

TEST REPORT

APPLICANT	:	Great Talent Technology Limited

- PRODUCT NAME : Mobile Hotspot
- MODEL NAME : RA312
- **BRAND NAME** : N/A
- FCC ID : 2ALZM-RA312
- STANDARD(S) : 47 CFR Part 15 Subpart E
- **RECEIPT DATE** : 2022-10-09
- **TEST DATE** : 2022-10-19 to 2022-11-11
- **ISSUE DATE** : 2022-12-08

Edited by:

Yong Nii

Peng Mi (Rapporteur)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

DIRECTORY

1. S	ummary of Test Result······4
1.1.	Testing Applied Standards5
1.2.	Test Equipment List ······6
1.3.	Measurement Uncertainty8
1.4.	Testing Laboratory
2. G	eneral Description ······9
2.1.	Information of Applicant and Manufacturer ······9
2.2.	Information of EUT······9
2.3.	Channel List of EUT ·······11
2.4.	Test Configuration of EUT ······12
2.5.	Test Conditions 12
2.6.	Test Setup Layout Diagram ······13
3. T	est Results ·······16
3.1.	Antenna Requirement ······16
3.2.	Duty Cycle of Test Signal17
3.3.	Maximum Conducted Output Power ······18
3.4.	Emission Bandwidth ······20
3.5.	Peak Power Spectral Density ······22
3.6.	Frequency Stability
3.7.	Conducted Emission 24
3.8.	Restricted Frequency Bands 25
3.9.	Radiated Emission
Anne	ex A Test Data and Result ······29

REPORT No. : SZ22090379W06

Change History			
Version	Date	Reason for change	
1.0	2022-12-08	First edition	

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	ANSI C63.10	Duty Cycle of the Test Signal	Oct. 25, 2022	Su Xiaoxian	PASS	No deviation
3	15.407(a)	Maximum Conducted Output Power	Oct. 25, 2022	Su Xiaoxian	PASS	No deviation
4	15.407(a) (e)	Emission Bandwidth	Oct. 25, 2022	Su Xiaoxian	PASS	No deviation
5	15.407(a)	Peak Power Spectral Density	Oct. 25, 2022	Su Xiaoxian	PASS	No deviation
6	15.407(g)	Frequency Stability	Oct. 25, 2022	Su Xiaoxian	PASS	No deviation
7	15.207	Conducted Emission	Oct. 31, 2022	Fan Zehang	PASS	No deviation
8	15.407(b)	Restricted Frequency Bands	Nov. 11, 2022	Gao Jianrou	PASS	No deviation
9	15.407(b)	Radiated Emission	Nov. 09, 2022	Gao Jianrou	PASS	No deviation

Note 1: The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.102013.

Note 2: These RF tests were performed according to the method of measurements prescribed in KDB789033 D02 v02r01.

Note 3: These RF tests were performed according to the method of measurements prescribed in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

Note 4: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 5: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

REPORT No. : SZ22090379W06

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• 47 CFR Part 15 Subpart E Radio Frequency Devices

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1.2. Test Equipment List

1.2.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal	MY5347083	N0010A	Agilopt	2022 03 01	2023 02 28
Analzyer	6	N9010A	Aglient	2022.03.01	2023.02.20
USB Wideband	MY5418000		Agilant	2022 10 11	2022 10 10
Power Sensor	8	020217A	Aglient	2022.10.11	2023.10.10
Temperature	10100015	DTL-	VOMA	2022 10 10	2022 10 00
Chamber	12108015	003S101	YOMA	2022.10.10	2023.10.09
RF Cable	0004		Mariah	N1/A	N1/A
(30MHz-26GHz)	CB01	REUT	worlad	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
			HUBER-		
Sivia Connector	CINUT	KFU3	SUHNER	IN/A	IN/A

1.2.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY5640009 3	N9038A	KEYSIGHT	2022.03.03	2023.03.02
LISN	8127449	NSLK 8127	Schwarzbeck	2022.03.03	2023.03.02
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561- F	Schwarzbeck	2022.07.06	2023.07.05
Coaxial Cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

1.2.3 List of Software Used

Description	Manufacturer	Software Version
Test System	MaiWei	2.0.0.0
Morlab EMCR V1.2	Morlab	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

1.2.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2022.07.06	2023.07.05
Test Antenna - Bi- Log	9163-519	VULB 9163	Schwarzbeck	2022.05.25	2025.05.24
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2022.02.11	2025.02.10
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2022.07.13	2025.07.12
Test Antenna – Horn	BBHA9170#7 73	BBHA 9170	Schwarzbeck	2022.07.14	2025.07.13
Coaxial Cable (N male) (9KHz- 30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-40GHz)	CB05	EMC05	Morlab	N/A	N/A
1-18GHz pre- Amplifier	61171/61172	S020180L32 03	Tonscend	2022.07.08	2023.07.07
18-26.5GHz pre- Amplifier	46732	S10M100L38 02	Tonscend	2022.07.08	2023.07.07
26-40GHz pre- Amplifier	56774	S40M400L40 02	Tonscend	2022.07.08	2023.07.07
Notch Filter	N/A	WRCG- 5150-5350	Wainwright	2022.07.08	2023.07.07
Notch Filter	N/A	WRCG- 5470-5725	Wainwright	2022.07.08	2023.07.07
Notch Filter	N/A	WRCG- 5725-5850	Wainwright	2022.07.08	2023.07.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06	2023.01.05

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1.3. Measurement Uncertainty

Test Items	Uncertainty	Remark
Peak Output Power	±2.22dB	Confidence levels of 95%
Power Spectral Density	±2.22dB	Confidence levels of 95%
Bandwidth	±5%	Confidence levels of 95%
Restricted Frequency Bands	±5%	Confidence levels of 95%
Radiated Emission	±2.95dB	Confidence levels of 95%
Conducted Emission	±2.44dB	Confidence levels of 95%

1.4. Testing Laboratory

Laboratory Name	Shenzhen Morlab Communications Technology Co., Ltd.	
	FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,	
Laboratory Address	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.	
	China	
Telephone	+86 755 36698555	
Facsimile	+86 755 36698525	

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	Great Talent Technology Limited		
Applicant Address	35F, HBC HuiLong Center Building-II Minzhi Street Longhua,		
Applicant Address	Shenzhen, P.R. China		
Manufacturer Great Talent Technology Limited			
Manufacturer Address	35F, HBC HuiLong Center Building-II Minzhi Street Longhua,		
Manufacturer Address	Shenzhen, P.R. China		

2.2. Information of EUT

Product Name:	Mobile Hotspot		
Sample No.:	6#		
Hardware Version:	SUB_V1.0_0530		
Software Version:	L13_v1.0.8_RLK		
Modulation Technology:	OFDM		
Modulation Mode:	802.11a, 802.11n	(HT20), 802.11n (HT40)	
	802.11ac (VHT20), 802.11ac (VHT40), 802.11ac (VHT80)	
Operating Frequency Range:	5180MHz-5240M	IHz; 5745MHz-5825MHz	
Antenna Type:	PIFA Antenna		
Antenna Gain:	ANT 0: 2.86dBi; ANT 1: 3.46dBi		
Directional Gain:	6.47dBi _{Note 2}		
	Battery		
	Brand Name:	N/A	
	Model No.:	BTE-3401	
Accessory Information:	Serial No.:	N/A	
Accessory information:	Capacity:	3400mAh	
	Rated Voltage:	3.8V	
	Charge Limit:	4.35V	
	Manufacturer:	Phenix New Energy (Hui Zhou) Co., Ltd.	

	AC Adapter			
Accessory Information:	Brand Name:	N/A		
	Model No.:	TPA-5950100UU		
	Serial No.:	N/A		
	Rated Output:	5V1A		
	Rated Input:	100-240V~50/60Hz, 0.2A		
	Manufacturer:	Shenzhen kingfulin Technology Co.,Ltd		

Note 1: The EUT supports a MIMO function. Physically, the EUT provides two completed transmitters and two receivers for 802.11n, 802.11ac and 802.11ax modulation mode.

Modulation Mode:	TX Function
802.11n	2TX
802.11ac	2TX

Note 2: According to KDB 662911 D01, the directional gain = G_{ANT} + 10log(N_{ANT}) dBi, where G_{ANT} is the maximum antenna gain in dBi, N_{ANT} is the number of outputs.

Note 3: For conducted test item Conducted Output Power and Peak Power Spectral Density of each modulation mode, we recorded the test result of two antennas separately, for other conducted test items both of the two antennas were tested separately, we only recorded the worst test result (ANT0) in this report.

Note 4: All radiation test items for 802.11n, 802.11ac and 802.11ax modulation mode operate at MIMO mode during the test. Other modulation mode operate at SISO mode, both of the two antennas were tested separately, we only recorded the worst test result(ANT0) in this report.

Note 5: We use the dedicated software to control the EUT continuous transmission.

Note 6: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.3. Channel List of EUT

(U-NII-1) 5180MF	lz-5240MHz			
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
201417	36	5180	40	5200
	44	5220	48	5240
40MHz	38	5190	46	5230
80MHz	42	5210		
(U-NII-3) 5745M⊦	lz-5825MHz			
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	149	5745	153	5765
20MHz	157	5785	161	5805
	165	5825		
40MHz	151	5775	159	5795
80MHz	155	5775		

Note 1: The black bold channels were selected for test.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

2.4. Test Configuration of EUT

2.4.1.Modulation Type and Data Rate of EUT

Mode	Bandwidth (MHz)	Modulation Technology	Modulation Type	Data Rate	RU Size	
			DBPSK			
802.11a	20	OFDM	DQPSK	1 /2/5.5/11Mbps	N/A	
			CCK			
			BPSK			
802.11n	20/40 (HT20/40)	OFDM	QPSK	MCS0-MCS7	N/A	
			16QAM			
			64QAM			
			BPSK			
802.11ac	20/40/90		QPSK		N/A	
	20/40/00 (\/UT20/40/00)	OFDM	16QAM	MSC0~MCS9		
	(VH120/40/60)		64QAM			
			256QAM			

Note1: The worst-case mode (bold face) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

2.5. Test Conditions

Temperature (°C)	15-35
Relative Humidity (%)	30-60
Atmospheric Pressure (kPa)	86-106

Http://www.morlab.cn

2.6. Test Setup Layout Diagram

2.6.1.Conducted Measurement

For power item that BW below 80MHz system:

For power item that BW equal or above 80MHz and other items:

2.6.2.Conducted Emission Measurement

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn

2.6.3.Radiation Measurement

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.1. Antenna Requirement

3.1.1.Requirement

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Result

Inside of the EUT has a PIFA antenna coupled with the metal shrapnel. Please refer to the EUT photos.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Page 16 of

3.2. Duty Cycle of Test Signal

3.2.1.Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%).When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration(T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be non constant.

3.2.2.Test Result

Refer to Annex A.1 in this report.

3.3. Maximum Conducted Output Power

3.3.1.Requirement

(1) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250mW provided the maximum antenna gain does not exceed 6dBi.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or 11dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT})dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

3.3.2.Test Procedures

Section E) 3) of KDB 789033 defines a methodology using a USB Wideband Power Sensor. **Test Setup:**

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in USB Wideband Power Sensor.

For ac (VHT80) mode power

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

3.3.3.Test Result

Refer to Annex A.2 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.4. Emission Bandwidth

3.4.1.Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.4.1.Test Procedures

1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for theband5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.

b) Set video bandwidth (VBW) \geq 3 × RBW.

- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

REPORT No. : SZ22090379W06

3.4.2.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.4.3.Test Result

Refer to Annex A.3 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

E-mail: service@morlab.cn

Http://www.morlab.cn

3.5. Peak Power Spectral Density

3.5.1.Requirement

(1)For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30dBm in any 500kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT}) dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

3.5.2.Test Procedures

KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-3 was used in order to prove compliance

- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1MHz. Set VBW \geq 3MHz
- 3) Number of points in sweep \geq 2 Span / RBW. Sweep time = auto
- 4) Detector = Average
- 5) Trace mode=Max hold

Record the max value

3.5.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.5.4.Test Result

Refer to Annex A.4 in this report.

3.6. Frequency Stability

3.6.1.Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2.Test Procedures

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between 5°Cto 40°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

3.6.3.Test Result

Refer to Annex A.5 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

3.7. Conducted Emission

3.7.1.Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Fraguanay Rango (MHz)	Conducted Limit (dBµV)				
Frequency Range (MHZ)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

Note:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.7.2.Test Procedures

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

3.7.3.Test Setup Layout

Refer to chapter 2.6.2 in this report.

3.7.4.Test Result

Refer to Annex A.7 in this report.

3.8. Restricted Frequency Bands

3.8.1.Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu \text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dBuV/m

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Eax: 86-755-36698525 Http://www.morlab.cn

REPORT No. : SZ22090379W06

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.8.2.Test Procedures

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

3.8.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.8.4.Test Result

Refer to Annex A.8 in this report.

3.9. Radiated Emission

3.9.1.Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

$$E = 1000000 \times \sqrt{30P} / 3_{\mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 - 30.0	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.9.2.Test Procedures

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz.The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

3.9.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.9.4.Test Result

Refer to Annex A.9 in this report.

Annex A Test Data and Result

A.1. Duty Cycle of Test Signal

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5180	Ant1	95.5	0.2	0.49
NVNT	n20	5180	Ant1	94.99	0.22	0.53
NVNT	n40	5190	Ant1	90.76	0.42	1.08
NVNT	ac20	5180	Ant1	95	0.22	0.53
NVNT	ac40	5190	Ant1	83.26	0.8	2.03
NVNT	ac80	5210	Ant1	72.81	1.38	3.96

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

		Test Gra	phs		
	Duty	Cycle NVNT a	5180MHz Ar	nt1	
enter Freq 5.1800	AC DOODOO GHZ PNO IFGa	SENSEPULSE SOURCE	off (<u>M</u> align auto/Norf Avg Tyj an 3	be: Log-Pwr	04:04:57 PM Oct 20, 2022 TRACE 23 4 5 TYPE WALKAND DET P N N N N
Ref Offset 1 0 dB/div Ref 20.00	1.98 dB dBm				Mkr1 1.492 ms -3.44 dBm
og 10.0 Han dit blandter bland 10.0 Han af tra blandter bland		2 and the Alert of Alert of the Alert		and a state of the	
0.00					
20.0 30.0					
40.0 50.0					
50.0 70.0					
Center 5.180000000	GHz				Span 0 H
Res BW 8 MHz	×	#VBW 8.0 MHz	ION FUNCTION WIDTH	Sweep 5.0	00 ms (10001 pts
1 N 1 t 2 N 1 t 3 N 1 t	1.492 ms 1.588 ms 3.616 ms	-3.44 dBm 12.46 dBm -1.02 dBm			
4	0.010 ms	-1.02 (1011)			
7					
5G			STATUS		
	Duty C	Cycle NVNT n20	0 5180MHz A	Ant1	
gilent Spectrum Analyzer - Sw RL RF 500 Coptor Frog 5 1900	AC	SENSERULEE SOURCE		e:Log-Pwr	04:05:17 PM Oct 20, 2022
enter Freq 5. 1800	PNO IFGai	: Fast Trig: Free Ru in:Low #Atten: 30 dE	un B		DET P. N.N.N.N
Ref Offset 1 0 dB/div Ref 20.00	1.98 dB d Bm				Mkr1 946.5 µ -11.62 dBn
og 10.0 <mark>- Henri Hunter Istola</mark> 10.0 - Henri Hunter Istola	an Parameter				
10.0					
20.0					
40,0	- A <mark>ppa</mark>				
60.D					
(à à)					
/0.0	SHz				Span 0 H
Center 5.180000000 (tes BW 8 MHz	GHz	#VBW 8.0 MHz		Sweep 5.0	Span 0 H 00 ms (10001 pts
Center 5.1800000000 Les BW 8 MHz MM MODE TAC SCL 2 N 1 t	SHz × 946.5 µs 1.046 ms	#VBW 8.0 MHz Y FUNCTI -11.62 dBm 12.49 dBm	ION FUNCTION WIDTH	Sweep 5.0	Span 0 H 100 ms (10001 pts DN VALUE
Autor Senter 5.1800000000 Res BW 8 MHz NRM MODE_TAC_SCL 1 N 2 N 3 N 4	GHz 946.5 µs 1.046 ms 2.935 ms	#VBW 8.0 MHz Y FUNCH -11.62 dBm 12.49 dBm -8.41 dBm	ION FUNCTION WIDTH	Sweep 5.0	Span 0 H 100 ms (10001 pts DN VALUE
ABU Center 5.1800000000 KR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 6 6 7 8	GHz 946.5 us 1.046 ms 2.935 ms	#VBW 8.0 MHz Y FUNCTI -11.62 dBm 12.49 dBm -8.41 dBm	ION FUNCTION WIDTH	Sweep 5.0 Function	Span 0 H 100 ms (10001 pts DN VALUE
enter 5.180000000 (es BW 8 MHz KR MODE TAC SCL) 1 N 1 t 3 N 1 t 4 6 6 7 7 8 8 9 0	GHz 946.5 µs 1.046 ms 2.935 ms	#VBW 8.0 MHz Y FUNCT -11.62 dBm 12.49 dBm -8.41 dBm	ION FUNCTION WIDTH	Sweep 5.0 FUNCTO	Span 0 H 100 ms (10001 pt DN VALUE

REPORT No. : SZ22090379W06

	Duty Cycle	e NVNT n40 519	00MHz Ant1	
glent Spectrum Analyzer - Swept SA BL 85 50 Q AC enter Freq 5.19000000	00 GHz PNO: Fast IFGain:Low	SENSEPLUSE SOURCE OFF (AL# Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	04:08:52 PM Oct 20, 202 TRACE 123 4 TYPE WWWW DET P N N N I
Ref Offset 15.01 c Ref 20.00 dBm	B			Mkr1 605.0 µ 1.73 dBr
10.0 a construction of an	Adapting and a second	ing been stated by the second state of the sec	Manana ang kang sang sang sang sang sang sang sang s	
enter 5.190000000 GHz tes BW 8 MHz	#	VBW 8.0 MHz	Sweep 5.	Span 0 000 ms (10001 pt
KA MODE TRC SCL : N 1 t N 1 t N 1 t N 1 t 4	605.0 µs 699.5 µs 1.628 ms -20	Y FUNCTION F 173 dBm 0.42 dBm 0.71 dBm	UNCTION WIDTH FUNC	NON VALUE
5 6 7 8 9 9				
				1
G	Duty Cycle			
ilent Spectrum Analyzer – Swept SA	Duty Cycle			
RL RF 50Ω AC enter Freq 5.18000000	00 GHz PNO: Fast IFGain:Low	SENSEPULSE SOURCE OFF ▲▲ → Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	04:08:09 PM Oct 20, 20 TRACE 2 2 4 TYPE WILLING DET P N // N
Ref Offset 14.98 o dB/div Ref 20.00 dBm	В			Mkr1 398.0 µ 8.10 dB
οα 1 ο ο το		and data to A ³ al Analysi And Analysi And Analysi And Analysi	n dan yang seri dan dan yang seri dan seri dan yang seri dan yang seri dan seri dan seri dan seri dan yang seri Kanggan funcasi seri dan seri Seri dan seri dan se	
00 00 00 00 00 00 00 00 00 00 00 00 00				Span 0 H
INT MODE THE SEL	#	VBW 8.0 MHz	Sweep 5.	000 ms (10001 pt TION VALUE
1 N 1 t 2 N 1 t 3 N 1 t 4 - - - 5 - - - 6 - - - 7 - - -	398.0 µs 8 498.0 µs 4 2.399 ms 7	1.00 dBm 1.97 dBm 7.83 dBm	A CONTRACT FUNC	
9 10 11				

REPORT No. : SZ22090379W06

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

A.2. Maximum Conducted Output Power

802.11a Mode

			Ave	erage Po	wer					
Frequency	Meas	sured	Duty	Du	Duty Factor Calculated Limit		Vordict			
(MHz)	ANT0	ANT1	Factor	or ANTO ANT1		IT1			veruici	
	dBm	dBm		dBm	W	dBm	W	dBm	W	
5180	11.81	11.21		12.01	0.016	11.41	0.014			
5220	12.17	11.45		12.37	0.017	11.65	0.015	24	0.25	
5240	12.19	11.47	0.20	12.39	0.017	11.67	0.015			DASS
5745	14.22	12.05	0.20	14.42	0.028	12.25	0.017			FA33
5785	11.97	12.10		12.17	0.016	12.30	0.017	30	1	
5825	12.18	12.41		12.38	0.017	12.61	0.018			

802.11n (HT20) Mode

Frequency	Meas	ured	Duty Total Power with Duty		Limit		Vordiat	
(MHz)	ANT0	ANT1	Factor Factor				verdict	
	dBm	dBm		dBm	W	dBm	W	
5180	11.62	10.96		14.47	0.028	23.53	0.23	PASS
5220	11.91	11.19	0.22	14.77	0.030			
5240	11.90	11.20		14.77	0.030			
5745	13.97	11.82	0.22	16.23	0.042			
5785	11.85	11.77		15.05	0.032	29.53	0.90	
5825	11.86	12.18		15.31	0.034			
Note: Directional gain =2.86dBi +10log(2) = 6.47dBi>6dBi, so the power limit shall be								
reduced to 24-(6.47-6) = 23.53dBm for 5.18-5.24GHz, 5.260-5.320GHz, 5.500-5.720GHz band								
and reduced to 30-(6.47-6) = 29.53dBm for 5.745-5.825GHz band.								

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

802.11n (HT40) Mode

	Average Power							
Frequency	Meas	ured	d Duty Total Power with Duty		r with Duty	Limit		Vendiet
(MHz)	ANT0	ANT1	Factor	Fac	ctor			verdict
	dBm	dBm		dBm	W	dBm	W	
5190	12.20	11.39		15.19	0.033	23.53	0.23	PASS
5230	12.32	11.64	0.40	15.44	0.035			
5755	14.60	12.20	0.42	16.99	0.050		0.00	
5795	12.30	12.11		15.68	0.037	29.53 0.90		
Note: Directional gain =2.86dBi +10log(2) = 6.47dBi>6dBi, so the power limit shall be								
reduced to 24-(6.47-6) = 23.53dBm for 5.18-5.24GHz, 5.260-5.320GHz, 5.500-5.720GHz band								
and reduced	and reduced to 30-(6.47-6) = 29.53dBm for 5.745-5.825GHz band.							

802.11ac (VHT20) Mode

	Average Power							
Frequency	Meas	ured	Duty	Total Powe	al Power with Duty		Limit	
(MHz)	ANT0	ANT1	Factor Factor				verdict	
	dBm	dBm		dBm	W	dBm	W	
5180	11.47	10.86		14.47	0.028		0.23	PASS
5220	11.88	11.17		14.77	0.030	23.53		
5240	11.97	11.26	0.00	14.91	0.031			
5745	13.95	11.78	0.22	16.23	0.042	29.53	0.90	
5785	11.90	11.81		15.05	0.032			
5825	11.88	12.07		15.19	0.033			
Note: Directional gain =2.86dBi +10log(2) = 6.47dBi>6dBi, so the power limit shall be								
reduced to 24-(6.47-6) = 23.53dBm for 5.18-5.24GHz, 5.260-5.320GHz, 5.500-5.720GHz band								
and reduced to 30-(6.47-6) = 29.53dBm for 5.745-5.825GHz band.								

802.11ac (VHT40) Mode

	Average Power							
Frequency	Meas	Measured Duty To		Total Powe	Total Power with Duty		Limit	
(MHz)	ANT0	ANT1	Factor	Fac	ctor			verdict
	dBm	dBm		dBm	W	dBm	W	
5190	12.06	11.43		15.56	0.036	23.53	0.23	PASS
5230	12.24	11.46	0.00	15.68	0.037			
5755	14.49	12.25	0.00	17.32	0.054		0.00	
5795	11.80	12.18		15.80	0.038	29.00	0.90	
Note: Directional gain =2.86dBi +10log(2) = 6.47dBi>6dBi, so the power limit shall be								
reduced to 24-(6.47-6) = 23.53dBm for 5.18-5.24GHz, 5.260-5.320GHz, 5.500-5.720GHz band								
and reduced	to 30-(6.4	47-6) = 2	9.53dBm	for 5.745-5.825	5GHz band.			

802.11ac (VHT80) Mode

Frequency	Measured		Duty	Total Power with Duty		Limit		Vardiat
(MHz)	ANT0	ANT1	Factor	tor Factor				verdict
	dBm	dBm		dBm	W	dBm	W	
5210	12.01	11.22	1 29	16.02	0.040	23.53	0.23	DASS
5775	14.66	12.55	1.50	18.13	0.065	29.53	0.90	FA33
Note: Directional gain =2.86dBi +10log(2) = 6.47dBi>6dBi, so the power limit shall be								
reduced to 24-(6.47-6) = 23.53dBm for 5.18-5.24GHz, 5.260-5.320GHz, 5.500-5.720GHz band								
and reduced	l to 30-(6.4	47-6) = 2	9.53dBm	for 5.745-5.825	GHz band.			

REPORT No. : SZ22090379W06

A.3. Emission Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)
NVNT	а	5180	Ant1	18.981
NVNT	а	5220	Ant1	19.141
NVNT	а	5240	Ant1	19.232
NVNT	n20	5180	Ant1	20.046
NVNT	n20	5220	Ant1	19.883
NVNT	n20	5240	Ant1	19.965
NVNT	n40	5190	Ant1	40.411
NVNT	n40	5230	Ant1	40.428
NVNT	ac20	5180	Ant1	20.044
NVNT	ac20	5220	Ant1	20.039
NVNT	ac20	5240	Ant1	20.207
NVNT	ac40	5190	Ant1	40.577
NVNT	ac40	5230	Ant1	40.603
NVNT	ac80	5210	Ant1	82.817

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)
NVNT	а	5745	Ant1	14.754
NVNT	а	5785	Ant1	14.425
NVNT	а	5825	Ant1	14.468
NVNT	n20	5745	Ant1	15.039
NVNT	n20	5785	Ant1	14.752
NVNT	n20	5825	Ant1	15.301
NVNT	n40	5755	Ant1	32.638
NVNT	n40	5795	Ant1	31.306
NVNT	ac20	5745	Ant1	14.373
NVNT	ac20	5785	Ant1	14.944
NVNT	ac20	5825	Ant1	14.211
NVNT	ac40	5755	Ant1	35.098
NVNT	ac40	5795	Ant1	33.868
NVNT	ac80	5775	Ant1	75.086

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r

Fax: 86-755-36698525 E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-m

Fax: 86-755-36698525 E-mail: service@morlab.cn

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

A.4. Peak Power Spectral Density

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Duty Factor (dB)	Total PSD (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	Ant1	1.28	0.20	1.48	11	Pass
NVNT	а	5220	Ant1	1.44	0.20	1.64	11	Pass
NVNT	а	5240	Ant1	1.44	0.20	1.64	11	Pass
NVNT	а	5745	Ant1	0.67	0.20	0.87	30	Pass
NVNT	а	5785	Ant1	-1.54	0.20	-1.34	30	Pass
NVNT	а	5825	Ant1	-1.65	0.20	-1.45	30	Pass
NVNT	а	5180	Ant2	0.41	0.20	0.61	11	Pass
NVNT	а	5220	Ant2	0.77	0.20	0.97	11	Pass
NVNT	а	5240	Ant2	0.9	0.20	1.10	11	Pass
NVNT	а	5745	Ant2	-1.55	0.20	-1.35	30	Pass
NVNT	а	5785	Ant2	-1.7	0.20	-1.50	30	Pass
NVNT	а	5825	Ant2	-1.5	0.20	-1.30	30	Pass
NVNT	n20	5180	Ant1	0.74	0.22	0.96	11	Pass
NVNT	n20	5220	Ant1	0.94	0.22	1.16	11	Pass
NVNT	n20	5240	Ant1	1.03	0.22	1.25	11	Pass
NVNT	n20	5745	Ant1	0.38	0.22	0.60	30	Pass
NVNT	n20	5785	Ant1	-1.8	0.22	-1.58	30	Pass
NVNT	n20	5825	Ant1	-1.98	0.22	-1.76	30	Pass
NVNT	n20	5180	Ant2	0.14	0.22	0.36	11	Pass
NVNT	n20	5220	Ant2	0.46	0.22	0.68	11	Pass
NVNT	n20	5240	Ant2	0.57	0.22	0.79	11	Pass
NVNT	n20	5745	Ant2	-1.72	0.22	-1.50	30	Pass
NVNT	n20	5785	Ant2	-2	0.22	-1.78	30	Pass
NVNT	n20	5825	Ant2	-1.82	0.22	-1.60	30	Pass
NVNT	n20	5180	Ant1+2	-	-	3.68	10.53	Pass
NVNT	n20	5220	Ant1+2	-	-	3.94	10.53	Pass
NVNT	n20	5240	Ant1+2	-	-	4.04	10.53	Pass
NVNT	n20	5745	Ant1+2	-	-	2.69	29.53	Pass
NVNT	n20	5785	Ant1+2	-	-	1.33	29.53	Pass
NVNT	n20	5825	Ant1+2	-	-	1.33	29.53	Pass
NVNT	n40	5190	Ant1	-2.08	0.42	-1.66	11	Pass
NVNT	n40	5230	Ant1	-1.97	0.42	-1.55	11	Pass
NVNT	n40	5755	Ant1	-2.33	0.42	-1.91	30	Pass
NVNT	n40	5795	Ant1	-4.89	0.42	-4.47	30	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Page 52 of 110

NVNT	n40	5190	Ant2	-2.63	0.42	-2.21	11	Pass
NVNT	n40	5230	Ant2	-2.41	0.42	-1.99	11	Pass
NVNT	n40	5755	Ant2	-4.78	0.42	-4.36	30	Pass
NVNT	n40	5795	Ant2	-4.98	0.42	-4.56	30	Pass
NVNT	n40	5190	Ant1+2	-	-	1.08	10.53	Pass
NVNT	n40	5230	Ant1+2	-	-	1.25	10.53	Pass
NVNT	n40	5755	Ant1+2	-	-	0.05	29.53	Pass
NVNT	n40	5795	Ant1+2	-	-	-1.50	29.53	Pass
NVNT	ac20	5180	Ant1	0.65	0.22	0.87	11	Pass
NVNT	ac20	5220	Ant1	0.99	0.22	1.21	11	Pass
NVNT	ac20	5240	Ant1	1.02	0.22	1.24	11	Pass
NVNT	ac20	5745	Ant1	0.33	0.22	0.55	30	Pass
NVNT	ac20	5785	Ant1	-1.96	0.22	-1.74	30	Pass
NVNT	ac20	5825	Ant1	-2.17	0.22	-1.95	30	Pass
NVNT	ac20	5180	Ant2	0.13	0.22	0.35	11	Pass
NVNT	ac20	5220	Ant2	0.53	0.22	0.75	11	Pass
NVNT	ac20	5240	Ant2	0.61	0.22	0.83	11	Pass
NVNT	ac20	5745	Ant2	-1.66	0.22	-1.44	30	Pass
NVNT	ac20	5785	Ant2	-2.08	0.22	-1.86	30	Pass
NVNT	ac20	5825	Ant2	-1.87	0.22	-1.65	30	Pass
NVNT	ac20	5180	Ant1+2	-	-	3.63	10.53	Pass
NVNT	ac20	5220	Ant1+2	-	-	4.00	10.53	Pass
NVNT	ac20	5240	Ant1+2	-	-	4.05	10.53	Pass
NVNT	ac20	5745	Ant1+2	-	-	2.68	29.53	Pass
NVNT	ac20	5785	Ant1+2	-	-	1.21	29.53	Pass
NVNT	ac20	5825	Ant1+2	-	-	1.21	29.53	Pass
NVNT	ac40	5190	Ant1	-2.02	0.80	-1.22	11	Pass
NVNT	ac40	5230	Ant1	-1.87	0.80	-1.07	11	Pass
NVNT	ac40	5755	Ant1	-2.38	0.80	-1.58	30	Pass
NVNT	ac40	5795	Ant1	-4.89	0.80	-4.09	30	Pass
NVNT	ac40	5190	Ant2	-2.65	0.80	-1.85	11	Pass
NVNT	ac40	5230	Ant2	-2.42	0.80	-1.62	11	Pass
NVNT	ac40	5755	Ant2	-4.94	0.80	-4.14	30	Pass
NVNT	ac40	5795	Ant2	-5.09	0.80	-4.29	30	Pass
NVNT	ac40	5190	Ant1+2	-	-	1.49	10.53	Pass
NVNT	ac40	5230	Ant1+2	-	-	1.67	10.53	Pass
NVNT	ac40	5755	Ant1+2	-	-	0.34	29.53	Pass
NVNT	ac40	5795	Ant1+2	-	-	-1.18	29.53	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

NVNT	ac80	5210	Ant1	-5.4	1.38	-4.02	11	Pass
NVNT	ac80	5775	Ant1	-5.77	1.38	-4.39	30	Pass
NVNT	ac80	5210	Ant2	-6.16	1.38	-4.78	11	Pass
NVNT	ac80	5775	Ant2	-8.24	1.38	-6.86	30	Pass
NVNT	Ac80	5210	Ant1+2	-	-	-1.37	10.53	Pass
NVNT	Ac80	5775	Ant1+2	-	-	-2.44	29.53	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1	ENSEIPULSE SOURCE OFF	ALIGN AUTO/NORF	03:58:47 PM Oct 25.2
PNO: Fast	Trig: Free Run #Atten: 30 dB	Avg Type: RMS Avg Hold: 10/10	TRACE 121
a south the	aparatures of TEV		Mkr1 5.782 99 G
	• '		
#VE	3W 1.6 MHz*	#	Span 30.00 M Sweep 1.000 s (1001 p
		STATUS	
PSD N	VNT a 5825M	Hz Ant1	
19	ENSERVLIE SOURCE OFF 🛕	ALIGN AUTO/NORF	04:03:18 PM Oct 25, 2 TRACE
PNO: Fast +	ENSERULE SOURCE OFF 🛆 	ALIGN AUTO/NORF Avg Type: RMS Avg Heid: 10/10	04:03:18 PM Oct 25, 2 TRACE 1 2 TYPE M DET A 1///
PNO: Fast IFGain:Low	ENSERVUE SOURCE OFF 🛕 Trig: Free Run #Atten: 30 dB	ALIGN AUTO/NORF	04:03:18PM Oct 25, 2 TRACE 18 2 TVR 18 2 Oct A WW Oct A WW Mkr1 5.823 47 G -1,653 dE
PNO: Fast +	ENSERULE SOurce OFF 👍 Trig: Free Run #Atten: 30 dB	Avg Type: RMS Avg Type: RMS Avg[Hold: 10/10	04:03:18PM Oct 25, 2 TRACE 02 - TVYE DET AVV/ Mkr1 5.823 47 G -1,853 dE
PNO: Fast → IFGain:Low	ENSEPALSE SOURCE OF A	Avg Type: RMS Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25,2 174A CE 82:3 1776 Ministry CET A 1777 Mkr1 5.823 47 G -1,653 dE
PNO: Fast -	ENSEPTUSE SOURCE OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25,3 TRACE 112:1 TYPE Muture cet A 1111 Mkr1 5.823 47 G -1,653 dE
PNO: Fast → IFGain:Low	EKSEPLUSE SOURCE OFF (A) Trig: Free Run #Atten: 30 dB	Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25.2 TRACE 11 2:3 TV:R MULL TV:R MULL CET A W/// Mkr1 5.823 47 G -1,653 dE
PNO: Fast IFGain:Low	ENSEPTLUE SOurce OF A	Avg Type: RMS Avg[Hold: 10/10	04:03:18PM Oct 25.2 TRACE B2-1 TV:E MUNICIPAL TV:E MUNICIPA
PNO: Fast	ENSEPTLE SOurce OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25,2 TRACE 112:3 TYPE Minimum cet AVV/ Mkr1 5.823 47 G -1,653 dE
PNO: Fast IFGain:Low	ENSEPTUSE SOURCE OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM (ct 25,3 TRACE 12:3 TYPE MILLION CET A WWI Mkr1 5.823 47 G -1,653 dE
PNO: Fast IFGain:Low	ENSERULE SOurce OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25,2 TRACE 12: TYPE MANN CET AVVI Mkr1 5.823 47 G -1,853 dE
PNO: Fast IFGaincLow	ENSEPTLE SOurce OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM (ct 25,2 TRACE 11:2-3 TYPE Minimum cet AVV/ Mkr1 5.823 47 G -1,653 dE
PNO: Fast IFGaincLow	ENSERULE SOurce OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM (ct 25,3 TRACE 112:3 TYPE MANN cet A WW Mkr1 5.823 47 G -1,653 dE
PNO: Fast IFGaincLow	ENSERULE SOurce OF A	Avg Type: RMS Avg Hold: 10/10	04:03:18PM Oct 25,2 TRACE 12:3 TYPE MINUTE Mkr1 5.823 47 G -1,653 dE
	PNO: Fast IFGain:Low	PNO: Fast Trig: Free Run #Atten: 30 dB	PNO: Fast Trig: Free Run IFGain:Low Trig: Free Run Matter: 30 dB 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

	PSD NVNT a 5180M	Hz Ant2	
glient Spectrum Analyzer - Swept SA RL 85 502 AC Center Freq 5,180000000 GHz	SENSEPLISE SOurce OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	LIGN AUTO/NORF Avg Type: RMS Avg Hold: 10/10	04:37:36 PM Oct 25, 202 TRACE] 2 3 4 TYPE MULTINI DET A 1771 NI
Ref Offset 15.28 dB 0 dB/div Ref 20.00 dBm			Mkr1 5.178 05 GH 0.413 dBi
v a			
	↓ ¹		
00			
b.0			
n a			
6.0			
0.0			
enter 5.18000 GHz			Span 30.00 Mi
Res BW 1.0 MHz	#VBW 3.0 MHz*	STATUS	reep 1.000 s (1001 pt
	PSD NVNT a 5220M	Hz Ant2	
ilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC	PSD NVNT a 5220MI	Hz Ant2	04:37:57 PM Oct 25, 20:
glient Spectrum Analyzer - Swept SA RL PF 30 92 AC enter Freq 5.220000000 GHz	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 22, 4 TYPE MUSIC DET A WUTT
ilent Spectrum Analyzer - Swept SA RL 96 (30.92 AC) enter Freq 5.220000000 GHz Ref Offset 15.23 dB g dB/div Ref 20.00 dBm	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 12 3 TYPE MUNIT OF A NUMBER Mkr1 5.218 29 GH 0,774 dB
glient Spectrum Analyzer - Swept SA RL PF 30 92 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/div Ref 20.00 dBm	PSD NVNT a 5220M	Hz Ant2	04:37:57PM Oct 25,20 TRACE 12:34 Type Mixed 12:34 Type Mixed 12:34 Oct 12:34 Mkr1 5.218 29 GH 0,774 dB
glient Spectrum Analyzer - Swept SA RL PF 30.92 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/div Ref 20.00 dBm 99	PSD NVNT a 5220M	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 12:3 4 TYPE MWWWW cet A WWIT Mkr1 5.218 29 GH 0,774 dB
glient Spectrum Analyzer - Swept SA RL PE 50.92 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/div Ref 20.00 dBm	PSD NVNT a 5220M	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 12 3 4 Type MWWWW cet A WWH Mkr1 5.218 29 GH 0, 774 dB
Plent Spectrum Analyzer Swept SA RL PE 1500 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/div Ref 20.00 dBm 00	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM 0ct 25, 20 TRACE 12 4 TYPE MWWWW cet A WWH Mkr1 5.218 29 GH 0, 774 dB
Plent Spectrum Analyzer Swept SA RL PE ISO20 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/div Ref 20.00 dBm 99 00 00 00 00 00 00 00 00 00	PSD NVNT a 5220M	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 1 2 4 TYPE MWWWW Cet A WWW Mkr1 5.218 29 GH 0, 774 dB
silent Spectrum Analyzer - Swept SA Rt	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 12 4 TYPE Mkr1 5.218 29 GH 0.774 dB
silent Spectrum Analyzer - Swept SA Rt	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 300 TRACE 12 4 TYPE Mkr1 5.218 29 GF 0,774 dB
glient Spectrum Analyzer Swept SA Rt 65 502 AC Senter Freq 5.220000000 GHz Ref Offset 15.23 dB Ref 20.00 dBm 0 g	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 200 TRACE 12 4 TYPE MULTI Mkr1 5.218 29 GF 0.774 dB
Pilert Spectrum Analyzer Swept SA RL 96 1502 AC enter Freq 5.220000000 GHz Ref Offset 15.23 dB 0 dB/dlv Ref 20.00 dBm 00 00 00 00 00 00 00 00 00 0	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Oct 25, 20 TRACE 12 3 TYPE Mkr1 5.218 29 GF 0,774 dB
Plent Spectrum Analyzer - Swept SA RL PE 5020 AC enter Freq 5.220000000 GHz Control Ref Offset 15.23 dB Ref Offset 15.23 dB Control Ref 20.00 dBm Control Ref 20.00 dBm Cont	PSD NVNT a 5220Mi	Hz Ant2	04:37-57PM Oct 25, 20 TRACE 22 4 Type Mkr1 5.218 29 GF 0,774 dB
Plent Spectrum Analyzer - Swept SA RL PF ISO20 ACC enter Freq 5.220000000 GHz Ref Offset 15.23 dB PG ISO20 ACC Ref 20.00 dBm PG ISO20 ACC PG ISO20 AC	PSD NVNT a 5220MI	Hz Ant2	04:37:57PM Cct 25, 30 TRACE 12 TYPE TYPE Mkr1 5.218 29 GH 0.774 dB 5 pan 30.00 MH reep 1.000 s (1001 pt

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 1.6 MHz*

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

TATUS

E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 1.6 MHz*

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

TATUS

RL PF 50Ω AC Inter Freq 5.230000000 G	SENSEPTURE SOURCE OFF ▲ PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO/NORF	04:18:42 PM Oct 25, 2 TRACE 22 TYPE MWWW DET A N
Ref Offset 15.42 dB dB/dly Ref 20.00 dBm			Mkr1 5.225 32 G -1.972 dE
1	1		
nter 5.23000 GHz	#VBW 3.0 MHz*	#Sw	Span 60.00 M
		STATUS	

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

TATUS

E-mail: service@morlab.cn

Center 5.23000 GHz #Res BW 1.0 MHz

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 3.0 MHz*

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

TATUS

Span 60.00 MHz #Sweep 1.000 s (1001 pts)

Center 5.79500 GHz #Res BW 510 kHz

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 1.6 MHz*

TATUS

Span 60.00 MHz #Sweep 1.000 s (1001 pts)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

TATUS

TATUS

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

RL RE 50.0: AC	SENSE: PULSE SOURCE OFF	ALIGN AUTO/NORE	04:45:10 PM Oct 25, 202
enter Freq 5.825000000	GHZ PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: RMS Avg Hold: 10/10	TRACE 1214 TYPE MULLION DET A NUMB
Ref Offset 15.53 dB dB/div Ref 20.00 dBm			Mkr1 5.822 60 GH -1.866 dBi
0.0			
m	● 1		
a			
α			
0			
0			
enter 5.82500 GHz tes BW 510 kHz	#VBW 1.6 MHz*	#Sv	Span 30.00 M
4		STATUS	

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Center 5.23000 GHz #Res BW 1.0 MHz

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 3.0 MHz*

STATUS

Span 60.00 MHz #Sweep 1.000 s (1001 pts)

Fax: 86-755-36698525

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Center Freq 5.775000000 GHz Avg Type: RMS Avg|Hold: 10/10 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 5.758 80 GHz -8.242 dBm Ref Offset 15.52 dB Ref 20.00 dBm 10 dB/div •1 Center 5.77500 GHz #Res BW 510 kHz Span 120.0 MHz #Sweep 1.000 s (1001 pts) #VBW 1.6 MHz* TATUS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

A.5. Frequency Stability

U-NII-1 (Ch. 36)									
5180MHz									
VOLTAGE	POWER	TEMP	Fre. Dev.	Deviation					
(%)	(VDC)	(°C)	(kHz)	(ppm)					
100%		+20(Ref)	23	4.440					
100%		-30	25	4.826					
100%		-20	22	4.247					
100%		-10	31	5.985					
100%	5.00	0	20	3.861					
100%	5.00	+10	22	4.247					
100%		+20	19	3.668					
100%	-	+30	23	4.440					
100%		+40	24	4.633					
100%		+50	27	5.212					
115%	5.75	+20	28	5.405					
85%	4.25	+20	26	5.019					

U-NII-3 (Ch. 149)									
5745MHz									
VOLTAGE	POWER	TEMP	Fre. Dev.	Deviation					
(%)	(VDC)	(°C)	(kHz)	(ppm)					
100%		+20(Ref)	22	3.829					
100%		-30	24	4.178					
100%	-	-20	25	4.352					
100%	-	-10	21	3.655					
100%	5.00	0	29	5.048					
100%	5.00	+10	25	4.352					
100%		+20	22	3.829					
100%		+30	26	4.526					
100%		+40	27	4.700					
100%		+50	28	4.874					
115%	5.75	+20	30	5.222					
85%	4.25	+20	29	5.048					

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.6. Conducted Emission

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be remeasured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

Test Mode: <u>EUT + Adapter + Computer +WIFI TX</u> Test voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN

B. Test Plot:

(L	Phase))
----	--------	---

No. Fre	Fre.	Emission Level (dBµV)Limit (dBµV)Quai-peakAverageQuai-peakAverageQuai-peakAverage		Limit (dBµV)	Power-line	Verdict
	(MHz)						
1	0.1547	43.11	27.39	65.75	55.75		PASS
2	0.1859	40.50	30.11	64.22	54.22		PASS
3	0.4872	44.37	36.31	56.22	46.22	Lino	PASS
4	0.5509	40.81	31.09	56.00	46.00	Line	PASS
5	0.6676	41.38	29.98	56.00	46.00		PASS
6	1.0944	42.58	31.28	56.00	46.00		PASS

(N	Phase)
----	--------

No.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average			
1	0.4876	42.59	35.56	56.21	46.21		PASS	
2	0.5509	39.81	30.57	56.00	46.00		PASS	
3	0.7350	40.03	30.77	56.00	46.00	Noutral	PASS	
4	0.7937	39.77	30.08	56.00	46.00	neutrai	PASS	
5	0.8566	39.30	29.02	56.00	46.00		PASS	
6	2.3123	31.59	23.13	56.00	46.00		PASS	

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.7. Restricted Frequency Bands

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below:

 $E \ [dB\mu V/m] = U_R + A_T + A_{Factor} \ [dB]; A_T = L_{Cable \ loss} \ [dB] - G_{preamp} \ [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note 1: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

Note 2 All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

802.11a Mode

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBµV)	A _T (dB)	A _{Factor} (dB@ 3m)	Max. Emission E (dBµV/m)	Limit (dBµV/ m)	Verdict
36	5133.76	PK	44.56	-19.54	32.20	57.22	74	PASS
36	5150.00	AV	35.41	-19.54	32.20	48.07	54	PASS
48	5427.88	PK	41.71	-19.54	32.20	54.37	74	PASS
48	5356.38	AV	31.77	-19.54	32.20	44.43	54	PASS
149	5725.00	PK	47.25	-19.01	32.20	60.44	122.23	PASS
165	5862.10	PK	50.41	-19.01	32.20	63.60	90.95	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

0 0 0		10000				-	Swept SA	n Analyzer	Spectru	eysight
Marker	M Nov 05, 2022 CE 1 2 3 4 5 6 PE M WWWWWW	09:39:0 TI	Type: Voltage	Avg	Trio: Free Run	GHz	0000000	13376	1 5.	ker
Select Marker	ET P NNNNN	_			Atten: 10 dB	IFGain:Low			_	_
1	76 GHz 2 dBµV	1 5.13 44.5	Mkr				99 dBµV	ef 106	F	iB/div
Norma	f									
Delt	1.2									
Fixed			(1997-1997-1997-1997-1997-1997-1997-1997	neret part of the			44-19-19-19-19-19-19-19-19-19-19-19-19-19-		ware.p	
o	1800 GHz (1001 pts)	Stop : .400 ms	Sweep 1		3.0 MHz	#VBV	ИНz	GHz PR) 1	5000 I (CIS	rt 4. s BW
	ON VALUE	FUNC	FUNCTION WIDTH	FUNCTION	44,562 dBµV 43,337 dBµV	76 GHz	× 5.133 5.150		TRC S	N
Properties	=									
Mo 1 of										

(PEAK, Channel 36, 802.11a)

(AVERAGE, Channel 36, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	M Nov 05, 2022	09:47:11 AM TRAC	ALIGN OFF Type: Voltage Hold:>100/100	Avg	SENSE:IN	Hz	- Swept SA 10 Ω DC 00000000 G	Analyzer ESEL 5 2788	RF I	eysight RL rker
Select Marker	88 GHz	DE	Mkr		Atten: 10 dB	PNO: Fast C+ FGain:Low	IF	_	_	
	4 dBµV	41.71		-		1	99 dBµV	ef 106.	F	B/div
Norm										my
Del										
	monen	and and	mundersamura	which and an imple	1	walnes	howman	Hinghawa	Jun	
Fixed										
	600 GHz 1001 pts)	Stop 5.4 000 ms (Sweep 1.		3.0 MHz	#VBW	MHz	GHz PR) 1	2400 (CIS	rt 5.2 s BW
	ON VALUE +	FUNCTIO	FUNCTION WIDTH	FUNCTION	Y		X E 260	1	TRC S	MODE
Properties					40,145 UBJV 41.714 dBJV	88 GHz	5.427		1	N
Mo										
10										
	-		STATUS						_	

(PEAK, Channel 48, 802.11a)

(AVERAGE, Channel 48, 802.11a)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Fax: 86-755-36698525 E-mail: service@morlab.cn

RL RF PRESEL 50 Ω DC	- 1	SENSE:INT	ALIGN OFF	10:28:06 AM Nov 05, 2022	
arker 4 5.725000000000	GHz	Trig: Free Run	Avg Type: Voltage Avg/Hold:>100/100	TRACE 1 2 3 4 5 4 TYPE MWWWWW	Marker
	IFGain:Low	Atten: 10 dB	5,	DET PNNNN	Select Marker
dB/div Ref 106.99 dBµV			Mkr4	47.247 dBμV	4
7.0 				m	Norm
7 D					
7.0 7.0	in the states	N. Kakawa ika (ta Palita		2 At	Delt
7.0					Fixed
art 5.4600 GHz	#\/D		Swaan	Stop 5.7450 GHz	
KR MODE TRC SCL X	#VE	Y J.U WINZ	FUNCTION FUNCTION WDTH	FUNCTION VALUE	
1 N 1 f 5.650	000 GHz	42,370 dBuV			
3 N 1 f 5.720 4 N 1 f 5.725 5	000 GHz 000 GHz	45.700 dBµV 47.247 dBµV		E	Properties
9					Mo
				Į.	1 of
			and the second s	1.4	

(PEAK, Channel 149, 802.11a)

(PEAK, Channel 165, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 E-mail: service@morlab.cn

802.11n (HT40) Mode

A.Test Verdict:

		Detector	Receiver			Max.		
	Frequency	Delector	Reading	AT	A _{Factor}	Emission	Limit	Vordict
Channel	(MHz)		U _R	(dB)	(dB@3m)	Е	(dBµV/m)	verdict
		PN/AV	(dBµV)			(dBµV/m)		
38	5141.70	PK	49.05	-19.54	32.20	61.71	74	PASS
38	5150.00	AV	39.96	-19.54	32.20	52.62	54	PASS
46	5402.36	PK	42.98	-19.54	32.20	55.64	74	PASS
46	5351.98	AV	32.13	-19.54	32.20	44.79	54	PASS
151	5725.00	PK	52.35	-19.01	32.20	65.54	122.23	PASS
159	5850.00	PK	52.65	-19.01	32.20	65.84	122.23	PASS

B.Test Plot:

RL REPRESEL 50 Q DC	SENSE:INT	T	ALIGN OFF	03:38:14 PM Nov 20, 20	22
arker 1 5.141700000000 GHz		Avg	Type: Voltage	TRACE 1 2 3 4	Marker
PNO: Fe IFGain:L	ow #Atten: 4 dB	Avg	Hold:>100/100	DET	Select Marker
dB/div Ref 100.99 dBµV			Mkr	1 5.141 70 GH 49.053 dBµ	7 V
9 1.D 1.D					Norma
10 10 10 10	والمستعمون والمراجع والمستوجع ومعارفة	-Tarroyak partition and	and a sugar	12	Delt
10					Fixed
tart 4.5000 GHz es BW (CISPR) 1 MHz #	≠VBW 3.0 MHz		Sweep 1	Stop 5.1900 GF 400 ms (1001 pt	Fixed Iz S) Of
10 10 10 10 10 10 10 10 10 10	≠VBW 3.0 MHz z 49.053 dBµV z 48.155 dBµV	FUNCTION	Sweep 1	Stop 5.1900 GH 400 ms (1001 pt FUNCTION VALUE	Fixed (2 (5) Properties
10 10 10 10 10 10 10 10 10 10 10 10 110 10	≠VBW 3.0 MHz z 49.053 dBµV z 48.155 dBµV	FUNCTION	Sweep 1.	Stop 5.1900 GH 400 ms (1001 pt FUNCTION VALUE	Fixed S) Properties Mor 1 of

(PEAK, Channel 38, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa Http://www.morlab.cn E

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 91 of 110

	10 0MNou 20 2022	- 10		-	CENCENT	-	pt SA	n Analyzer - Sw	sight Spectr
Marker	TRACE 1 2 3 4 5 0 TYPE M		Avg Type: Voltage Avg Hold:>100/100		rig: Free Run	Fart C	00000 GHz	486000	ker 1 5
Select Marker	DET PNNNN				Atten: 4 dB	n:Low	IFGair		_
1	48 60 GHz .680 dBµV	kr1 5	Mk				dBµV	ef 100.99	B/dív
Norm	~								
-									
Del	21								
Fixed									
11400									
0	5.1900 GHz ns (1001 pts)	S 719.	Sweep		1 kHz	#VBW	z	GHz PR) 1 MH	t 4.500 BW (CI
_	NCTION VALUE	TH	FUNCTION WIDT	FUNCTION	Y		X 5 149 60 C	CL)	MODE TRC
Properties					.957 dBpV	SHz S	5.150 00 G		N 1
Mo									
1 of									
		7.0	OTAT						_

(AVERAGE, Channel 38, 802.11n (HT40))

(PEAK, Channel 48, 802.11n (HT40))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 F Http://www.morlab.cn E

Fax: 86-755-36698525 E-mail: service@morlab.cn

				-		r - Swept SA	rum Analyz	Spect	eysight
Marker	10:00:41 AM Nov 05, 2022 TRACE 1 2 3 4 5 0	ALIGN OFF	Av	SENSE:IN	GHz	50 Ω DC	.3519	2 5	aL rker
Select Marker	DET PNNNNN	Hold:>100/100	AVS	Atten: 10 dB	PNO: Fast C IFGain:Low	1			
2	2 5.351 98 GHz 32.126 dBµV	Mkr2				.99 dBµV	Ref 10	v	B/div
Norm									
Dell									
Del				2			-	L	
Fixed				N					
c	Stop 5.4600 GHz 29.4 ms (1001 pts)	Sweep 22		N 1.1 kHz	#VB	MHz	0 GHz SPR)	240 / (Cl	rt 5. s BM
	FUNCTION VALUE +	FUNCTION WIDTH	FUNCTION	¥ 31,966 dBuV	0 00 GHz	× 5,350	SCL	TRC	MODE
Properties				32.126 dBµV	1 98 GHz	5.351	f	1	N
Mo									
1 01	the second se								
		STATUS					_	_	

(AVERAGE, Channel 48, 802.11n (HT40))

(PEAK, Channel 151, 802.11n (HT40))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 93 of 110

Marker	04:09:34 PM Nov 08, 2022	ALIGN OFF	T]	SENSE: IN		Swept SA SΩ DC	PRESEL 5	R	RL
Select Marker	TYPE M WWWWWW DET P NNNNN	lold:>100/100	Avg	Trig: Free Run Atten: 10 dB	PNO: Fast G		.936860	85	irke
8	3 5.936 86 GHz 44.251 dBμV	Mkr8				99 dBµV	Ref 106.	ÍV	dB/c
Norma							1	~	9
Delt		≜ ⁸		♦5			and and		0
Fixed	John of the second s	hand in the strange in the	29°0000°		n when the product that the				0 0 0
o	Stop 6.0000 GHz 000 ms (1001 pts)	Sweep 1.		V 3.0 MHz	#VBV	MHz) GHz SPR) 1 I	.795 N (CI	art : s B
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	52.650 dBuV	00 GHz	5,850	SCL	E TRC	R MOI
Properties	E			42.833 dBµV 48.844 dBµV 41.782 dBµV 46.072 dBµV	00 GHz 96 GHz 00 GHz 11 GHz	5.855 5.858 5.880 5.914	+ + + +	1	N N N N
Mor 1 of				41.939 dBµV 44.251 dBµV	00 GHz 86 GHz	5.925 5.936	f f	1	N
				_111					-

(PEAK, Channel 159, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax

Fax: 86-755-36698525

Http://www.morlab.cn

802.11 ac (VHT80) Mode

A.Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV		(dB)	(ub@ 3m)	E	(dBµV/m)	veruici
			(dBuV)			(dBµV/m)		
42	5129.00	PK	50.61	-19.54	32.20	63.27	74	PASS
42	5147.00	AV	40.97	-19.54	32.20	53.63	54	PASS
42	5358.80	PK	41.93	-19.54	32.20	54.59	74	PASS
42	5350.00	AV	32.71	-19.54	32.20	45.37	54	PASS
155	5725.00	PK	55.58	-19.01	32.20	68.77	122.23	PASS
155	5880.00	PK	53.38	-19.01	32.20	66.57	101.53	PASS

B.Test Plot:

(Channel 42, PEAK, 802.11ac (VHT80))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

Fax: 86-755-36698525

(Channel 42, AVG, 802.11ac (VHT80))

(Channel 155, PEAK, 802.11ac (VHT80))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

A.8. Radiated Emission

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note3: For the frequency, which started from 18GHz to 10th harmonic of the highest frequency, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note 4: All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

802.11a Mode

Plot for Channel 36

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 44

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

Page **99** of **110**

Plot for Channel 48

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 149

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 157

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 165

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

802.11n (HT40) mode

Plot for Channel 38

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

Plot for Channel 46

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 151

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 159

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

802.11ac (VHT80) Mode

Plot for Channel 42

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

Page 108 of 110

REPORT No. : SZ22090379W06

Plot for Channel 155

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

REPORT No. : SZ22090379W06

END OF REPORT

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn