SPECIFICATION

Daxian Communication Technology Limited

Shenzhen Daxian Technology Co., Ltd.

Unimax L13 Main antenna

Product specification book

client	Unimax	frequency range	WCDMA B2/4/5 LTE B2/4/5/7/12/13/25/26/38/41(249 6-2690)/42/66/71
project name	L13	edition	V01
Material number	1L-13XXX-109	pigment	black
RF design	Peng.Hu	architectural design	YeZhi.Bi
QA Manager	ZiYin.Hu	Technical Director	承认为专用章
date		2022-11-29	

Customer confirmation:
Does the assembly meet your requirements: \square OK \square NG

Shenzhen Topant Technology Co., Ltd.

Buji Town, Longgang District, Shenzhen, China Jihua Road 513, Sh an g shuijing Village (opposite the national defense training base) Dacheng Industrial Park, Building 7.

TEL:0755-28576002 FAX:0755-84276383

Room201, Building8, LongDongRoad3000#, Semiconductor Industry Park, ZhangJiang Hitech Zone, ShangHai

TEL:021-61630552 FAX:755-84276383

Change the resume

version number	Change the content	Change reason	Initiate the change party	date	modifier
V1.0	found			2022. 11. 29	
					_

www.Topalnt.com.cn

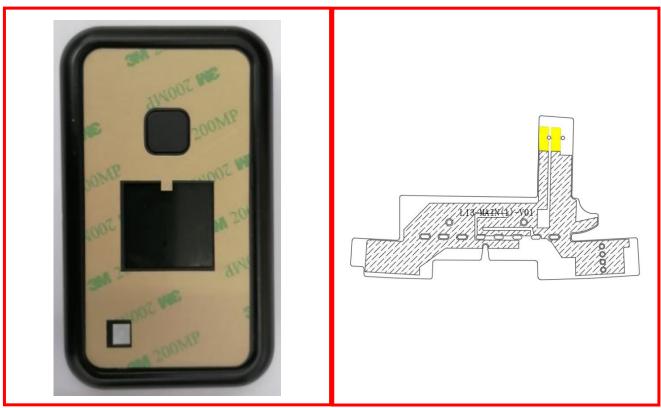
Confidentiality requirements

index of matrix

I. Project Description.	4
II. the main antenna	4
1. Specification:	4
1.1Electrical Specification Standard	5
1.1.1 Electrical performance index	6
1.2 Structural specification standard	7
1.2.1 Antenna composition	7
2. Test environment	8
3. Test	8
3.1 Resident Wave (VSWR) test	8
3.1.1 Test the connection to the	8
3.2 Efficiency, power (TRP), sensitivity (TIS) test	8
3.2.1, Test site	8
3.2.2. Test instrument	8
3.2.3 test data	8-11
4. Conclusion	11
5. Annex chart	12
5.1Return Loss and VSWR and impedance park diagram parameters Figure	12
6. Field pattern diagram	13-15
7、2D&3DPassive field type diagram	16-18
8. Matching circuit	19
9、Environmental treatment	19
III Duoiset duoving	20

www.Topalnt.com.cn

Confidentiality requirements


I project description

Customer Name:	Unimax
Complete machine type:	MIFI
Antenna band:	WCDMA B2/4/5 LTE B2/4/5/7/12/13/25/26/38/41(2496-2690)/42/66/71
Antenna form:	FPC
Feeding form:	welding
Number of feeders:	
Hardware version:	

II Main antenna

1 Specifications

This report mainly provides the router antenna <u>L13</u> Test status of various electrical and structural performance parameters. The following picture shows the antenna picture of the display design.

Appearance diagram of the whole machine and the antenna appearance diagram

www.Topant.com.cn

Confidentiality requirements

1.1 Electrical specifications and standards

1.1.1 Electric performance index

Antenna operating frequency band is in:

WCDMA:824MHz~891MHz,1710MHz~2155MHz,1852MHz~1987MHz;LTE:1850MHz~1990M Hz,1710MHz~2155MHz,824MHz~894MHz,777MHz~756MHz,1710MHz~2200MHz,2500MHz~2690MHz,699MHz~746MHz,1850MHz~1995MHz,814MHz~894MHz,2570MHz~2620MHz,2496 MHz~2690MHz,3400MHz~3600MHz,663MHz~652MHz . The following table is the index of the electrical performance of the explicit design and mass production antenna.

WCDMA -band B 2				
band	band (MHz)	VSWR	band (MHz)	VSWR
Danu	The transmit TX	VSWK	The receiving end RX	VSWK
W -B 2	1852~1907	€4	1932~1987	≪4
		WCDMA -band B	4	
	band (MHz)	VSWR T	band (MHz)	
band	The transmit TX		The receiving end RX	VSWR
W -B 4	1710~1755	€4	2110~2155	≪4
	1	WCDMA-band B	5	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
W -B 5	824~846	€4	871~891	≪4
		LTE -band B 2		
	band (MHz)		band (MHz)	LICHID.
band	The transmit TX	VSWR	The receiving end RX	VSWR
LTE -B 2	1850~1910	€4	1930~1990	€4
		LTE -band B 4		
	band (MHz)		band (MHz)	
band	The transmit TX	VSWR	The receiving end RX	VSWR
LTE -B 4	1710~1755	€4	2110~2155	≪4
LTE -band B 5				
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 5	824~849	€4	869~894	≤4

www.Topant.com.cn

Confidentiality requirements

		LTE -band B	7	
	band (MHz)		band (MHz)	
band	The transmit TX	VSWR	The receiving end RX	VSWR
LTE -B 7	2500~2570	€4	2620~2690	€4
	1	LTE -band B	12	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 12	699~716	€4	729~746	€4
		LTE -band B	25	
	band (MHz)	VSWR	band (MHz)	
band	The transmitter TX		The receiving end RX	VSWR
LTE -B 25	1850~1915	≪4	1930~1995	≪4
		LTE -band B	26	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 26	814~849	€4	859~894	≪4
	1	LTE -band B	38	
	band (MHz)		band (MHz)	VSWR
band	The transmitter TX	VSWR	The receiving end RX	
LTE -B 38	2570~2620	€4	2570~2620	≪4
		LTE -band B	41	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 41	2496~2690	€4	2496~2690	€4
		LTE -band B	42	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 42	3400~3600	€4	3400~3600	≪4
	<u> </u>	LTE -band B	41	
	band (MHz)	75.10 2 11	band (MHz)	
band	The transmitter	VSWR	The receiving end RX	VSWR
	663~698	≤4		≪4

1.2 Antenna composition

The antenna is mainly composed of <u>FPC</u>.

2. The Equipment of Active Test

Satimo 3D Chamber $6 \times 4 \times 4$ (m)

Ag ilent 8960 E 5515c

Network analyzer-R&S ZVL

graph 2

www.Topant.com.cn

Confidentiality requirements

3 Test

3.1 Standing Wave (VSWR) test

3.1.1 3. Test connection: The sequential connection of the VSWR test device is: R & S ZVL network analyzer test line test and treatment

Measured (attached)

3.2 Gain and efficiency, power (TRP), sensitivity (TIS) testing

3.2.1 Test Site:

Large display microwave dark chamber. The test frequency range was 400MH z--6GHz, the static area range was 50cm circumference, and the reflectivity was less than-50 dB.

3.2.2 Test instrument:

- R & S ZVL Network Analyzer, Agilent8960 E5515C, Standard Speaker Antenna, French SATIMO-SG24SYSTEM System, Printer, etc.
- **3.2.3** Test data: In the microwave dark room, the test power and sensitivity-related values are shown in the following table:

OTA active test data:

BAND	СН	TRP	TIS
	18600	20.95	:
FDD-B2	18900	20.08	
	19200	19.37	-98. 28
	20050	19.15	
FDD-B4	20175	20.78	
	20350	20.9	-94.87
	20450	21.18	
FDD-B5	20525	20.85	
	20600	20.61	-92. 91
	23230	19.99	
FDD-B13	23230	19.55	
	23230	19.31	-92.8
	66486	19.04	
TDD-B66	66786	20. 24	
	67086	21.13	-95. 36

www.Topant.com.cn

Confidentiality requirements

OTA Passive Efficiency & Gain-Main antenna-WCDMA

W-B2

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
1820	40.39	-3.94	2.83
1830	39.54	-4.03	2.83
1840	38. 12	-4. 19	2.71
1850	36.9	-4.33	2.74
1860	38.32	-4. 17	3
1870	39. 19	-4.07	3. 22
1880	36.92	-4.33	3.05
1890	35.98	-4. 44	2.97
1900	37. 47	-4. 26	3. 11
1910	39.14	-4.07	3. 17
1920	38.52	-4. 14	3.05
1930	36.45	-4.38	2.7
1940	38.75	-4. 12	3
1950	40.05	-3. 97	3.01
1960	38.67	-4. 13	2.73
1970	38. 11	-4. 19	2.42
1980	38.93	-4. 1	2. 27
1990	40.11	-3.97	2. 17
2000	39.24	-4.06	1. 77

W-B5

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
820	63.71	-1.96	0.1
830	65.45	-1.84	0.3
840	61.21	-2. 13	0.05
850	58.95	-2.3	-0.09
860	53.51	-2.72	-0.55
870	47.83	-3.2	-1.21
880	40.93	-3.88	-2.16
890	36.9	-4.33	-2. 11
900	33.47	-4.75	-1.68

W-B4

Freq	Effi	Effi	Gain
(MHz)	(%)	(dB)	(dBi)
1700	46.69	-3.31	2.19
1710	44.51	-3.52	2.21
1720	41.01	-3.87	2.4
1730	40.51	-3. 92	2.58
1740	40.98	-3.87	3.04
1750	39.37	-4.05	3.03
1760	38.31	-4. 17	3.03
1770	39. 15	-4.07	3. 12
1780	41.81	-3.79	3. 25
1790	40.67	-3.91	3. 12
1800	40.17	-3.96	2.96
1810	39.7	-4.01	2.95
1820	40.39	-3.94	
1830		-3.94 -4.03	2.83
1840	39.54		2.83
1850	38. 12	-4. 19 -4. 22	2.71
	36.9	-4.33	2.74 3
1860	38.32	-4. 17	2 00
1870	39. 19	-4.07	3.22
1880	36.92	-4.33	3.05
1890	35.98	-4. 44	2.97
1900	37. 47	-4. 26	3. 11
1910	39. 14	-4.07	3. 17
1920	38.52	-4. 14	3.05
1930	36. 45	-4.38	2. 7
1940	38.75	-4. 12	3
1950	40.05	-3.97	3.01
1960	38.67	-4. 13	2.73
1970	38. 11	-4. 19	2.42
1980	38. 93	-4.1	2.27
1990	40.11	-3.97	2. 17
2000	39. 24	-4.06	1.77
2010	37. 47	-4.26	1.08
2020	38.88	-4.1	0.64
2030 2040	41. 15 43. 3	-3.86 -3.63	0.56 0.53
\$ 00,000 O0,000 O	T 0.5766 (St. 1577)	F1 - X1+25 C(+) 5 (-)	
2050	44. 95	-3. 47 -3. 39	0.67
2060	45.86	-3.39 -3.36	0.67
2070 2080	46. 13 45. 85	-3.39	0.88 0.93
2090	43. 96	-3. 57	0.89
2100	42.59	y=1000010191	0.89
		-3. 71 -3. 83	
2110	41. 41	7 - 67 (27 %) + W-43	0.56
2120	41. 16	-3.85 -2.01	0.49 0.3
2130	40.65	-3. 91 -4. 12	3 1815 A7140
2140	38. 65 38. 92	-4. 13 -4. 1	0.17 0.2
2150			
2160	39. 1	-4.08	0.29
2170	37.74	-4. 23 -4. 15	0.4 0.55
2180	38. 42	- 4. 10	0.00

www.Topant.com.cn

Confidentiality requirements

OTA Passive Efficiency & Gain-Main antenna-LTE B2,B4,B5,B7,B25,B26,B38,B41

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
820	49.71	-3.04	-0.7
830	45.71	-3.4	-0.35
840	45.41	-3. 43	-0.34
850	44.86	-3. 48	-1.04
860	43.21	-3.64	-1.85
870	41.29	-3.84	-1.8
880	36.9	-4.33	-2.11
890	33. 47	-4. 75	-1.68
Fre	q Effi	Effi	Gain

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
2500	53. 2	-2.74	1. 77
2510	52.74	-2.78	1.68
2520	52.5	-2.8	1. 49
2530	50.66	-2. 95	1.3
2540	49.4	-3.06	1.23
2550	49.45	-3.06	1.24
2560	50.26	-2.99	1.3
2570	51.02	-2.92	1. 44
2580	53. 41	-2.72	1.59
2590	55.83	-2.53	1.79
2600	56.08	-2.51	1.85
2610	59.21	-2.28	2.02
2620	59.87	-2.23	2. 19
2630	59. 45	-2.26	2. 18
2640	57.63	-2.39	2. 27
2650	57.95	-2.37	2. 27
2660	57.08	-2.44	2.38
2670	52.92	-2.76	2.33
2680	53.64	-2.71	2. 41
2690	55.56	-2.55	2.67
2700	56.4	-2.49	2.74

Freq	Effi	Effi	Gain	
(MHz)	(%)	(dB)	(dBi)	
1700	46.69	-3.31	2. 19	
1710	44.51 -3.52		2.21	
1720	41.01	-3.87	2.4	
1730	40.51	-3.92	2.58	
1740	40.98	-3.87	3.04	
1750	39.37	-4.05	3.03	
1760	38.31	-4. 17	3.03	
1770	39. 15	-4.07	3. 12	
1780	41.81	-3.79	3.25	
1790	40.67	-3.91	3. 12	
1800	40.17	-3.96	2.96	
1810	39.7	-4.01	2. 95	
1820	40.39	-3.94	2.83	
1830	39.54	-4. 03	2.83	
1840	38. 12	-4. 19	2.71	
1850	36.9	-4. 33	2.74	
1860	38.32	-4. 17	3	
1870	39. 19	-4.07	3. 22	
1880	36.92	-4. 33	3.05	
1890	35.98	-4. 44	2. 97	
1900	37. 47	-4. 26	3. 11	
1910	39.14	-4.07	3. 17	
1920	38.52	-4. 14	3.05	
1930	36.45	-4. 38	2.7	
1940	38. 75	-4. 12	3	
1950	40.05	-3.97	3.01	
1960	38.67	-4. 13	2.73	
1970	38. 11	-4. 19	2. 42	
1980	38. 93	-4. 1	2. 27	
1990	40.11	-3.97	2. 17	
2100	42.59	-3.71	0.77	
2110	41. 41	-3.83	0.56	
2120	41. 16	-3.85	0.49	
2130	40.65	-3.91	0.3	
2140	38.65	-4. 13	0. 17	
2150	38. 92	-4.1	0.2	
2160	39.1	-4.08	0.29	
2170	37.74	-4. 23	0.4	
2180			0.55	
2190	40.15	-3.96	0.77	
2200	42.84	-3.68	1. 17	

www.Topant.com.cn

Confidentiality requirements

OTA Passive Efficiency & Gain-Main antenna-LTE

B12

Gain Effi Effi Freq (MHz) (%) (dB) (dBi) 690 19.3 -7.14-4.89700 20.34 -6.92-4.8422.74 710 -6.43-4.59720 26.03 -5.84-3.7628.15 730 -5.5 -3.48740 29.07 -5.37-3.49750 30.26 -5.19 -3.45

B13

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
740	34. 3	-4. 65	-2. 98
750	35. 74	-4. 47	-2.87
760	35. 68	-4. 48	-3. 18
770	39. 95	-3. 99	-2. 48
780	41.74	-3. 79	-2. 34
790	44. 49	-3. 52	-1. 65

B26

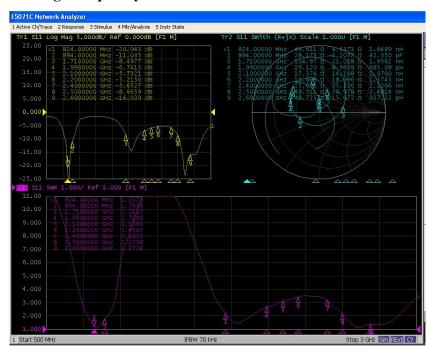
Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)	
810	58. 28	-2.34	-0.27	
820	63.71	-1.96	0.1	
830	65.45	-1.84	0.3	
840	61.21	-2. 13	0.05	
850	58.95	-2.3	-0.09	
860	53.51	-2.72	-0.55	
870	47.83	-3.2	-1.21	
880	40.93	-3.88	-2.16	
890	36.9	-4.33	-2.11	
900	33. 47	-4. 75	-1.68	

B71

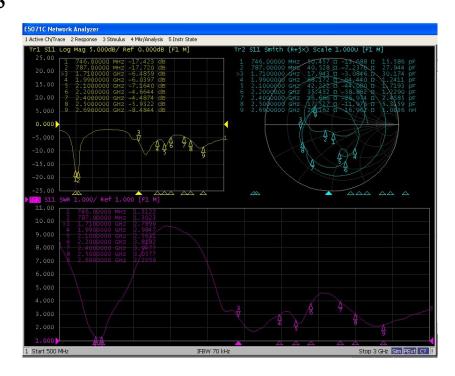
Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
620	10.25	-9.89	-7.86
630	10.28	-9.88	-7.81
640	11.3	-9. 47	-5.62
650	14. 81	-8. 29	-4. 98
660	16.84	-7.74	-4.59
670	17.89	-7. 47	-4.7
680	21.09	-6.76	-4. 27
690	24. 23	-6. 16	-4.04
700	26. 18	-5.82	-3.69

4. Conclusion:

This antenna is designed on the basis of customer-provided prototype. Electrical parameters and structural performance have met the technical requirements. Please confirm!

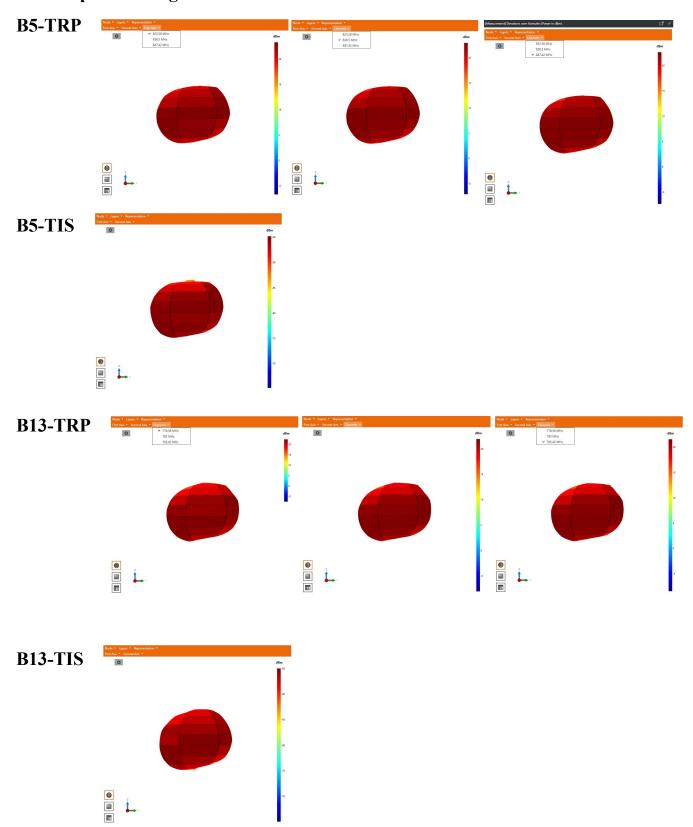

www.Topant.com.cn

Confidentiality requirements


5. Attachment chart

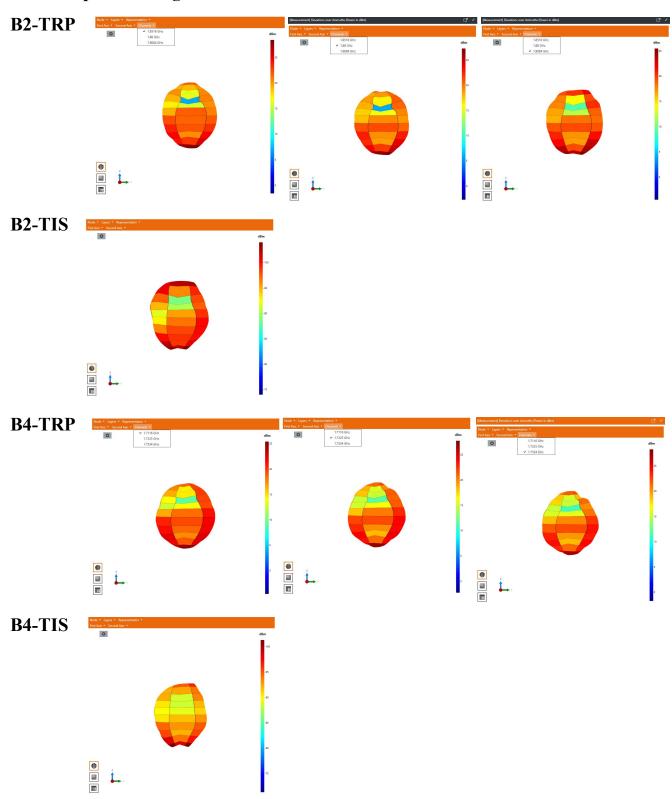
5.1 Parameters of Return Loss and VSWR and impedance diagram--main antenna

RF1:B5/Medium high frequency


RF2:B13

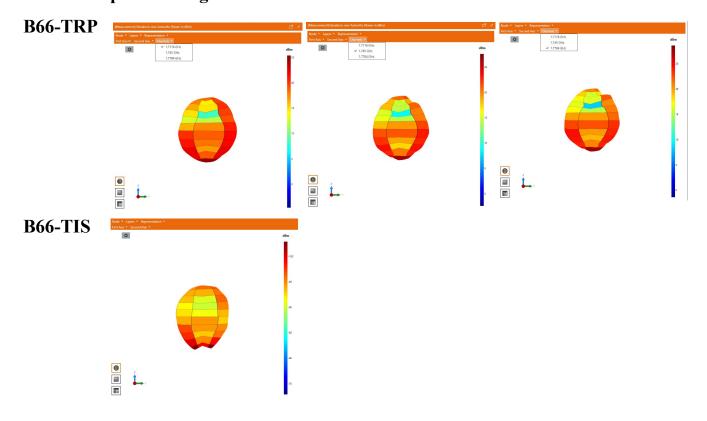
www.Topant.com.cn

Confidentiality requirements


6. Field pattern diagram

www.Topant.com.cn

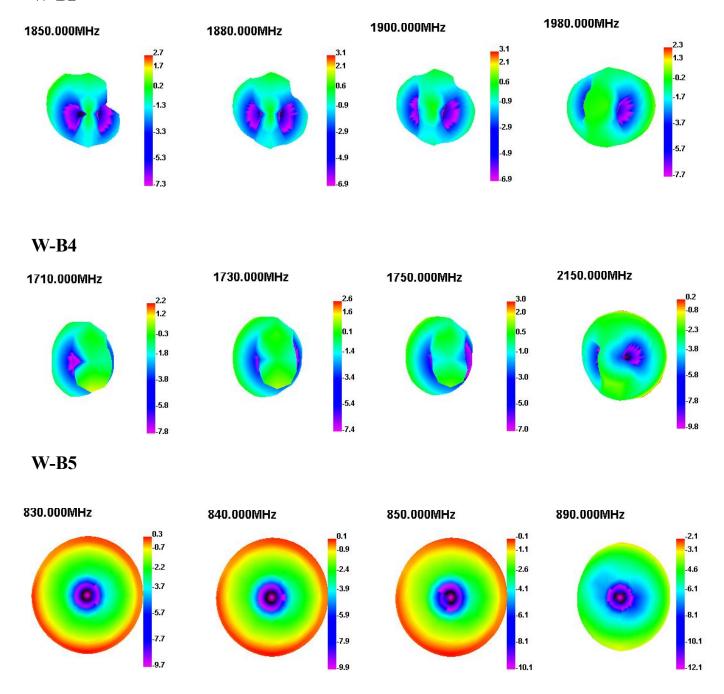
Confidentiality requirements


6.1 Field pattern diagram

www.Topant.com.cn

Confidentiality requirements

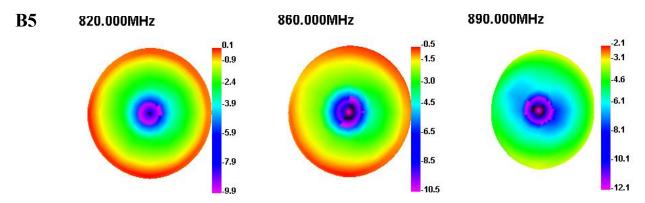
6.1.1 Field pattern diagram

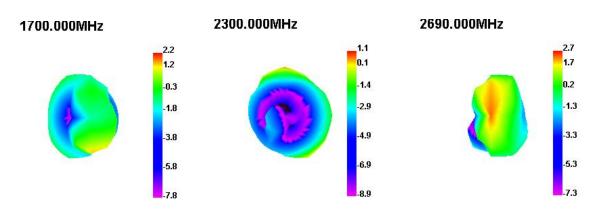


www.Topant.com.cn

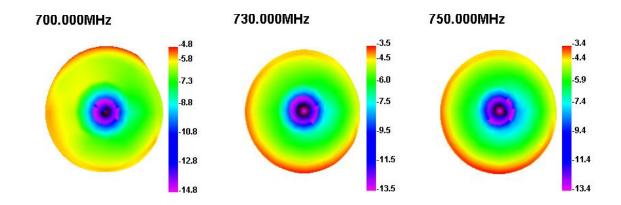
Confidentiality requirements

7.2D&3DPassive field type diagram-WCDMA

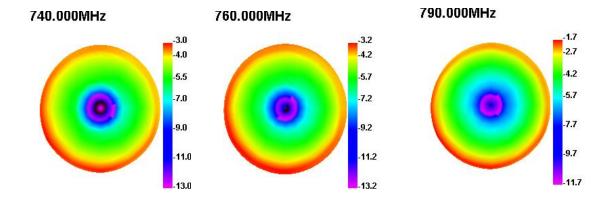

W-B2


www.Topant.com.cn

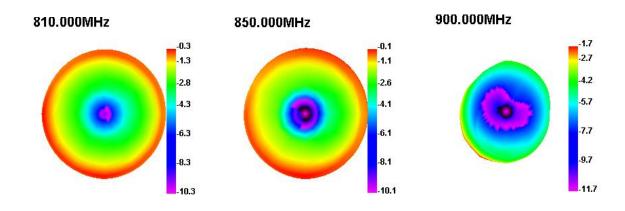
Confidentiality requirements


8.2D&3DPassive field type diagram-LTE

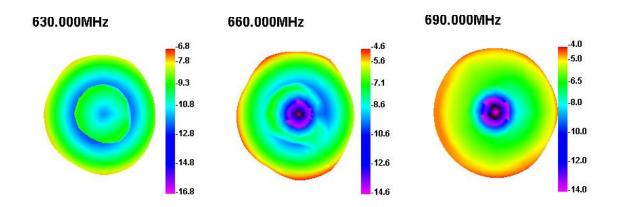
Medium high frequency



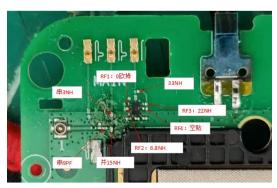
B12



www.Topant.com.cn

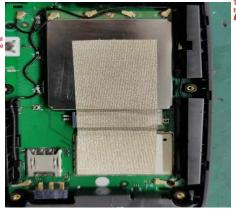

Confidentiality requirements

B26


B71

www.Topant.com.cn

Confidentiality requirements

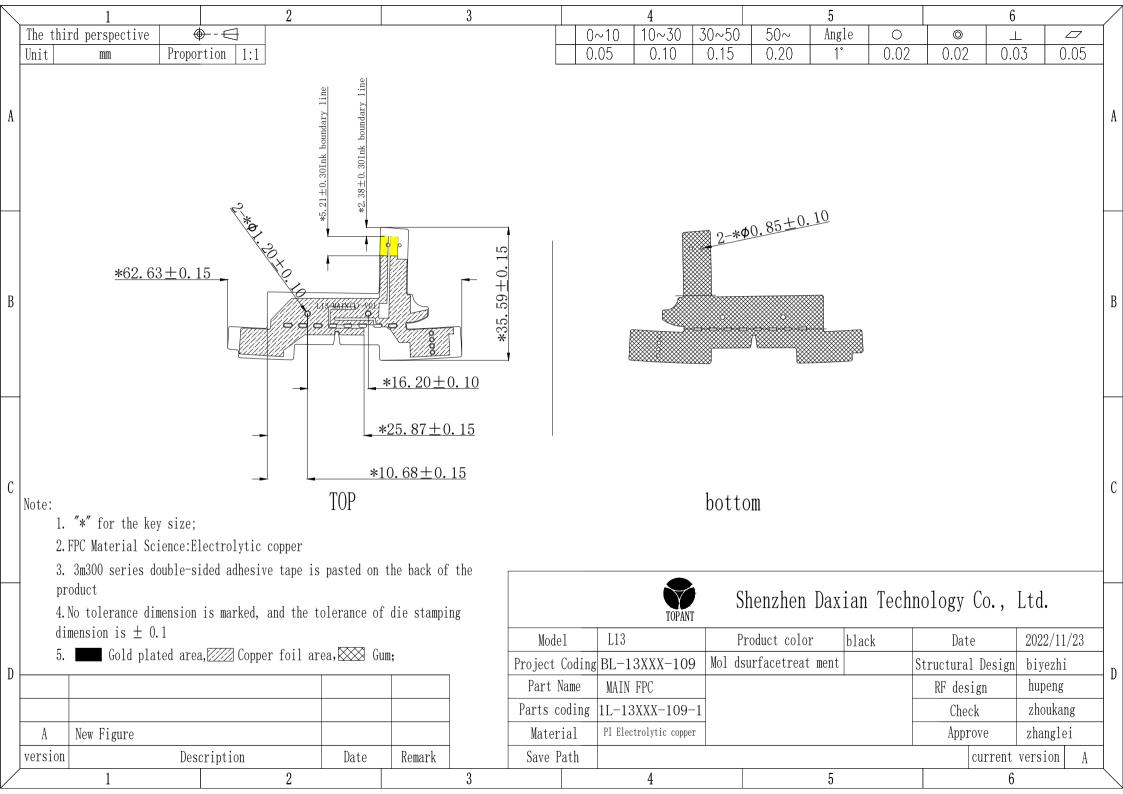

9. Matching circuit

主天线开关逻辑		
Element	Numbervalue	Band
RF1	0欧姆	LTE B2/4/5/41/66 VCDWA 2/4/5
RF2	6.8NH	LTE B13
RF3	22NH	LTE B12
RF4	空點	LTE B71

10. Environmental treatment

The width of the conductive cloth must be increased, or it will affect the IF TIS. At present, two conductive sponges are pasted to increase the grounding width.

导电布的宽度必须加大,否则对中频 TIS 有影响。目前是贴了两条导电海绵增加接地宽度.


The module should be grounded with the main board shield, otherwise it will have a great impact on the low-frequency TIS. Current conductive cloth size: 23mm * 58mm.

模块要跟主板屏蔽罩接地, 否则对低频 TIS 影响很大。 目前的导电布尺寸: 23mm*58mm.

The coaxial line here interferes with the shell material structure, and the bone position on the shell material needs reduced. (The coaxial line here is bent to avoid B48 receiving coaxial line being too close to the antenna). 此处同轴线与壳料结构干涉, 壳料上的骨位需要减掉。(此 处同轴线折弯, 避免 B48 接收 同轴线离天线太近).

www.Topant.com.cn

Confidentiality requirements

