QR/RD-P01-06B

SPECIFICATION

Daxian Communication Technology Limited

Shenzhen Daxian Technology Co., Ltd.

Unimax L13 Diversity antenna

Product specification book

client	Unimax	frequency range	LTE B2/4/5/7/12/13/25/26/38/41(249 6-2690)/42/66/71
project name	L13	edition	V01
Material number	2L-13XXX-109	pigment	black
RF design	Peng.Hu	architectural design	YeZhi.Bi
QA Manager	ZiYin.Hu	Technical Director	承认书审理章
date		2022-11-29	

Customer confirmation:

Shenzhen Topant Technology Co., Ltd.

Buji Town, Longgang District, Shenzhen, China Jihua Road 513, Sh an g shuijing Village (opposite the national defense training base) Dacheng Industrial Park, Building 7. TEL:0755-28576002 FAX:0755-84276383

Room201, Building8, LongDongRoad3000#, Semiconductor Industry Park, ZhangJiang Hitech Zone, ShangHai TEL:021-61630552 FAX:755-84276383

version			Initiate			
	Change the content	Change reason	the change	date	modifier	
number	-		party			
V1.0	found		P == 0 J	2022.11.29		
V1.0	Toulla			2022. 11. 29		

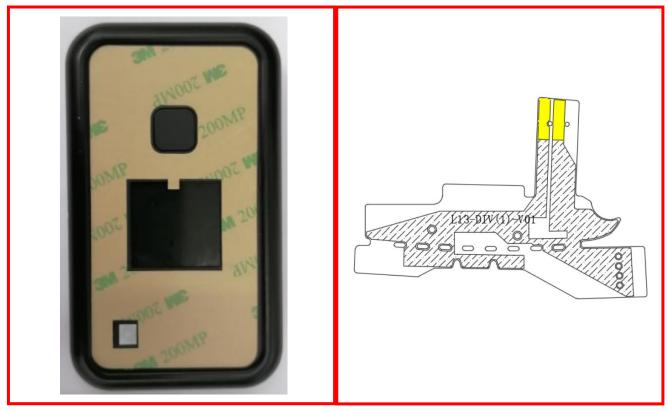
Change the resume

www.Topant .com .cn

Confidentiality requirements

index of matrix

I. Project Description4	
II. Diversity antenna	
1. Specification:	
1.1Electrical Specification Standard5	
1.1.1 Electrical performance index6	
1.2 Structural specification standard6	
1.2.1 Antenna composition7	
2. Test environment7	
3. Test	
3.1 Resident Wave (VSWR) test8	
3.1.1 Test the connection to the8	
3.2 Efficiency, power (TRP), sensitivity (TIS) test8	
3.2.1, Test site	
3.2.2. Test instrument	
3.2.3 test data8-10	D
4. Conclusion10)
5. Annex chart11	
5.1Return Loss and VSWR and impedance park diagram parameters Figure	
6、2D&3DPassive field type diagram12-1	3
7、Matching circuit14	ł
8、Environmental treatment14	1
III. Project drawing	;


I project description

Customer Name:	Unimax
Complete machine type:	MIFI
Antenna band:	LTE B2/4/5/7/12/13/25/26/38/41(2496-2690)/42/66/71
Antenna form:	FPC
Feeding form:	welding
Number of feeders:	/
Hardware version:	/

II Diversity antenna

1 Specifications

This report mainly provides the router antenna <u>L13</u> Test status of various electrical and structural performance parameters. The following picture shows the antenna picture of the display design.

Appearance diagram of the whole machine and the antenna appearance diagram

www.Topant.com.cn

Confidentiality requirements

1.1 Electrical specifications and standards

1.1.1 Electric performance index

Antenna operating frequency band is in:

LTE:1850MHz~1990MHz,1710MHz~2155MHz,824MHz~894MHz,777MHz~756MHz,1710MHz ~2200MHz,2500MHz~2690MHz,699MHz~746MHz,1850MHz~1995MHz,814MHz~894MHz,257 0MHz~2620MHz,2496MHz~2690MHz,3400MHz~3600MHz,663MHz~652MHz . The following table is the index of the electrical performance of the explicit design and mass production antenna.

	LTE -band B 2				
band	band (MHz) The transmit	VSWR	band (MHz) The receiving end	VSWR	
	TX		RX		
LTE -B 2	1850~1910	$\leqslant 4$	1930~1990	$\leqslant 4$	
		LTE -band B 4			
	band (MHz)	- VSWR -	band (MHz)		
band	The transmit TX		The receiving end RX	VSWR	
LTE -B 4	1710~1755	$\leqslant 4$	2110~2155	≪4	
	LTE -band B 5				
	band (MHz)	UCHIP	band (MHz)	LOUD	
band	The transmitter TX	VSWR	The receiving end RX	VSWR	
LTE -B 5	824~849	≪4	869~894	≪4	

www.Topant.com.cn Confidentiality requirements

		LTE -band B 7	7	
	band (MHz)		band (MHz)	
band	The transmit TX	VSWR	The receiving end RX	VSWR
LTE -B 7	2500~2570	$\leqslant 4$	2620~2690	≪4
		LTE -band B	12	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 12	699~716	$\leqslant 4$	729~746	≪4
		LTE -band B	25	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 25	1850~1915	$\leqslant 4$	1930~1995	$\leqslant 4$
	·	LTE -band B	26	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 26	814~849	≪4	859~894	≪4
		LTE -band B	38	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 38	2570~2620	$\leqslant 4$	2570~2620	$\leqslant 4$
		LTE -band B	41	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 41	2496~2690	$\leqslant 4$	2496~2690	≪4
	· · ·	LTE -band B	42	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 42	3400~3600	≪4	3400~3600	≤4
	,	LTE -band B	41	
	band (MHz)		band (MHz)	
band	The transmitter TX	VSWR	The receiving end RX	VSWR
LTE -B 71	663~698	≪4	617~652	≪4

www.Topa²nt.com.cn Confidentiality requirements Shenzhen Daxian Technology Co., Ltd. has the materials provided by the proprietary technology, and these proprietary materials shall be strictly confidential and are not allowed to be disclosed to anyone or the company without the prior written consent of Shenzhen Daxian Technology Co., Ltd. Technology Co., Ltd.

1.2 Antenna composition

The antenna is mainly composed of <u>FPC</u>.

2. The Equipment of Active Test

Satimo 3D Chamber $6 \times 4 \times 4(m)$

Ag ilent 8960 E 5515c

Network analyzer-R&S ZVL

graph 2

www.Topant.com.cn Confidentiality requirements

3 Test

3.1 Standing Wave (VSWR) test

3.1.1 3. Test connection: The sequential connection of the VSWR test device is: R & S ZVL network analyzer test line test and treatment

Measured (attached)

3.2 Gain and efficiency, power (TRP), sensitivity (TIS) testing

3.2.1 Test Site:

Large display microwave dark chamber. The test frequency range was 400MH z- -6GHz, the static area range was 50cm circumference, and the reflectivity was less than-50 dB.

3.2.2 Test instrument:

R & S ZVL Network Analyzer, Agilent8960 E5515C, Standard Speaker Antenna, French SATIMO-SG24SYSTEM System, Printer, etc.

3.2.3 Test data: In the microwave dark room, the test power and sensitivity-related values are shown in the following table:

OTA active test data:

BAND	СН	TRP	TIS
	18600	20.95	
FDD-B2	18900	20.08	
	19200	19.37	-98.28
	20050	19.15	
FDD-B4	20175	20.78	
	20350	20.9	-94.87
	20450	21.18	
FDD-B5	20525	20.85	
	20600	20.61	-92.91
	23230	19.99	
FDD-B13	23230	19.55	
	23230	19.31	-92.8
	66486	19.04	
TDD-B66	66786	20.24	
	67086	21.13	-95.36

www.Topant.com.cn

Confidentiality requirements

OTA Passive Efficiency & Gain-Diversity antenna-LTE

B5

Freq	Effi	Effi	Gain
(MH_Z)	(%)	(dB)	(dBi)
820	12.2	-9.14	-6.94
830	12.53	-9.02	-6.78
840	13.24	-8.78	-6.57
850	12.51	-9.03	-5.94
860	14.6	-8.36	-5.57
870	15.12	-8.2	-5.54
880	16.36	-7.86	-4.8
890	18.78	-7.26	-4.31
Freq	Effi	Effi	Gain
(MH_Z)	(%)	(dB)	(dBi)
2500	33.83	-4.71	0.74
2510	37.6	-4.25	-0.45
2520	36.4	-4.39	-0.31
2530	34.2	-4.66	-0.62
2540	33.43	-4.76	-0.51
2550	34.36	-4.64	-0.05
2560	34.79	-4.59	0.29
2570	35.9	-4.45	0.59
2580	36.61	-4.36	0.92
2590	37.08	-4.31	0.98
2600	35.99	-4.44	0.95
2610	36.87	-4.33	1.03
2620	36.65	-4.36	0.84
2630	35.86	-4.45	0.81
2640	35.48	-4.5	0.7
2650	35.91	-4.45	0.91
2660	36.49	-4.38	0.91
2670	34.87	-4.58	0.94
2680	36.25	-4.41	1.04
2690	38.12	-4.19	1.37
2700	38.68	-4.12	1.72

Freq	Effi	Effi	Gain
(MHz)	(%)	(dB)	(dBi)
1930	44.41	-3.52	-0.2
1940	48.1	-3.18	0.15
1950	48.45	-3.15	0.36
1960	49.41	-3.06	0.36
1970	49.69	-3.04	0.4
1980	48.18	-3.17	0.41
1990	45.31	-3.44	0.56
2000	43.9	-3.58	0.63
2010	42.22	-3.75	0.52
2020	41.65	-3.8	0.33
2030	41.42	-3.83	-0.02
2040	42.45	-3.72	0
2050	45.66	-3.4	0.26
2060	45.83	-3.39	0.16
2070	45.48	-3.42	0
2080	45.8	-3.39	0.07
2090	46.37	-3.34	0.22
2100	46.03	-3.37	0.26
2110	43.6	-3.6	0.08
2120	43.08	-3.66	-0.07
2130	43.01	-3.66	-0.13
2140	42.5	-3.72	-0.32
2150	41.88	-3.78	-0.22
2160	42.81	-3.68	0.03
2170	43.27	-3.64	0.06
2180	45.62	-3.41	0.27
2190	46.83	-3.3	0.39
2200	48.71	-3.12	0.39

www.Topant .com .cn Confidentiality requirements

B12

B71

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
720	10.24	-9.9	-6.93
730	10.76	-9.68	-6.61
740	10.44	-9.81	-6.92
750	10.16	-10.02	-7.28

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
740	12.42	-9.06	-7.04
750	12.03	-9.2	-6.58
760	10.95	-9.6	-6.71
770	14. 28	-8.45	-5.53

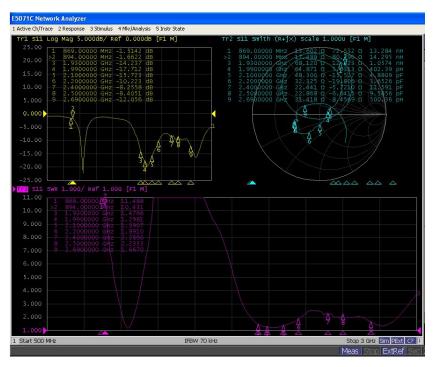
B26

Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
860	12.51	-9.03	-5.94
870	14.6	-8.36	-5.57
880	15.12	-8.2	-5.54
890	16.36	-7.86	-4.8
900	18. 78	-7.26	-4.31

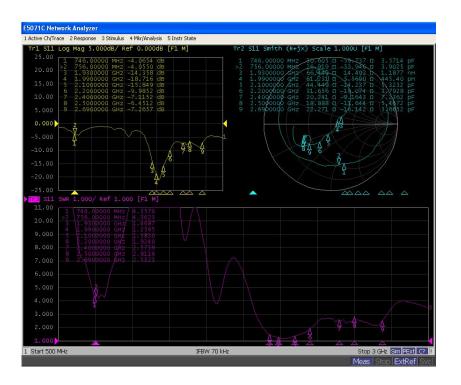
Freq (MHz)	Effi (%)	Effi (dB)	Gain (dBi)
620	10.87	-9.64	-6.65
630	10.53	-10.49	-6.26
640	11	-9.59	-5.5
650	11.53	-9.38	-5.35

4. Conclusion:

This antenna is designed on the basis of customer-provided prototype. Electrical parameters and structural performance have met the technical requirements. Please confirm!

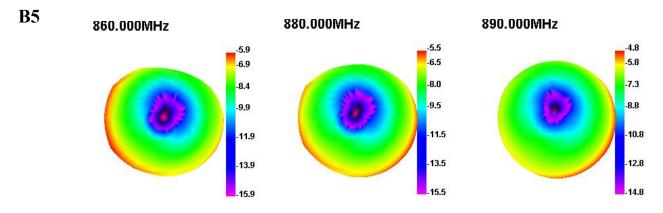

www.Topant.com.cn

Confidentiality requirements

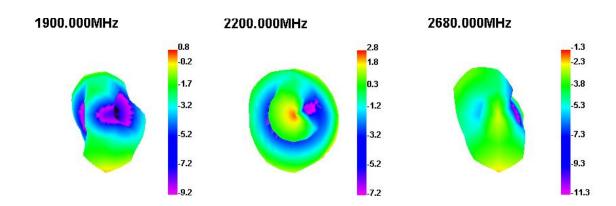

5. Attachment chart

5.1 Parameters of Return Loss and VSWR and impedance diagram--Diversity antenna

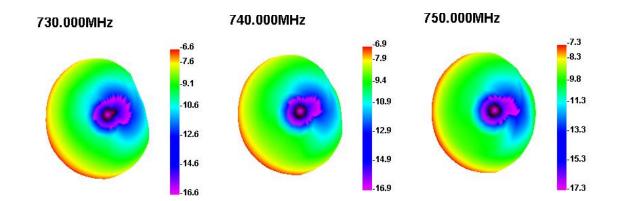
RF1:B5/Medium high frequency



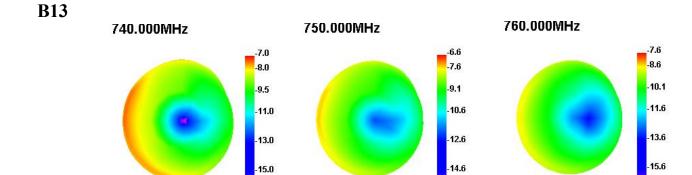
RF2:B13



www.Topant.com.cn Confidentiality requirements


6. 2D&3DPassive field type diagram

Centralized high frequency



B12

www.Topant .com .cn

Confidentiality requirements

-16.6

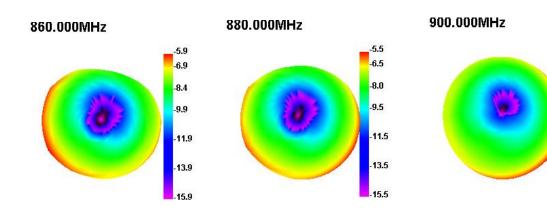
-17.0

-17.6

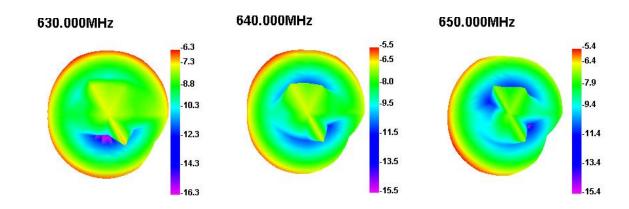
-4.3

-5.3

-6.8

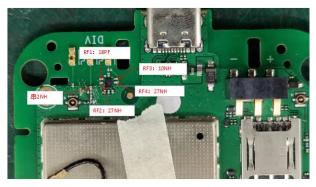

-8.3

10.3


12.3

14.3

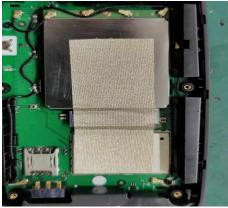
B26


B71

www.Topant .com .cn

Confidentiality requirements

7. Matching circuit


Diversity antenna switch logic				
Element	Numbervalue	Band		
RF1	18PF	LTE B2/4/5/41/66 WCDMA 2/4/5		
RF2	27NH	LTE B13		
RF3	10NH	LTE B12		
RF4	27NH	LTE B71		

8. Environmental treatment

The width of the conductive cloth must be increased, or it will affect the IF TIS. At present, two conductive sponges are pasted to increase the grounding width.

导电布的宽度必须加大,否则对中频 TIS 有影响。目前 是贴了两条导电海绵增加 接地宽度.

The module should be grounded with the main board shield, otherwise it will have a great impact on the low-frequency TIS. Current conductive cloth size: 23mm * 58mm. 模块要跟主板屏蔽罩接地, 否则对低频 TIS 影响很大。 目前的导电布尺寸: 23mm*58mm.

the bone position on the shell needs to be cut off-EXEMPTING TO THE FILL INFORMATION TO THE FILL INF

e coaxial line here interferes with the shell structure, and

The coaxial line here interferes with the shell material structure, and the bone position on the shell material needs to be reduced. (The coaxial line here is bent to avoid B48 receiving coaxial line being too close to the antenna). 此处同轴线与壳料结构干涉, 壳料上的骨位需要减掉。(此 处同轴线折弯, 避免 B48 接收 同轴线离天线太近).

www.Topant .com .cn Confidentiality requirements

New Figure

Date

2

Remark

3

Description

A version

Shenzhen Daxian Technology Co., Ltd.									
Mode1		L13]	Product color	black	Dat	е	2022/11	/23
roject C	Coding	BL-13XXX-109	Mol d	lsurfacetreat ment		Structural Design		biyezhi	
Part Na	Part Name DIV FPC					RF des	ign	胡鹏	
Parts coding 2L-13XXX-109-1				Check		zhoukar	g		
Material PI Electrolyti		PI Electrolytic copper			-	Аррі	cove	zhangle	i
Save Path						current version A		А	
	4		5 6		·				