of 134

5.1.1.4.2 Test Channel = HCH

Date: 17.APR 2017 11:25:07

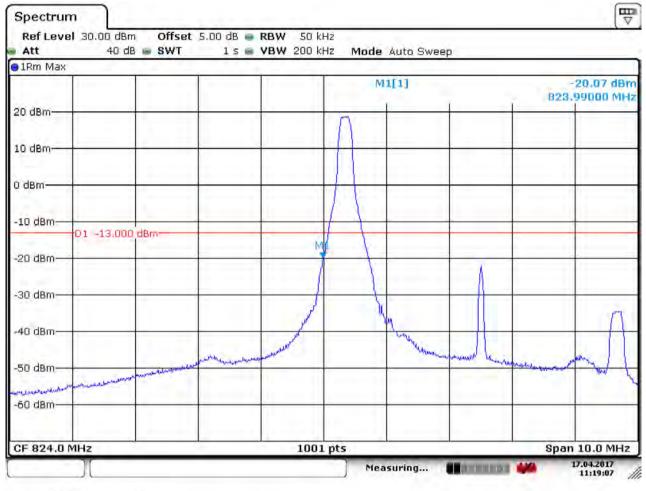
Report No.: SZEM170300261304 Page: 76 of 134

Att	30.00 dBm 40 dB	SWT	5.00 dB 🖷 1 s 🖷	RBW 30 VBW 100		e Auto Swee	p		
1Rm Max			-		-				
					P	M1[1]			-26.10 dBm .00400 MHz
20 dBm		-			-	1	1	-	
10 dBm						-			
0 dBm	alanna		mm	my					
-10 dBm	01 -13.000	dBm		1					
20 dBm				1			_		
-30 dBm				1	Cr.	monoren	all all and and and all all all all all all all all all al		
-40 dBm							a second and	man	Marine
-50 dBm		1 11							
-60 dBm									
CF 849.0 M	142	_		100	1 pts				an 6.0 MHz

5.1.1.4.3 Test RB=15RB

Date: 17 APR 2017 11:22:40

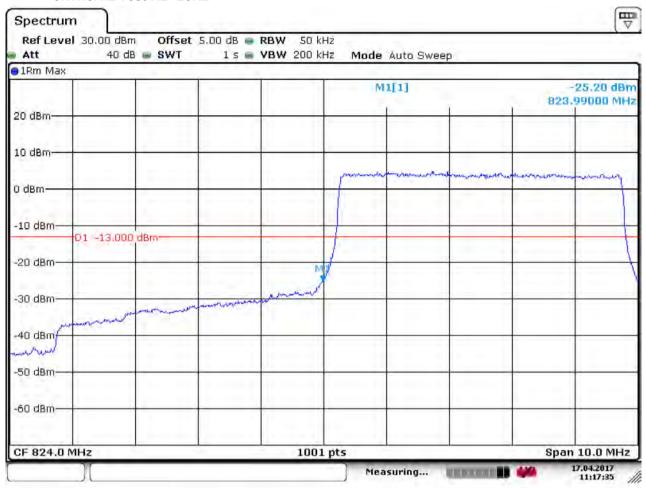
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170300261304 Page: 77 of 134

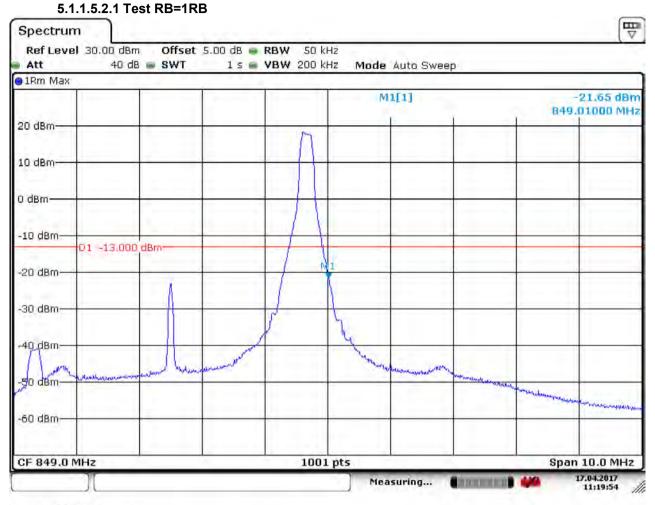
5.1.1.5 Test Mode = LTE/TM1 5MHz

5.1.1.5.1 Test Channel = LCH


5.1.1.5.1.1 Test RB=1RB

Date: 17.APR 2017 11:19:07

Report No.: SZEM170300261304 Page: 78 of 134


5.1.1.5.1.2 Test RB=25RB

Date: 17.APR 2017 11:17:35

Report No.: SZEM170300261304 Page: 79 of 134

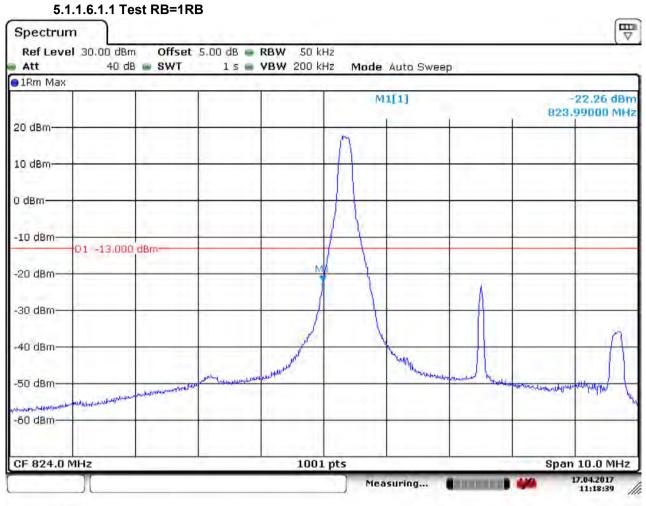
5.1.1.5.2 Test Channel = HCH

Date: 17.APR 2017 11:19:54

Report No.: SZEM170300261304 Page: 80 of 134

Spectrur Ref Leve	n al 30.00 dBm	Offset	5.00 dB 🖷	RBW 50 k	Hz				
Att	40 de	SWT	1 s 📾	VBW 200 k	Hz Mode	Auto Swee	р		
😑 1Rm Max	1		1		M	11[1]			-26.48 dBm 01000 MHz
20 dBm	-		-		-		-		
10 dBm					-				
0 dBm-	howen	munenham		ing					
-10 dBm	-01 -13.000	dBra							
20 dBm—	13.000				1				
-30 dBm	-	-	-		hannance		mon	-	
-40 dBm—									The
-50 dBm—									
-60 dBm—									
CF 849.0	MHz			1001	L pts				10.0 MHz
-					Me	asuring		-	17.04.2017 11:21:36

5.1.1.5.2.2 Test RB=25RB


Date: 17.APR 2017 11:21:37

Report No.: SZEM170300261304 Page: 81 of 134

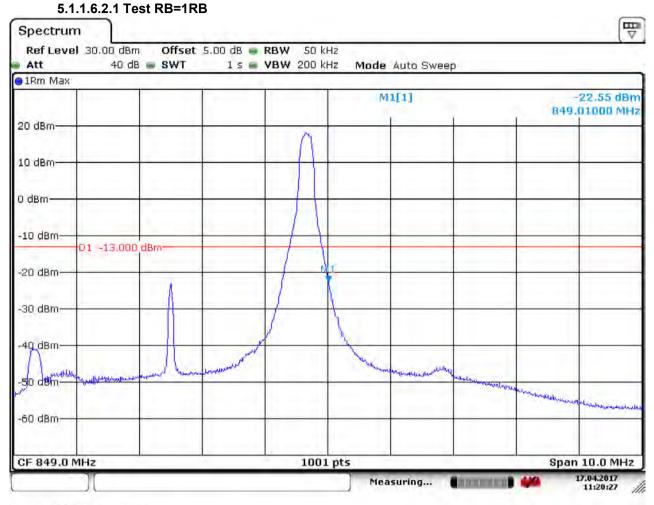
5.1.1.6 Test Mode = LTE/TM2 5MHz

5.1.1.6.1 Test Channel = LCH

Date: 17.APR 2017 11:18:40

Report No.: SZEM170300261304 Page: 82 of 134

Spectrur	n								
Ref Leve Att	el 30.00 dBn 40 dl	n Offset 3 s SWT	t 5.00 dB 🖷 1 s 📾	RBW 50 ki VBW 200 ki		de Auto Swa	зер		
●1Rm Max	S			_					
	_					M1[1]			25.67 dBm 99000 MHz
20 dBm	1				-				
10 dBm	-	-			-				
0 dBm		1		<u>.</u>	finishi	under press	viderminia in	mm	my
-10 dBm									
-20 dBm	-01 -13.000) dBm		[1	1			1	
-30 dBm				M	/				
	~	and and a second	- Heren and a second						
-40 dBm							1		
-50 dBm				11				-	
-60 dBm—									
CF 824.0	MHz		1	1001	pts		_	Span	10.0 MHz
					4	leasuring	· Contractor	1 440 3	17.04.2017 11:18:12


5.1.1.6.1.2 Test RB=25RB

Date: 17.APR.2017 11:18:13

Report No.: SZEM170300261304 Page: 83 of 134

5.1.1.6.2 Test Channel = HCH

Date: 17.APR 2017 11:20:27

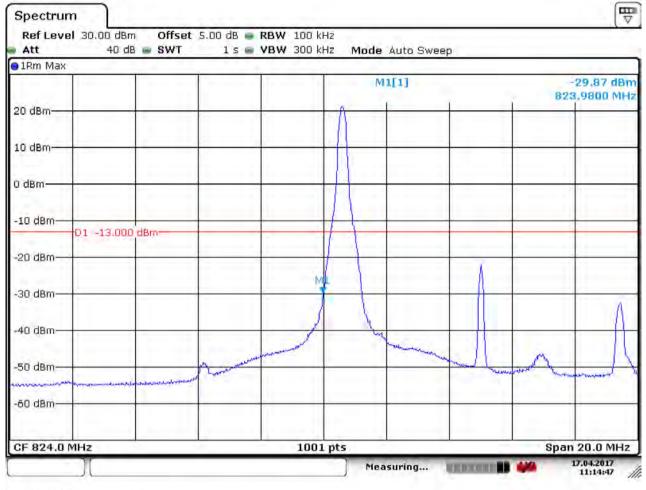
Report No.: SZEM170300261304 Page: 84 of 134

Spectrum	and a second second second	011-1	5 00 do -	DOW SO L					
Ref Level Att		SWT	5.00 dB 🖷 1 s 📾	RBW 50 ki VBW 200 ki		e Auto Swe	eep		
🗧 1 Rm Max									
						W1[1]		B49	-26.66 dBm 0.01000 MHz
20 dBm		1				-			
10 dBm	-						-	-	
0 dBm	man	mana		wowing		-	-		-
-10 dBm	01 -13.000	dBm				_			
20 dBm-					1				
-30 dBm					Conservation	to market	marine and		
-40 dBm								and all and a second and	man
-50 dBm	_				-			-	
-60 dBm						-			
CF 849.0 M	Hz			1001	. pts			Spa	n 10.0 MHz
	1				Me	asuring	CONTRACTOR OF STREET,	44	17.04.2017 11:21:03

5.1.1.6.2.2 Test RB=25RB

Date: 17 APR 2017 11:21:03

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170300261304 Page: 85 of 134

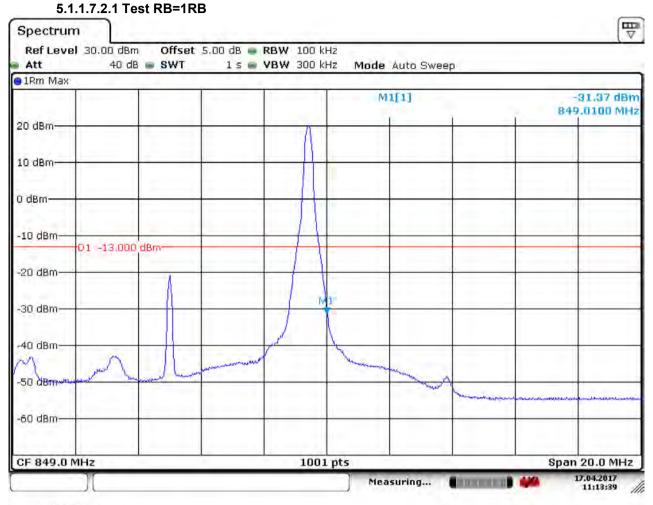
5.1.1.7 Test Mode = LTE/TM1 10MHz

5.1.1.7.1 Test Channel = LCH

5.1.1.7.1.1 Test RB=1RB

Date: 17.APR 2017 11:14:47

Report No.: SZEM170300261304 Page: 86 of 134


5.1.1.7.1.2 Test RB=50RB

Date: 17 APR 2017 11:11:08

Report No.: SZEM170300261304 Page: 87 of 134

5.1.1.7.2 Test Channel = HCH

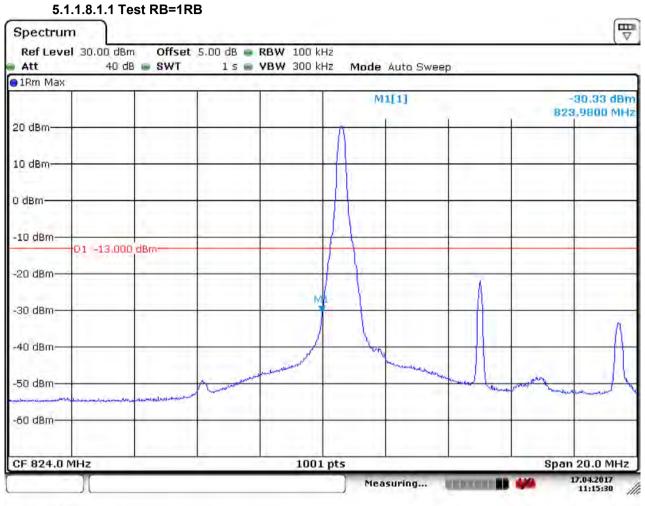
Date: 17.APR 2017 11:13:39

Report No.: SZEM170300261304 Page: 88 of 134

Spectrum									
Ref Level Att	30.00 dBm 40 dB			RBW 100 kH: VBW 300 kH:		Auto Swe	ер		
😑 1 Rm Max	1.1	1.0							3
					M	1[1]		84	-27.53 dBm
20 dBm		-							
10 dBm	-					-			
	minster		·····	ming					
-10 dBm	D1 -13.000	dBm							
-20 dBm					_	-			
/ -30 dBm				W1		· ·····			
-40 dBm							- M		1
-50 dBm	_				_			1	
-60 dBm									
CF 849.0 M	Hz			1001	ots			Spa	in 20.0 MHz
][Mea	asuring	- Concentration	440	17.04.2017 11:11:07

Date: 17 APR 2017 11:11:08

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


5 1 1 7 2 2 Test RB=50RB

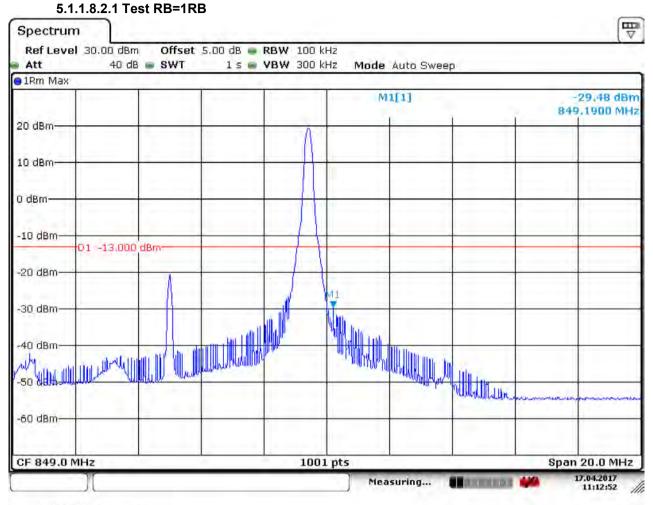
Report No.: SZEM170300261304 Page: 89 of 134

5.1.1.8 Test Mode = LTE/TM2 10MHz

5.1.1.8.1 Test Channel = LCH

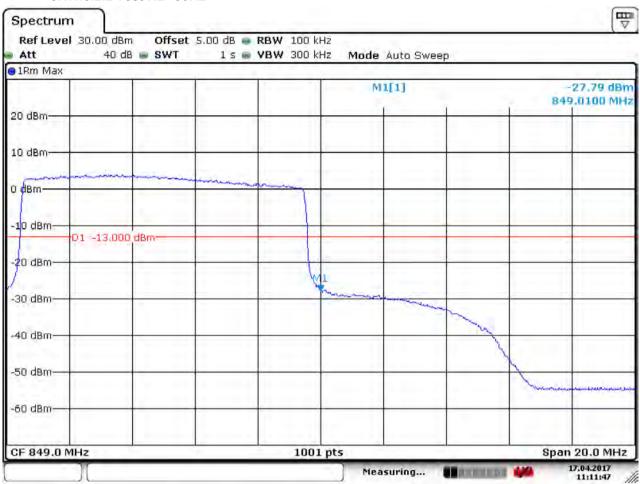
Date: 17 APR 2017 11:15:30

Report No.: SZEM170300261304 Page: 90 of 134


5.1.1.8.1.2 Test RB=50RB

Date: 17 APR 2017 11:16:10

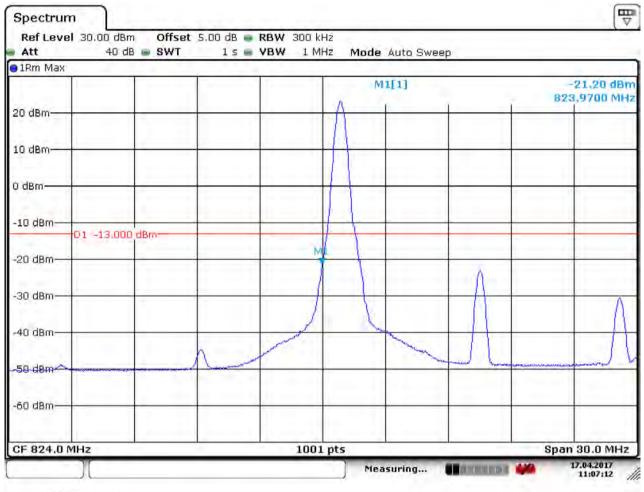
Report No.: SZEM170300261304 Page: 91 of 134


5.1.1.8.2 Test Channel = HCH

Date: 17.APR 2017 11:12:53

Report No.: SZEM170300261304 Page: 92 of 134

5.1.1.8.2.2 Test RB=50RB


Date: 17.APR 2017 11:11:47

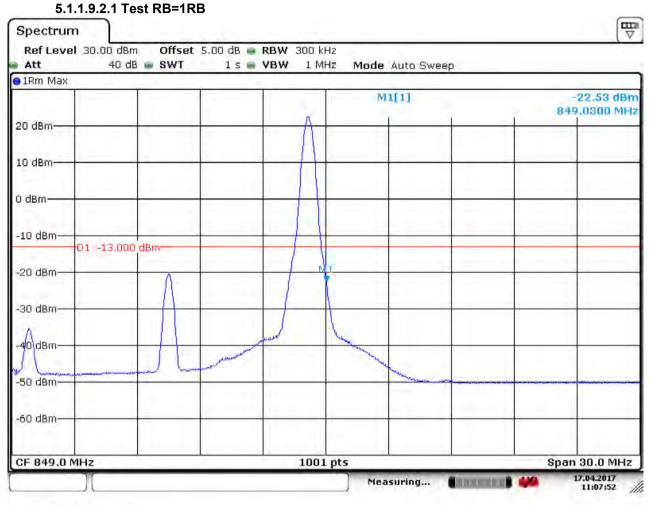
Report No.: SZEM170300261304 Page: 93 of 134

5.1.1.9 Test Mode = LTE/TM1 15MHz 5.1.1.9.1 Test Channel = LCH

5.1.1.9.1.1 Test RB=1RB

Date: 17.APR 2017 11:07:13

Report No.: SZEM170300261304 Page: 94 of 134


5.1.1.9.1.2 Test RB=75RB

Date: 17.APR.2017 11:05:24

Report No.: SZEM170300261304 Page: 95 of 134

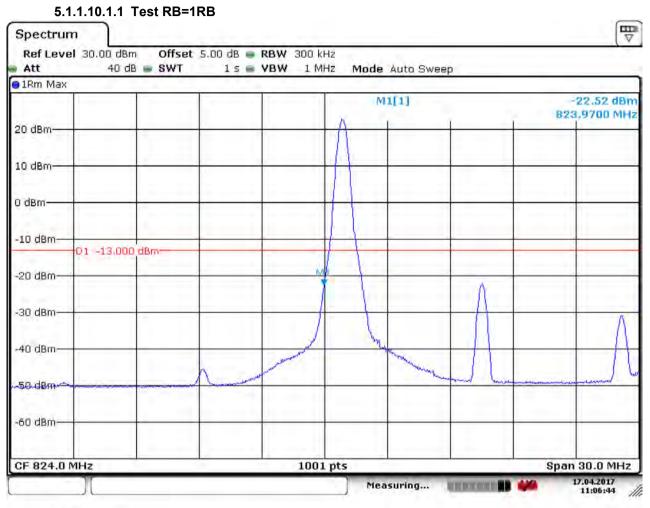
5.1.1.9.2 Test Channel = HCH

Date: 17.APR 2017 11:07:52

Report No.: SZEM170300261304 Page: 96 of 134

5.1.1.9.2.2 Test RB=75RB

Spectru	a second s	1.1	1.11.1						
Ref Levi Att	el 30.00 dBr 40 di	n Offset B 🖝 SWT	5.00 dB 🖷 1 s 🖷	RBW 300 kH VBW 1 MH		Auto Swee	р		
🖯 1Rm Max				_					
		1 1			M	1[1]			-26.02 dBm 9.0300 MHz
20 dBm									
10 dBm								-	
0 dBm									
-10 dBm—	01 -13.000								
20 dBm—	01-15.000		-		p	-		-	
-30 dBm—	-		-	-		1		-	
-40 dBm—						1			
-50 dBm—			-		-		1		
-60 dBm—									
CF 849.0	MHz			1001	pts			Spar	1 30.0 MHz
)[Mea	suring	10000		17.04.2017 11:09:50


Date: 17.APR 2017 11:09:50

Report No.: SZEM170300261304 Page: 97 of 134

5.1.1.10 Test Mode = LTE/TM2 15MHz

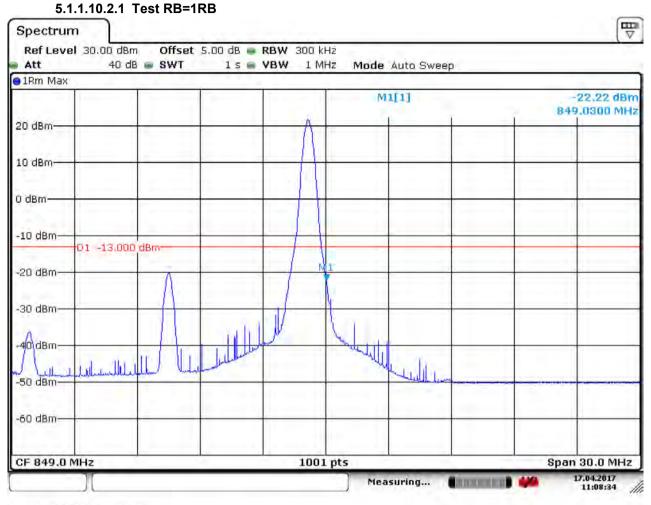
5.1.1.10.1 Test Channel = LCH

Date: 17 APR 2017 11:06:44

Report No.: SZEM170300261304 Page: 98 of 134

Spectrur	n									
Ref Leve Att	al 30.00 dBn 40 dB	Offset	5.00 dB 🖷 1 s 📾			ode Auto Swa	зер			
😑 1 Rm Max	S				<u>.</u>					
						M1[1] -24 B23,5				
20 dBm			1		-		1			
10 dBm					-			-	-	
0 dBm					\mathbb{H}	_				
-10 dBm	D1 -13.000	dBm								
-20 dBm—				N					+	
-30 dBm—								-		
-40 dBm-							_			
-50 dBm—	-									
-60 dBm—										
CF 824.0	MHz			1001	L pts			Spa	n 30.0 MHz	
)[Measuring	CONTRACTOR OF THE OWNER OWNE	-	17.04.2017 11:06:02	

5.1.1.10.1.2 Test RB=75RB


Date: 17.APR 2017 11:06:03

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 99 of 134

Date: 17.APR 2017 11:08:35

Report No.: SZEM170300261304 Page: 100 of 134

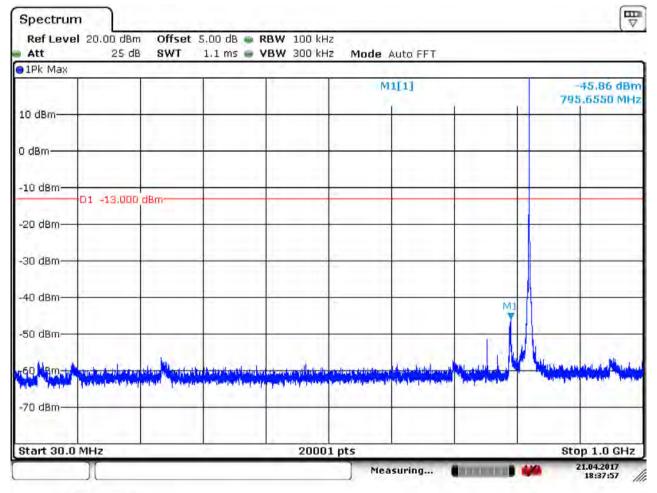
5.1.1.10.2.2 Test RB=75RB

Att 1Rm Max	-10 UL	SWT	15 📾	VBW 11	minz Mibue	Auto Swee	P		
			-		M	1[1]			-26.31 dBm 9.0300 MHz
20 dBm		-			1				1
10 dBm	-								
dBm-					-				
-10 dBm	D1 -13.000	dBm		<u></u>			-		
20 dBm	01 -13.000	ubin-			Mr				
-30 dBm					1			-	
-40 dBm	-				-				7.0
-50 dBm		-				·	1		
-60 dBm									

Date: 17.APR.2017 11:09:13

Report No.: SZEM170300261304 Page: 101 of 134

6 Spurious Emission at Antenna Terminal


NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part I - Test Plots

6.1 For LTE

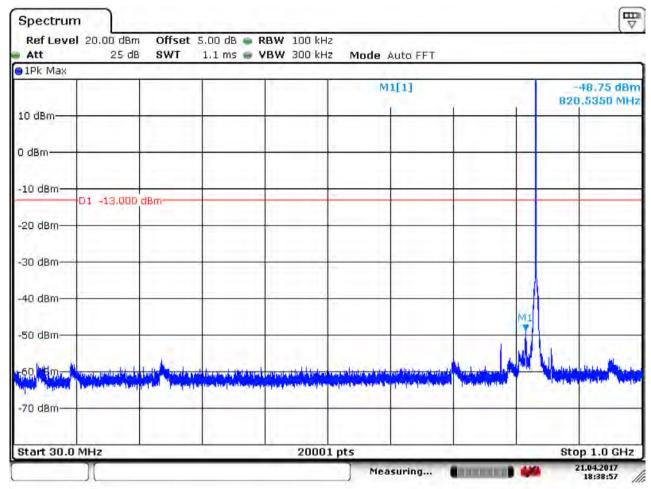
6.1.1 Test Band = LTE band26(824-849)

6.1.1.1 Test Mode = LTE / TM1 1.4MHz RB1#0

6.1.1.1.1 Test Channel = LCH

Date: 21 APR 2017 18:37:58

Report No.: SZEM170300261304 Page: 102 of 134


Spectrur		011-1	5 00 db - 5						
Att	el 20.00 dBm 25 dB		5.00 dB 👄 F 27 ms 📾 V	BW 3 MHz	Mode AL	to Sweep			
😑 1Pk Max									
					M	1[1]	1		-31,44 dBm 648640 GHz
10 dBm			1		-		1		
0 dBm					-	-			
-10 dBm	-01 -13.000	dBm							
-20 dBm—			-				-		
-30 dBm			-					-	
-40 dBm		-			and and	ales collette			
-50, dPm-1	the stress that day	- contratability	In surface beauty lite	reporte to the life	and the second		and and the state of the state		
-60 dBm—				<u>.</u>			2.55		
-70 dBm—		-							
Start 1.0	GHz			2000	1 pts			Sto	p 10.0 GHz
					Mea	suring	-	- 444	21.04.2017 18:36:35

Date: 21.APR 2017 18:36:35

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 103 of 134

6.1.1.1.2 Test Channel = MCH

Date: 21 APR 2017 18:38:57

Report No.: SZEM170300261304 Page: 104 of 134

Spectru									
Ref Levi Att	el 20.00 dBn 25 di		5.00 dB 👄 F 27 ms 📾 V	BW 1 MHz BW 3 MHz	Mode AL	ito Sweep			
😑 1Pk Max	-	1.14							
					M	1[1]	2		-31.48 dBm 572490 GHz
10 dBm									
0 dBm	-	-							
-10 dBm-	-D1 -13.000	dBm						-	
-20 dBm—	-								
-30 dBm	-				-				
-40 dBm			totante abole	. In . Franklind		And a state of the second		-	
50.HBm	1	A B A BOARD					in the collection for the		at the state of the
-60 dBm—					-				
-70 dBm—									
Start 1.0	GHz	1	-	2000	1 pts			Stop	0 10.0 GHz
					Mea	suring	· Cartonita da	-	21.04.2017 18:39:41

Date: 21 APR 2017 18:39:41

Report No.: SZEM170300261304 Page: 105 of 134

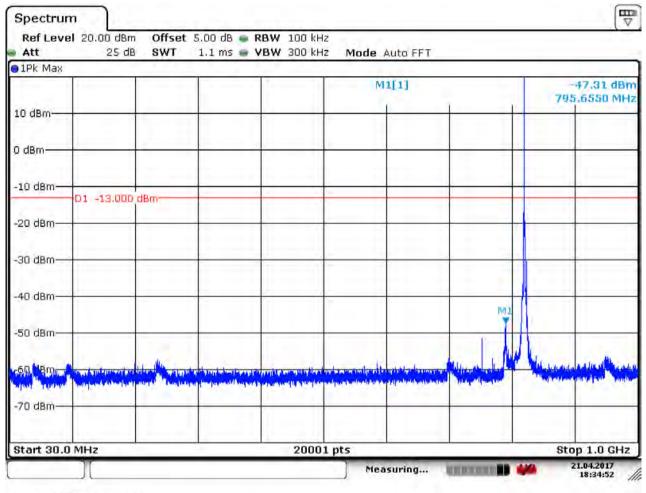
Ref Level Att	20.00 dBm 25 dB			RBW 100 k VBW 300 k		Auto FFT				
∋1Pk Max										
					M	1[1]				50.01 dBm 0.2530 MHz
10 dBm					1					
0 dBm										
-10 dBm	D1 -13.000	dBm						-		
-20 dBm			-							
-30 dBm				-						-
-40 dBm										
-50 dBm							6	11		
			Red Street Service	-	-	-	Automation of	4	-	darditte linguage
-70 dBm	(Angersleig Miltele	alles Joann	in Ingeneration (co	n an		i finde an al art findeads	Level Annual Server Day			
Start 30.0	MHz	_	_	200	01 pts				Sto	p 1.0 GHz

6.1.1.1.3 Test Channel = HCH

Date: 21.APR.2017 18:41:21

Report No.: SZEM170300261304 Page: 106 of 134

Spectrur	the second se								
Att	el 20.00 dBn 25 dB		5.00 dB 🖷 I 27 ms 🖷 V	VBW 3 MHz	Mode AL	to Sweep			
1Pk Max									-
					M1[1]			-31.67 dBm 1.695890 GHz	
10 dBm	1.				1				
0 dBm									
-10 dBm—	-D1 -13.000	dBm							
-20 dBm—		-	-				-		-
-30 dBm			-		-				-
-40 dBm		-	monativeliment		المستقرر والمعار وال	ALTOPPEN		-	
-50, dBm	Legen and all		and an all the bar when	n (1,4790), fan ffalm, and film a Greger gestiet en gestiet e			nd Tolman Transfer		
-60 dBm									
-70 dBm—									
Start 1.0	GHz			2000	1 pts			Sto	p 10.0 GHz
					Mea	suring		-	21.04.2017 18:40:28

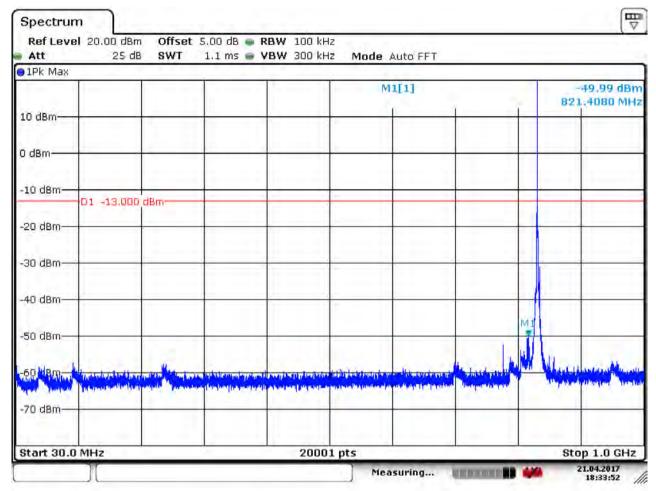

Date: 21.APR 2017 18:40:28

Report No.: SZEM170300261304 Page: 107 of 134

6.1.1.2 Test Mode = LTE / TM1 3MHz RB1#0

6.1.1.2.1 Test Channel = LCH

Date: 21 APR 2017 18:34:52


Report No.: SZEM170300261304 Page: 108 of 134

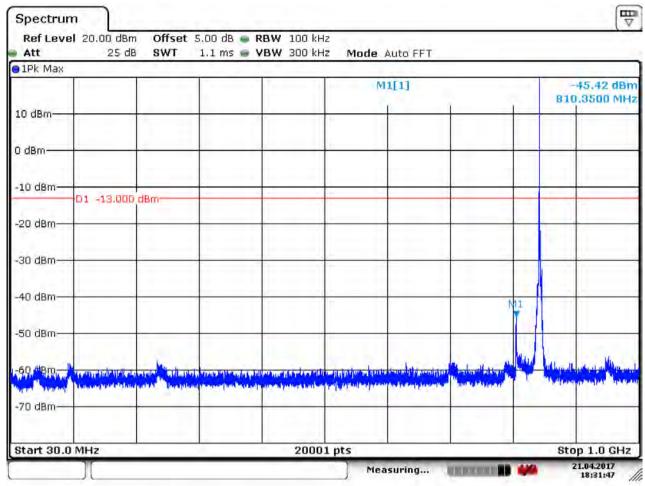
Spectrur	the second se		5 00 db - 5						∇	
Att	el 20.00 dBm 25 dB		5.00 dB 👄 F 27 ms 📾 V	BW 3 MHz	Mode AL	to Sweep				
●1Pk Max										
					M1[1]			-31.72 dBm 1.649090 GHz		
10 dBm			1		-					
0 dBm		-								
-10 d8m	-D1 -13.000	dBm								
-20 dBm—		-								
-30 dBm	4. 	-				-				
-40 dBm			teres in full colored	all to all a state	ومناقعتهم ومندقة فالمعدوي	In the second		-	-	
50 dB of		and the second sec								
-60 dBm—										
-70 dBm—										
Start 1.0	GHz			2000	1 pts			Stop	0 10.0 GHz	
					Mea	suring			21.04.2017 18:35:32	

Date: 21 APR 2017 18:35:32

Report No.: SZEM170300261304 Page: 109 of 134

6.1.1.2.2 Test Channel = MCH

Date: 21 APR 2017 18:33:52


Report No.: SZEM170300261304 Page: 110 of 134

Spectrur	n el 20.00 dBr	n Offcot	5.00 dB 🖷 F						∇
Att	20.00 08 25 d			BW 3 MHz	Mode AL	to Sweep			
😑 1Pk Max	_								
					M1[1]				-31.97 dBm 570690 GHz
10 dBm					-				
0 dBm		-				-			
-10 dBm	-D1 -13.000) dBm						_	
-20 dBm—		-	-		-		-		
-30 dBm	-							-	
-40 dBm					المنافق والمتحاول ورا	man makes		-	
ក្នុភិព្វថ្ងៃក្នុង		Constant and and	Lite algebra de la constante de	baan (Jacob Alanda) ada Marina adalah dalam d		The second s	and the second station of the	ten en direct apparente	
-60 dBm—					_	_			
-70 dBm—									
Start 1.0	GHz			2000	1 pts			Sto	p 10.0 GHz
					Mea	suring	. Contemporte	-	21.04.2017 18:33:08

Date: 21.APR 2017 18:33:08

Report No.: SZEM170300261304 Page: 111 of 134

6.1.1.2.3 Test Channel = HCH

Date: 21.APR.2017 18:31:47

Report No.: SZEM170300261304 Page: 112 of 134

Spectrur												
Ref Leve Att	el 20.00 dBm 25 dB		5.00 dB 🖷 I 27 ms 🖷 V	BW 1 MHz BW 3 MHz	Mode AL	ito Sweep						
●1Pk Max			-									
				M1[1]				-31.73 dBn 1.692740 GH:				
10 dBm	1		1		-							
0 dBm												
-10 d8m	-D1 -13.000	dBm										
-20 dBm—							-					
-30 dBm	-					-		-				
-40 dBm	Ē				our market of particular to	egentury for the sta		1	-			
1-50 dBmbbb	and the second second	d archeoldfadhalpa			and the second		wijerten er ten here	and the second states of the second	and the line of the parts			
-60 dBm—		-										
-70 dBm—												
Start 1.0	GHz			20001	pts	-		Sto	op 10.0 GHz			
					Mea	suring			21.04.2017 18:32:22			

Date: 21 APR 2017 18:32:22

Report No.: SZEM170300261304 Page: 113 of 134

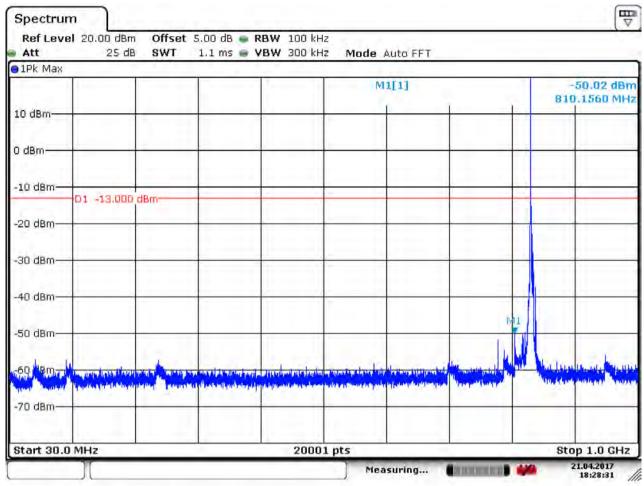
6.1.1.3 Test Mode = LTE / TM1 5MHz RB1#0

6.1.1.3.1 Test Channel = LCH

1Pk Max										A
					М	1[1]				47.52 dBn i.5580 MH
10 dBm										
0 dBm	-	-						-	_	<i>c</i>
-10 dBm	D1 -13.000	dBm			-		-		_	
-20 dBm					_				-	5
-30 dBm					-	-				Ţ.
-40 dBm					_		M			-
-50 dBm										
-60 ^H Bm	and and beautiful			-	TERIS AND ADDRESS OF		-	4	WHITE DA	Dine balance
-70 dBm	Presid predition of a confidential	annan Jonachu	Contraction of the second of the	te daam, sebili direbuile	Control of Factoria A	(n-p-secolor),	Constraints	-	2114-2	

Date: 21 APR 2017 17:33:01

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SZEM170300261304 Page: 114 of 134

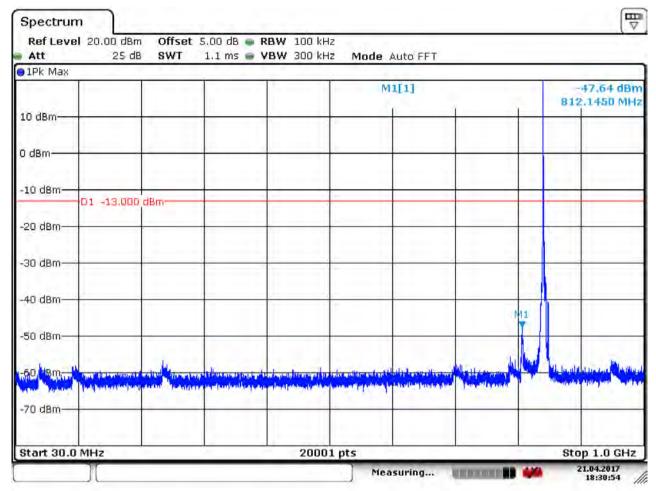
Spectrun	n I 20.00 dBn	Offcot	5.00 dB 🖷 I	DU2 1 MUS							
Att	20.00 08m 25 de			VBW 3 MHz	Mode AL	to Sweep					
😑 1Pk Max	_		ā.								
					M	1[1]			-30,75 dBm 1,648640 GHz		
10 dBm					-						
0 dBm					-						
-10 dBm	D1 -13.000	dBm			_						
-20 dBm		-					-	-	-		
-30 dBn						_		-			
-40 dBm					م مراد المراجم . معاد المراجم .	d. contrib	-	-			
-50, d8m	dame la set	a puple and dide		elater a start of the start of	to the second second	A REAL PROPERTY AND A REAL	and the standard and the state	Laborative Planter 1990	Partition of Longe of		
-60 dBm											
-70 dBm	-										
Start 1.0 (GHz			2000	1 pts			Sto	p 10.0 GHz		
)(suring			21.04.2017 17:32:12		

Date: 21 APR 2017 17:32:12

Report No.: SZEM170300261304 Page: 115 of 134

6.1.1.3.2 Test Channel = MCH

Date: 21 APR 2017 18:28:32


Report No.: SZEM170300261304 Page: 116 of 134

Spectrun Ref Leve	n I 20.00 dBm	Offset	5.00 dB 🖷 F	RBW 1 MHz					
Att	25 dB	SWT	27 ms 🝙 ۷	BW 3 MHz	Mode AL	ito Sweep	1		
●1Pk Max	-					1511			
					N.	1[1]			-32.13 dBm 68890 GHz
10 dBm	-						1		
0 dBm		-	-				-	-	
-10 dBm	D1 -13.000	dBm						_	
-20 dBm		-					-		-
-30 dBm									
-40 dBm						all as a line		-	
150idBm	1	L	and distant and the state	and an and a structure of the	and and a set of the set	Lucian and			
The second sufficient of the second s	(stran abstrace, an)	Performance Francis	Cold Party of Co				(I) man day the set of the	There is a start of the start o	Algeorgian de la constante de la c
-60 dBm		-			-			-	
-70 dBm									
Start 1.0 (GHz			20001	l pts			Stop	0 10.0 GHz
	1				Mea	suring		- 449	21.04.2017 18:29:07

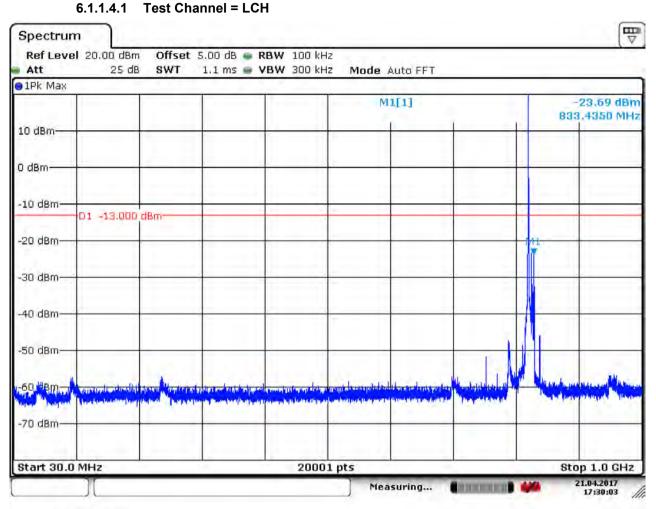
Date: 21 APR 2017 18:29:07

Report No.: SZEM170300261304 Page: 117 of 134

6.1.1.3.3 Test Channel = HCH

Date: 21 APR 2017 18:30:54

Report No.: SZEM170300261304 Page: 118 of 134


Spectrun	100 C	0//	5 00 db - 5	NU + 101-					E ∇
Att	l 20.00 dBn 25 dI		5.00 dB 👄 R 27 ms 📾 V	BW 3 MHz	Mode Au	to Sweep			
😑 1Pk Max									-
					M	1[1]	2		-32,47 dBm i89140 GHz
10 dBm			1		-		1		
0 dBm		-			-	-			
-10 d8m	D1 -13.000	dBm			_				
-20 dBm							-	-	
-30 dBm							1		-
-40 dBm	-				U.L. Markey Line Markey	and a substant			
-50,d9m -4	الدور من معار دور رو	Autor and a particular	and the second s	Landph Contine Re-			Helling March 1	aller and the second second	and a state
-60 dBm						Sec.	dd hyn felfen an of here.		
		2.1	5						
-70 dBm								_	
Start 1.0 C	GHz		-	2000	1 pts				0 10.0 GHz
_					Mea	suring		44	21.04.2017 18:30:04

Date: 21 APR 2017 18:30:04

Report No.: SZEM170300261304 Page: 119 of 134

6.1.1.4 Test Mode = LTE / TM1 10MHz RB1#0

Date: 21.APR 2017 17:30:03

Report No.: SZEM170300261304 Page: 120 of 134

Spectrur	the second se		_	_					
Ref Leve Att	el 20.00 dBm 25 dB		5.00 dB 👄 F 27 ms 📾 🕅	BW 1 MHz BW 3 MHz	Mode AL	ito Sweep			
😑 1Pk Max			2						
	-				M	1[1]			-31.12 dBm 649090 GHz
10 dBm				1	-				
0 dBm		-			-	-			
-10 dBm	-D1 -13.000	dBm				-			
-20 dBm—							-	-	
-30 dBm								-	
-40 dBm—		-	1000	ula dalkina kan	allet and	a Jan July Mark	-	-	*
TSO dam	the parties to still all a	An Alteration	A Date of Bandhall	hindal Mariana Mari	and the second		an Lantas meltinda al mit	areba tedimer evaluate	and the second states
And A state of the sector of	endedourben spectreadd						Charles Contraction	terry products and a second second	and the state of t
-60 dBm—									
-70 dBm—									
Start 1.0 (GHz			2000	1 pts	ł		Sto	p 10.0 GHz
					Mea	suring		-	21.04.2017 17:30:32

Date: 21.APR 2017 17:30:33

Report No.: SZEM170300261304 Page: 121 of 134

91Pk Max			-								
	-				м	1[1]			-21.99 dBm 840.9520 MHz		
10 dBm		-			-						
0 dBm		-			-						
-10 dBm	-D1 -13.000	dBm			-						
-20 dBm—	1							-	11		
-30 dBm—			-		-		-				
-40 dBm—			-		-			-			
-50 dBm—											
-69 (<u>18</u> m+-	- tal un tal tal							1	And and and	Antes History	
-70 dBm	A COMPANY OF A COMPANY	and the second	and a standard the	and a strength of the strength	and contractions		. Internet				

6.1.1.4.2 Test Channel = MCH

Date: 21.APR 2017 17:28:49

Report No.: SZEM170300261304 Page: 122 of 134

Spectru	ո				_							
Ref Levi Att		dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz	Mode Au	uto Sweep					
😑 1Pk Max			1.1.1							A		
	-					M	1[1]			-32.18 dBm 1,664390 GHz		
10 dBm				-		-						
0 dBm	-						-					
-10 dBm—	-D1 -13	.000 d	Bm 									
-20 dBm—	-			-				-	-			
-30 dBM					-	-			-			
-40 dBm—			-			مع الدرور المالي			-	-		
. , 50.dhm++	WILD LITER		under aller and fragter	A CANADA AND	(S) along the state of the stat		1.	ng trente but the per-	artic patrone and the	D. C.		
-60 dBm—						-						
-70 dBm—	-											
Start 1.0	GHz	-			2000	1 pts	-		Sto	p 10.0 GHz		
						Mea	suring	. El promotorio		21.04.2017 17:28:16		

Date: 21 APR 2017 17:28:17

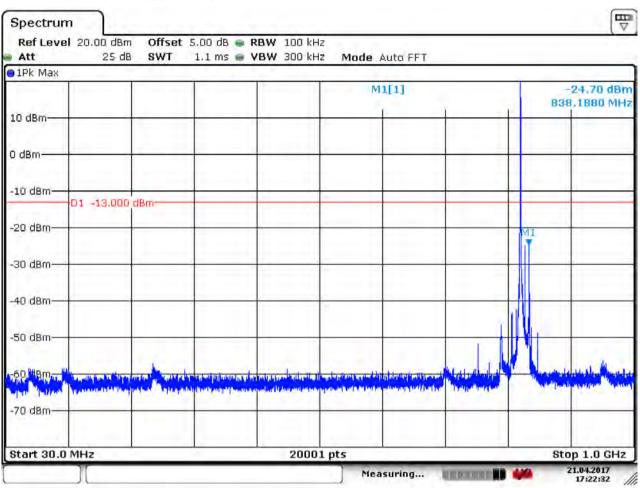
Report No.: SZEM170300261304 Page: 123 of 134

25 dB	SWT	1.1 ms 🗑	VBW 300 kł	Hz Mode	Auto FFT			-	
				M	1[1]	í.			22.92 dBm 3.4210 MHz
1	-	1						1	
	-			-			-		
D1 -13.000	dBm	-		-					
		-						41 Y	
		-	-			-			
	-			-					
						T.	1	1	
	· · · · · · · · · · · · · · · · · · ·				the state of the state	tellestilestelettel	W	Manapara	an a
							-		
	25 dB	25 dB SWT	25 dB SWT 1.1 ms	25 dB SWT 1.1 ms VBW 300 kł	25 dB SWT 1.1 ms VBW 300 kHz Mode .	25 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT	25 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT	25 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT M1[1]	25 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT M1[1] 848 0

6.1.1.4.3 Test Channel = HCH

Date: 21 APR 2017 17:26:40

Report No.: SZEM170300261304 Page: 124 of 134


Spectrur	1 million 1			_					∇
Ref Leve Att	20.00 dBm 25 dB		5.00 dB 👄 F 27 ms 📾 V	BW 1 MHz BW 3 MHz	Mode AL	ito Sweep			
😑 1Pk Max			2						
					М	1[1]			30.98 dBm 79690 GHz
10 dBm		-			-				
0 dBm						-			
-10 d8m	D1 -13.000	dBm							
-20 dBm			-						
-30 dBm			-				-		-
-40 dBm	D.	. 5.7	. alad	aa na de moste	and strend hide		-		
150 dBm II	1119-12-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	an a						non Paliparter	alleli dala pellekalan
-60 dBm					-	-			
-70 dBm—									
Start 1.0	GHz	-	1	2000:	1 pts			Stop	10.0 GHz
][]				Mea	suring	100000		21.04.2017 17:27:26

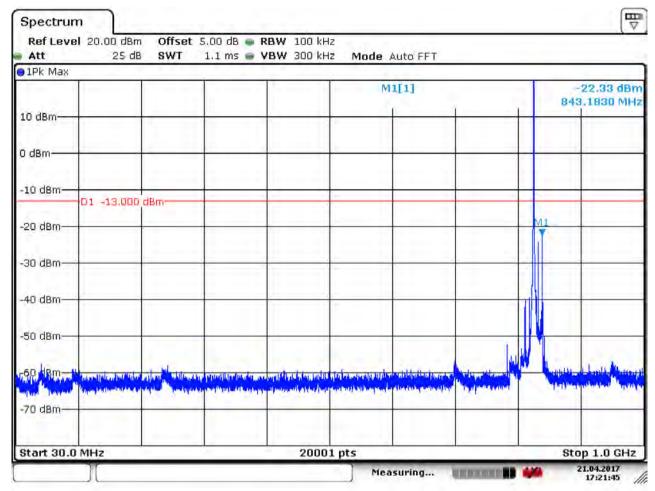
Date: 21.APR 2017 17:27:26

Report No.: SZEM170300261304 Page: 125 of 134

6.1.1.5 Test Mode = LTE / TM1 15MHz RB1#0

6.1.1.5.1 Test Channel = LCH

Date: 21 APR 2017 17:22:32


Report No.: SZEM170300261304 Page: 126 of 134

Spectrur	n 1 20.00 dBn	Offcot	5.00 dB 🖷 I	DUL 1 MUS					∇
Att	20.00 UBN 25 di			VBW 3 MHz	Mode Au	to Sweep			
●1Pk Max									
	-				M	1[1]			-31,26 dBm 549990 GHz
10 dBm					-				
0 dBm	-				-		+		
-10 d8m-	-D1 -13.000	dBm					_		
-20 dBm—	01 -10.000		-				-	-	
-30 dBm	-							-	
-40 dBm—		-			In the last of the second state			-	
650.dBm	-	and the second second	Little and a start of all the	a rana anat haita	In the second second second		ter mener bite atte faller	dia and in solo taken	The lot the line of
n kana ana ana ana ana ana ana ana ana a						1.000	un shine mithidayeste	al al parte la constraction	and the second second second
-60 dBm—		· · · · ·							
-70 dBm—									
Start 1.0	GHz	-		2000	1 pts			Stor	p 10.0 GHz
					Mea	suring	1000000		21.04.2017 17:23:45

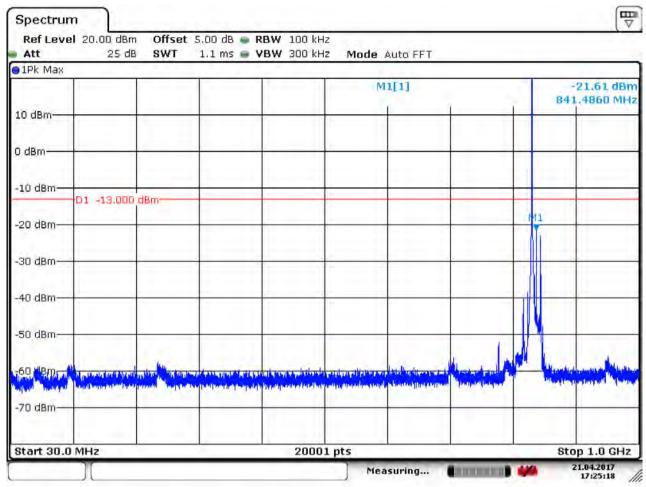
Date: 21.APR 2017 17:23:45

Report No.: SZEM170300261304 Page: 127 of 134

6.1.1.5.2 Test Channel = MCH

Date: 21 APR 2017 17:21:46

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SZEM170300261304 Page: 128 of 134

Spectrun	n I 20.00 dBn	Offset	5.00 dB 🖷 F	DAW 1 MH2					
Att	25 di			BW 3 MHz	Mode Au	uto Sweep			
😑 1Pk Max					1.1.1.4				1 +
					M	1[1]			-32.52 dBm 659890 GHz
10 dBm				1	-				
0 dBm		-		,	-		-		
-10 dBm	D1 -13.000	dBm		·······					
-20 dBm			-			-		-	
-30 dBM			+			a de la companya de la			
-40 dBm			-		والمسود بالعملس و	Line and		-	
-50, dBm	- sheating theat of the	and an talk his	a ha near hannad an	and lasters and the		and the second division	territer brides a	inners and trans a darit	a section of the strength law
Sector and the sector of the	All Resolution of MURIN					1			a and the boost of the strength
-60 dBm					_				
-70 dBm									
Start 1.0 0	GHz		-	2000:	1 pts			Sto	p 10.0 GHz
)[]				Mea	suring			21.04.2017 17:20:38

Date: 21 APR 2017 17:20:38

Report No.: SZEM170300261304 Page: 129 of 134

6.1.1.5.3 Test Channel = HCH

Date: 21 APR 2017 17:25:19

Report No.: SZEM170300261304 Page: 130 of 134

Spectrur	1 million 1	_							
Ref Leve Att	el 20.00 dB 25 d		5.00 dB 👄 🖡 27 ms 📾 🕅	BW 1 MHz BW 3 MHz	Mode AL	ito Sweep			
●1Pk Max									
					М	1[1]	1		-31.55 dBm 669790 GHz
10 dBm			1		-				
0 dBm					-				
-10 dBm	-D1 -13.00	D dBm							
-20 dBm—	-				_				
-30 dBm	-				-	-	-		
-40 dBm			ملور المعادية من الم		and the second second	and may last here	1	-	
The second se	He office out to be a set			na , aan a shinib sa ya kan tabada	idag ¹		In the second states of		
-60 dBm—	-								
-70 dBm—									
Start 1.0	GHz	-		2000	1 pts	1		Stop	10.0 GHz
)[]				Mea	suring	- Contraction	-	21.04.2017 17:24:36

Date: 21 APR 2017 17:24:37

Report No.: SZEM170300261304 Page: 131 of 134

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band26(824-849)

7.1.1.1 Test Mode =LTE/TM1 15MHz RB1#0

7.1.1.1.1	Test Channel = LC	H		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1073.000	-68.32	-13.00	-55.32	Vertical
1551.000	-66.50	-13.00	-53.50	Vertical
8655.000	-65.06	-13.00	-52.06	Vertical
1111.000	-66.98	-13.00	-53.98	Horizontal
4170.000	-68.03	-13.00	-55.03	Horizontal
5145.000	-67.43	-13.00	-54.43	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
2576.000	-58.47	-13.00	-45.47	Vertical
3975.000	-68.45	-13.00	-55.45	Vertical
5925.000	-67.02	-13.00	-54.02	Vertical
1452.000	-66.44	-13.00	-53.44	Horizontal
2112.000	-62.19	-13.00	-49.19	Horizontal
2776.000	-57.30	-13.00	-44.30	Horizontal

7.1.1.1.3 Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1991.000	-61.75	-13.00	-48.75	Vertical
3585.000	-69.34	-13.00	-56.34	Vertical
6705.000	-66.09	-13.00	-53.09	Vertical
1485.000	-66.13	-13.00	-53.13	Horizontal
3487.500	-69.88	-13.00	-56.88	Horizontal
7290.000	-66.10	-13.00	-53.10	Horizontal

NOTE:

 All modes are tested, but the data presented above is the worst case. the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 132 of 134

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	2.40	0.00289	PASS
		LCH	TN	VN	-5.74	-0.00690	PASS
				VH	-6.25	-0.00752	PASS
				VL	-4.43	-0.00530	PASS
	LTE/TM1 15MHz	MCH	TN	VN	-2.22	-0.00265	PASS
	-		F	VH	-5.49	-0.00656	PASS
				VL	-5.24	-0.00623	PASS PASS PASS PASS
		НСН	TN	VN	-1.74	-0.00207	
LTE band26				VH	-4.21	-0.00500	PASS
(824-849)				VL	-3.33	-0.00400	PASS
(0_1.0.0)		LCH	TN	VN	-5.80	-0.00698	PASS PASS PASS PASS PASS PASS PASS PASS
				VH	-7.12	-0.00856	PASS
	LTE/TM2 15MHz M			VL	1.85	0.00221	PASS
		MCH	TN	VN	-2.84	-0.00340	PASS
				VH	3.22	0.00385	PASS
				VL	-7.16	-0.00851	D656 PASS D623 PASS D207 PASS D500 PASS D500 PASS D500 PASS D400 PASS D698 PASS D221 PASS D340 PASS D385 PASS D385 PASS D253 PASS
		HCH	TN	VN	-2.13	-0.00253	PASS
				VH	-5.40	-0.00642	PASS

Report No.: SZEM170300261304 Page: 133 of 134

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.71	-0.00446	PASS
				-20	-4.35	-0.00523	PASS
				-10	-7.50	-0.00902	PASS
				0	-1.88	-0.00226	PASS
		LCH	VN	10	-4.02	-0.00483	PASS
				20	-2.89	-0.00348	PASS
				30	-0.40	-0.00048	PASS
				40	3.63	0.00437	PASS
				50	-6.25	-0.00752	PASS
				-30	2.14	0.00256	PASS
				-20	-3.73	-0.00446	PASS
				-10	1.62	0.00194	PASS
		МСН	VN	0	3.08	0.00368	PASS
LTE band26	LTE/TM1 15MHz			10	-4.35	-0.00520	PASS
(824-849)				20	-2.14	-0.00256	PASS
				30	-3.65	-0.00436	PASS
				40	1.64	0.00196	PASS
				50	-7.38	-0.00882	PASS
				-30	2.51	0.00298	PASS
				-20	-4.40	-0.00523	PASS
				-10	-7.87	-0.00935	PASS
				0	-5.21	-0.00619	PASS
		HCH	VN	10	-2.68	-0.00318	PASS
				20	3.27	0.00389	PASS
				30	-2.83	-0.00336	PASS
				40	-1.07	-0.00127	PASS
				50	-6.32	-0.00751	PASS

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-enDocument.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170300261304 Page: 134 of 134

Paye. 154 01 154							
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.58	-0.00431	PASS
				-20	-1.54	-0.00185	PASS
				-10	2.38	0.00286	PASS
				0	-4.75	-0.00571	PASS
		LCH	VN	10	1.65	0.00198	PASS
				20	0.11	0.00013	PASS
				30	-0.31	-0.00037	PASS
				40	-4.14	-0.00498	PASS
				50	-8.59	-0.01033	PASS
				-30	-7.20	-0.00861	PASS
				-20	-2.35	-0.00281	PASS
				-10	-7.49	-0.00895	PASS
				0	-5.22	-0.00624	PASS
LTE band26	LTE/TM2 15MHz	MCH	VN	10	-4.04	-0.00483	PASS
(824-849)				20	-3.93	-0.00470	PASS
				30	-5.66	-0.00677	PASS
				40	-4.62	-0.00552	PASS
				50	-6.32	-0.00756	PASS
				-30	-5.54	-0.00658	PASS
				-20	-4.45	-0.00529	PASS
				-10	1.53	0.00182	PASS
				0	-2.83	-0.00336	PASS
		HCH	VN	10	2.60	0.00309	PASS
				20	-0.47	-0.00056	PASS
				30	-2.66	-0.00316	PASS
				40	-5.23	-0.00622	PASS
				50	-3.20	-0.00380	PASS

The End